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Abstract 

When applied to a quaternionic manifold, the generalized Stokes theorem can provide an elucidating 

space-progression model in which elementary objects float on symmetry centers that act as their 

living domain. 

1 Introduction 
This paper uses the fact that separable Hilbert spaces can only cope with number systems that are 

division rings. We use the most elaborate version of these division rings and that is the quaternionic 

number system. Quaternionic number systems exist in multiple versions, that differ in the way they 

are ordered. Ordering influences the arithmetic properties of the number system and it appears that 

it influences the behavior of quaternionic functions under integration. Another important fact is that 

every infinite dimensional separable Hilbert system owns a companion Gelfand triple, which is a non-

separable Hilbert space. We will use these Hilbert spaces as structured storage media for discrete 

quaternionic data and for quaternionic manifolds. We use the reverse bra-ket method in order to 

relate operators and their eigenspaces to pairs of functions and their parameter spaces. Subspaces 

act as domains in relation to which manifolds are defined. 

2 Without discontinuities 
Without discontinuities in the manifold 𝜔 the generalized Stokes theorem is represented by a simple 

formula [1]. 

 

∫ 𝑑𝜔
Ω

= ∫ 𝜔; (= ∮ 𝜔
𝜕Ω

)
𝜕Ω

 

 

The domain Ω is encapsulated by a boundary 𝜕Ω. 

 

Ω ⊂ 𝜕Ω 

 

The manifolds 𝜔 and 𝑑𝜔 represent quaternionic fields 𝔉 and d𝔉, while inside 𝜕Ω the manifold 𝜔 

represents the quaternionic boundary of the quaternionic field 𝔉.  

𝑑𝜔 is the exterior derivative of 𝜔.  

2.1 A special boundary between the real part and the imaginary part of the domain 
The theorem may construct a rim 𝔉(𝒙, 𝜏) between the past history of the field [𝔉(𝒙, 𝑡)]𝑡<𝜏 and the 

future [𝔉(𝒙, 𝑡)]𝑡>𝜏 of that field. It means that the boundary 𝔉(𝒙, 𝜏) of field [𝔉(𝒙, 𝑡)]𝑡<𝜏 represents a 

universe wide static status quo of that field. 
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More specifically: 
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𝑥 = 𝒙 + 𝜏 

 

Here [𝔉(𝒙, 𝑡)]𝑡=𝜏 represents the static status quo of a quaternionic field at instance 𝜏. 𝑉 represents 

the spatial part of the quaternionic domain of 𝔉, but it may represent only a restricted part of that 

parameter space. This last situation corresponds to the usual form of the divergence theorem. 

 Domains and parameter spaces 
The quaternionic domain Ω is supposed to be defined as part of the domain ℜ of a reference 

operator ℜ that resides in the non-separable Hilbert space ℋ. The bra-ket method relates the 

eigenspace of reference operator ℜ to a flat quaternionic function ℜ. The target of function ℜ is its 

parameter space. Here we explicitly use the same symbol ℜ for all directly related objects.  

The bra-ket method also relates the eigenspace ℜ to an equivalent eigenspace ℛ of a reference 

operator ℛ, which resides in the separable Hilbert space ℌ. Both eigenspaces are related to the same 

version of the quaternionic number system. However, the second eigenspace ℛ only uses rational 

quaternions. 

Parameter spaces as well as domains correspond to closed subspaces of the Hilbert spaces. The 

domain subspaces are subspaces of the domains of the corresponding reference operators. The 

parameter spaces are ordered by a selected coordinate system. The Ω domain is represented by a 

part of the eigenspace of reference operator ℜ. The flat quaternionic function ℜ defines the 

parameter space ℜ. It installs an ordering by selecting a Cartesian coordinate system. Several 

mutually independent selections are possible. The chosen selection attaches a corresponding 

symmetry flavor to this parameter space. In the model, this symmetry flavor will become the 

reference symmetry flavor. Thus, the symmetry flavor of parameter space ℜ⓪ may be distinguished 

by its superscript  ⓪. 

The manifold 𝜔 is also defined as the continuum eigenspace of a dedicated normal operator 𝜔 which 

is related to domain 𝛺 and to parameter space ℜ⓪ via function 𝔉. Within this parameter space 𝔉 

may have discontinuities, but these must be excluded from the 𝛺 domain. This exclusion will be 

treated below. 

