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Navier-Stokes Equations Solutions Completed

Abstract

"5% of the people think; 10% of the people think that they think; and the other 85% would rather die than think."----Thomas Edison
"The simplest solution is usually the best solution"---Albert Einstein

Over nearly a year and half ago, the Navier-Stokes equations in 3-D for incompressible fluid flow
were analytically solved by the author. However, some of the solutions contained implicit terms. In
this paper, the implicit terms have been expressed explicitly in terms of x, y, z and ¢. The author
proposed and applied a new law, the law of definite ratio for incompressible fluid flow. This law
states that in incompressible fluid flow, the other terms of the fluid flow equation divide the gravity
term in a definite ratio, and each term utilizes gravity to function. The sum of the terms of the ratio is
always unity. It was mathematically shown that without gravity forces on earth, there would be no
incompressible fluid flow on earth as is known, and also, there would be no magnetohydrodynamics.
In addition to the usual method of solving these equations, the N-S equations were also solved by a
second method in which the three equations in the system were added to produce a single equation
which was then integrated. The solutions by the two methods were identical, except for the
constants involved. Ratios were used to split-up the equations; and the resulting sub-equations were
readily integrable, and even, the nonlinear sub-equations were readily integrated. The examples in
the preliminaries show everyday examples on using ratios to divide a quantity into parts, as well as
possible applications of the solution method in mathematics, science, engineering, business,
economics, finance, investment and personnel management decisions. The x—direction Navier-
Stokes equation was linearized, solved, and the solution analyzed. This solution was followed by the
solution of the Euler equation of fluid flow. The Euler equation represents the nonlinear part of the
Navier-Stokes equation. Following the Euler solution, the Navier-Stokes equation was solved
essentially by combining the solutions of the linearized equation and the Euler solution. For the
Navier-Stokes equation, the linear part of the relation obtained from the integration of the linear part
of the equation satisfied the linear part of the equation; and the relation from the integration of the
non-linear part satisfied the non-linear part of the equation. The solutions and relations revealed the
role of each term of the Navier-Stokes equations in fluid flow. The gravity term is the indispensable
term in fluid flow, and it is involved in the parabolic and forward motion of fluids. The pressure
gradient term is also involved in the parabolic motion. The viscosity terms are involved in the
parabolic, periodic and decreasingly exponential motion. Periodicity increases with viscosity. The
variable acceleration term is also involved in the periodic and decreasingly exponential motion.

The fluid flow in the Navier-Stokes solution may be characterized as follows. The x—direction
solution consists of linear, parabolic, and hyperbolic terms. The first three terms characterize
parabolas. If one assumes that in laminar flow, the axis of symmetry of the parabola for horizontal
velocity flow profile is in the direction of fluid flow, then in turbulent flow, some of the axes of
symmetry of the parabolas would be at right angles to that of laminar flow. The characteristic curve

for the integral of the x—nonlinearterm is such a parabola whose axis of symmetry is at right angles
to that of laminar flow. The integral of the y—nonlinear term is similar parabolically to that of

the x—nonlinear term. The integral of the z—nonlinear term is a combination of two similar parabolas
and a hyperbola. If the above x—direction flow is repeated simultaneously in the

y—and z— directions, the flow is chaotic and consequently turbulent.

For a spin-off, the smooth solutions from above are specialized and extended to satisfy the

requirements of the CMI Millennium Prize Problems, and thus prove the existence of smooth
solutions of the Navier-Stokes equations.



Introduction
Solutions of the Navier-Stokes Equations

Case 1: Solutions of the Linearized Navier-Stokes Equations (x—direction)
B (o'?ZV %v, & Vx)+(9p

Solutions |V, (x,y,z,t) = —g—%(axz + by2 +cz2)+ Cix+CGy+Csz+ %t +Cy; P(x)=dpg.x

Equation + 4}0(%) = P8«

Case 2: Solutions of the Euler Equations for Incompressible Fluid Flow ()

Equation p( Az +V, a&‘;x +V %‘;‘ +V, " )+ 81))‘ = pg, x—direction

Solutions

ng.y 48z, ¥y w (V) . .
Ve(x,y,2.0) = four £ \[2hg x + == + S5 =0 SOV #0,V, # 0 P(x) = dpg,x;

y < y Z

arbitrary functions

Case 3: Solutions of the Navier-Stokes Equations (Original) : x—direction

- 9%V, %V, 2% v, aV, Vv,
Equation: (—u 8x2 -u 8y2 -u 82’“ 8p+p o £+ pV, > +pV, v s = pg,
Solutions
g oo gy gz Yy w (V)
V, = —g—i(ax% by*+ cz? ¢+ Cix+ Gy + Csztfg,t £ 2hg, x+ V’yf . Vj , yvyy , ‘/’zvZ 2+ Gy

P(x)=dpg x; (a+b+c+d+h+n+q=1) Vy;tO, v, #0

Summary for the fractional terms of the x—direction
ng.y and q8.<

in terms of x, y,z and ¢ (for Case 3)

Vi V.
ngy 8 ES (Bt Byt B+ G oyt Gzt gt +[2ye.2)
v, Brs.
gez  ~@8 DB 5 b 1 (@7 by>+ ey Cvk Gy + Cszhfe it £ 2hg x1 = [CET}
v, © (B18:¥)(48:2 = Bo8.X)