 Interpretation of the selected encapsulation 
The boundary 𝜕Ω is selected between the real part and the imaginary part of domain ℜ. But it also 

excludes part of the real part. That part is the range of the real part from 𝜏 to infinity.  

The future ℜ − Ω is kept on the outside of the boundary 𝜕Ω. As a consequence, the mechanisms that 

generate new data, operate on the rim 𝜕Ω between past Ω and future ℜ − Ω.  

(3) 

(4) 



This split of quaternionic space results in a space-progression model that is to a large extent similar 

to the way that physical theories describe their space time models. However, the physical theories 

apply a model that has a Minkowski signature. The quaternionic model is strictly Euclidean. 

What happens is an ongoing process that embeds the subsequent static status quo’s of the separable 

Hilbert space into the Gelfand triple. 

 

The controlling mechanisms act as a function of progression 𝜏 in a stochastic and step-wise fashion in 

the realm of the separable Hilbert space. The result of their actions are stored in eigenspaces of 

corresponding operators that reside in the separable Hilbert space. At the same instance this part of 

the separable Hilbert space is embedded into its companion Gelfand triple.  

The controlling mechanisms will provide all generated data with a progression stamp 𝜏. This 

progression stamp reflects the state of a model wide clock tick. The whole model, including its 

physical fields will proceed with these progression steps. However, in the Gelfand triple this 

progression can be considered to flow.  

At the defined rim, any forecasting will be considered as mathematical cheating. Thus, at the rim, the 

uncertainty principle does not work for the progression part of the parameter spaces. Differential 

equations that offer advanced as well as retarded solutions must reinterpret the advanced solutions 

and turn them in retarded solutions, which in that case represent another kind of object. If the 

original object represents a particle, then the reversed particle is the anti-particle. 

As a consequence of the construct, the history, which is stored-free from any uncertainty-in the 

already processed part of the eigenspaces of the physical operators, is no longer touched. Future is 

unknown or at least it is inaccessible. 

3 Symmetry centers as floating parameter spaces 
If we tolerate discontinuities, then these artifacts must be encapsulated by boundaries 𝜕H𝑛

𝑥 and in 

that way they are separated from the main domain Ω. 

In that case the model may apply different parameter spaces, which have their own private 

symmetry flavor [2]. A separable quaternionic Hilbert space can cope with coexisting parameter 

spaces and these spaces are served by dedicated operators. The bra-ket method relates the 

parameter space to a corresponding operator. For example [3]: 

Let {𝑞𝑖} be the set of rational quaternions in a selected quaternionic number system and let {|𝑞𝑖〉} be 

the set of corresponding base vectors. They are eigenvectors of a normal operator ℛ. 

Here we enumerate the eigenvalues and the base vectors with the same index 𝑖. 

 

ℛ ≡ |𝑞𝑖〉𝑞𝑖〈𝑞𝑖|  

 

For all bra’s 〈𝑥| and ket’s |𝑦〉 hold: 

〈𝑥|ℛ 𝑦〉 = ∑〈𝑥|𝑞𝑖〉𝑞𝑖〈𝑞𝑖|𝑦〉

𝑖

 

(2) 

(3) 



ℛ0 = (ℛ + ℛ†)/2 is a self-adjoint and thus Hermitian operator. Its eigenvalues can be used to 

arrange the order of the eigenvectors by enumerating them with the eigenvalues. The ordered 

eigenvalues can be interpreted as progression values. 

𝓡 = (ℛ −  ℛ†)/2 is the corresponding anti-Hermitian operator. 

We will use the same symbol for the operator ℛ, for the eigenspace {𝑞𝑖} and for the defined 

parameter space. 𝓡 is supposed to be ordered by using a selected Cartesian coordinate system. Eight 

mutually independent selections are possible. The Cartesian ordering determines the symmetry 

flavor of the eigenspace. 

We define a category of anti-Hermitian operators {𝕾𝑛
𝑥} that have no Hermitian part and that are 

distinguished by the way that their eigenspace is ordered by applying a polar coordinate system. We 

call them symmetry centers 𝕾𝑛
𝑥. A polar ordering always start with a selected Cartesian ordering. The 

geometric center of the eigenspace of the symmetry center floats on a background parameter space 

of the normal reference operator ℛ, whose eigenspace defines a full quaternionic parameter space. 

The eigenspace of the symmetry center 𝕾𝑛
𝑥  acts as a three dimensional spatial parameter space. The 

super script  𝑥 refers to the symmetry flavor of 𝕾𝑛
𝑥. The subscript  𝑛enumerates the symmetry 

centers. Sometimes we omit the subscript. 

 

𝕾𝑥 = |𝖘𝑖
𝑥〉𝖘𝑖

𝑥〈𝖘𝑖
𝑥| 

 

𝕾𝑥†
=  −𝕾𝑥 

 

In the companion Gelfand triple of an infinite dimensional separable Hilbert space the reverse bra-

ket method can define continuum parameter spaces and relate them to corresponding operators. In 

this way the countable parameter space ℛ relates to a continuum parameter space ℜ. 

The quaternionic field 𝔉 can also be represented by a dedicated operator. Here we use a parameter 

space ℜ that is spanned by a full quaternionic number system. 

For all bra’s 〈𝑥| and ket’s |𝑦〉 hold: 

 

〈𝑥|ℜ 𝑦〉 = ∫〈𝑥|𝑞〉𝑞〈𝑞|𝑦〉
𝑞

 𝑑𝑞 

 

〈𝑥|𝔉 𝑦〉 = ∫〈𝑥|𝑞〉𝔉(𝑞)〈𝑞|𝑦〉
𝑞

 𝑑𝑞 

 

Here, we use the symbol 𝕱 for the field, the function and the operator. However, another 

parameter space 𝑹 would deliver another function 𝑭 for the same field 𝕱. So, what determines the 

field 𝕱 is stored in the eigenspace 𝕱 of operator 𝕱 and can be coupled to different pairs of 

functions and parameter spaces. 

(4) 

(5) 

(6) 
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4 The detailed generalized Stokes theorem 
Symmetry centers represent spherically ordered parameter spaces in regions H𝑛

𝑥 that float on a 

background parameter space ℜ. The boundaries 𝜕H𝑛
𝑥 separate the regions H𝑛

𝑥 from the domain Ω. 

The regions H𝑛
𝑥 are platforms for local discontinuities in basic fields. These fields are continuous in 

domain Ω.  

The symmetry centers are encapsulated and the encapsulating boundary is part of the disconnected 

boundary which encapsulates all continuous parts of physical fields that exist in the quaternionic 

model. 

 

∫ 𝑑𝜔
Ω−H

= ∫ 𝜔
𝜕Ω

− ∑ ∫ 𝜔
𝜕H𝑛

𝑥
𝑛

 

 

Here domain Ω corresponds to part of the reference parameter space ℜ⓪. As mentioned before the 

symmetry centers {𝕾𝑛
𝑥} represent encapsulated regions {H𝑛

𝑥} that float on parameter space ℜ⓪. 

The geometric center of symmetry center 𝕾𝑛
𝑥  is represented by a location on parameter space ℜ⓪. 

 

𝐻 = ⋃ H𝑛
𝑥

𝑛

 

 

The relation between the subspaces that correspond to the domains and the subspaces that 

correspond to the parameter spaces is given by. 

 

Ω⏟ ⊂ ℜ⓪⏟  

 

H𝑛
𝑥⏟ ⊂ 𝕾𝑛

𝑥⏟  

 

Also discontinuities that cover a region of ℜ⓪ can be handled in this way. For example a region that 

is surrounded by a boundary where the curvature is so high that information contained in 𝜔 cannot 

pass that boundary can be handled by separation from the rest of Ω.  

4.1 Symmetry flavor of the symmetry center 
The symmetry center 𝕾𝑛

𝑥  is characterized by a private symmetry flavor. That symmetry flavor relates 

to the Cartesian ordering of this parameter space. When the orientation of the coordinate axes is 

fixed, then eight independent Cartesian orderings are possible [2]. We use the Cartesian ordering of 

ℜ⓪ as the reference for the orientation of the axes. ℜ⓪ has the same Cartesian ordering as ℛ⓪ 

has. 

 

(1) 

(2) 

(3) 

(4) 



∫ 𝑑𝜔
Ω−H

= ∫ 𝜔
𝜕Ω

− ∑ ∫ 𝜔
𝜕H𝑛

𝑥
𝑛

 

 

In this formula the boundaries 𝜕Ω and 𝜕H𝑛
𝑥 are subtracted. This subtraction is affected by the 

ordering of the domains Ω and H𝑛
𝑥. 

This can best be comprehended when the encapsulation 𝜕H𝑛
𝑥 is performed by a cubic space form 

that is aligned along the Cartesian axes. Now the six sides of the cube contribute different to the 

effects of the encapsulation when the ordering differs from the Cartesian ordering of the reference 

parameter space ℜ⓪. This effect is represented by the symmetry related charge and the color 

charge of the symmetry center [2]. It is easily related to the algorithm which is introduced for the 

computation of the symmetry related charge. Also the relation to the color charge will be clear. 

The symmetry related charge and the color charge of symmetry center 𝕾𝑛
𝑥  are located at the 

geometric center of the symmetry center. A Green’s function together with these charges can 

represent the defining function of the contribution to the symmetry related field 𝔄𝑥 within and 

beyond the realm of the floating region H𝑛
𝑥. 

4.2 Path of the symmetry center 
The symmetry center 𝕾𝑛

𝑥  that conforms to encapsulated region H𝑛
𝑥, keeps its private symmetry 

flavor. At the passage through the boundary the symmetry flavor of the background parameter space 

ℜ⓪ flips. As a consequence the symmetry related charge of the symmetry center will flip.  

However, the passage of the symmetry center through the rim may also be interpreted as the 

annihilation of the historic symmetry center and the creation of a new symmetry center with a 

reverse symmetry flavor that will extend its live in the future. 

The passage of the symmetry centers through the rim goes together with annihilation and creation 

phenomena for the objects that reside on these platforms. Thus, this passage is related to the 

annihilation and creation of elementary particles. 

In the quaternionic space-progression model the existence of symmetry centers is independent of 

progression. With other words the number of symmetry centers is a model constant. The passage 

through the rim does not influence this number. Only the characteristics of the combination of the 

symmetry center and the background parameter space are affected by the passage. 

4.3 The embedding field 
Apart from the symmetry related fields 𝔄𝑥 that are raised by the charges of the symmetry centers at 

least one other fields exists. That field is the embedding field. The embedding field is not directly 

affected by the symmetry related charges of the symmetry centers. However, this field is affected by 

the embedding of artifacts that are picked by controlling mechanisms from the private domain of a 

symmetry center H𝑛
𝑥. and then embedded by the controlling mechanism into the embedding 

continuum, which is represented by the continuum eigenspace of operator ℭ. The mechanism 

operates in a cyclic and stochastic fashion. The result is a recurrently regenerated coherent location 

swarm that also represent a stochastic hopping path. The swarm is generated within the symmetry 

center 𝕾𝑛
𝑥  and is encapsulated by 𝜕H𝑛

𝑥. The actions of the mechanisms deform the field ℭ inside and 

beyond the floating regions H𝑛
𝑥. 

(1) 



5 Discussion 
The concept of exterior derivative is carefully crafted by skillful mathematicians, such that it becomes 

independent of the selection of parameter spaces. However, in a situation like this in which one 

parameter space floats on top of another, the selection of the parameter space does matter. The 

symmetry flavors of the coupled parameter spaces determine the values of the integrals that account 

for the contributions of the artifacts. It is represented by the symmetry related charges of these 

artifacts [4]. These symmetry related charges are supposed to be located at the geometric centers of 

the symmetry centers.  

As happens so often, physical reality reveals facts (the symmetry related charges) that cannot easily 

be discovered by skilled mathematicians. The standard model contains a short list of electric charges 

that correspond to the symmetry related charges. Also the standard model does not give an 

explanation for the existence of this short list. Here it becomes clear that the electric charge is a 

property of connected spaces and not a property of the objects that use these spaces as parameter 

spaces. The objects inherit the charge property from the platform on which they reside. 
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