(CE= _(ngxy)(_ (ﬁ1 2+ ﬂzyz"' ﬁ%z )+ Ciax+ Cisy+ Crozt Big t 1y 2f8.2)
One observes above that the most important insight of the above solutions is the indispensability of
the gravity term in incompressible fluid flow. Observe that if gravity, g, were zero, for Case 1, the
first three terms, the seventh, and P(x) would all be zero; for Case 2, the first four terms and P(x)
would all be zero; and for Case 3, the first three terms, the seventh, the eighth, the ninth, the tenth
terms and P(x) would all be zero. These results can be stated emphatically that without gravity
forces on earth, there would be no incompressible fluid flow on earth as is known. It would not

therefore be meaningful to write a Navier-Stokes equation for incompressible fluid flow without the
gravity term, since there would be no fluid flow.
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More Observations Comparison of the N-S solutions with equations of motion
under gravity and liquid pressure of elementary physics

Motion equations of elementary physics:
B): Vy=Vy+gr; (O): V=V@+2gx; (D): V=12¢gx; (B): x= V0t+%gt2
The liquid pressure, P at the bottom of a liquid of depth /4 units is given by P = pgh
Observe the following about the Navier-Stokes Solutions (Case 3)
1. The first three terms are parabolic in x, y, and z; the minus sign shows the usual
inverted parabola when a projectile is fired upwards at an acute angle to the horizontal; also note

the " gt" in V = gt of (B) of the motion equations and the fg t in the Navier-Stokes solution.
2. The pressure, P = pgh of the liquid pressure and the P(x) = dpg,x of the Navier-Stokes solution.
Note that, only the approach in this paper could yield P(x)=dpg x by integrating dp/dx = dpg,
3. Observe the " \/Tgx "in V= \/Tgx of (D) and the \Tgxx in the Navier-Stokes solution.

In fact, the N-S solution term /2hg x could have been obtained from sz = VO2 +2gx (C),of

the equation of motion by letting V;; =0 (for the convective term) ignoring the ratio term "h" of
the N-S radicand. There are eight main terms (ignoring the arbitrary functions) in the N-S solution.

apg bpg cpg e
g,f x2, - gux yz, - g‘ux Z2, f&.t, \2hgx and

dpg x are similar (except for the constants involved ) to the terms in the equations of motion and
fluid pressure. This similarity means that the approach used in solving the Navier-Stokes equation
is sound. One should also note that to obtain these six terms simultaneously on integration, only the
equation with the gravity term as the subject of the equation will yield these six terms. The author
suggests that this form of the equation with the gravity term as the subject of the equation be called
the standard form of the Navier-Stokes equation, since in this form, one can immediately split-up
the equations using ratios, and integrate.

4. With regards to the variables x, y, and z, the parabolicity of the first three terms and the
parabolicity of the eighth, ninth and tenth terms hint at inverse relations.. For examples,

Of these eight terms, six terms, namely, —

V, = x? and V, = ++/x are inverse relations of each other, V, = y? and V, = +./y are inverse

relations of each other, V, = z> and V, = ++/z are inverse relations of each other. The implications of
knowing these relationships is that if one knows the steps, rules or formulas for designing for
laminar flow, one can deduce the steps, rules or formulas for designing for turbulent flow by
reversing the steps and using opposite operations in each step of the corresponding laminar flow
design. Thus for every method, or formula for laminar flow, there is a corresponding method,
formula for turbulent flow design (see also, "Power of Ratios" book by A. A. Frempong, p. 28).

For the velocity profile, the x—direction solution consists of linear, parabolic, and hyperbolic terms.
The first three terms characterize inverted parabolas. Flow distribution for laminar flow is parabolic
with the axis of symmetry of the parabola in direction of the fluid flow. If one assumes that in
laminar flow, the axis of symmetry of the parabola for horizontal velocity flow profile is in the
direction of fluid flow, then in turbulent flow, the axes of symmetry of some of the parabolas would
have been rotated 90 degrees from that for laminar flow. The characteristic curve for the integral of
the x—nonlinear term is such a parabola whose axis of symmetry is at right angles to that of laminar
flow. The integral of the y—nonlinearterm is similar parabolically to the integral of the x—nonlinear
term. The characteristic curve for the integral of the z—nonlinearterm is a combination of two
similar parabolas and a hyperbola. If the above x—direction flow is repeated simultaneously in the

y—and z— directions, the flow is chaotic and consequently turbulent.



Topic Options

Options

Option 1 Solutions of 3-D Linearized Navier-Stokes Equations (Method 1) 5
Ontion 2 Solutions of 4-D Linearized Navier-Stokes Equations 18
Option 3 Solutions of the Euler Equations 19
Option 4 Solutions of 3-D Navier-Stokes Equations (Method 1) 25
‘Option 5 Solutions of 4-D Navier-Stokes Equations 32
Option 5b . Two-term Linearized Navier-Stokes Equation (one nonlinear term) 32
Qotion 6 Solutions of 3-D Navier-Stokes Equations (Method 2) 36
Option 7 Solutions of 3-D Linearized Navier-Stokes Equation (Method 2) 42
(Option 8 CMI Millennium Prize Problem Requirements 46

The Navier-Stokes equations in three dimensions are three simultaneous equations in Cartesian
coordinates for the flow of incompressible fluids. The equations are presented below:

PV, PV, PV o, V., oV, IV, v,

Moot 3),2 o2 ) T oy P8 = p( VetV &y+V ) N
RV, IV, PV, /A % v,

9 (&xz ayz 82) O—;y"‘ng—P( +V, 8x+v'8y+v 8 ) (Ny)
PV, , IV, V. vV, vV, V.

Hp+ S+ S - Lok pg = p G4V, e T TS (N

Equatlon (N ) will be the first equation to be solved; and based on its solution, one will be able to
write down the solutions for the other two equations, (N, ), and (N.).

Dimensional Consistency

The Navier-Stokes equations are dimensionally consistent as shown below:

2V V. 92Vx p V. V., IV, WV,
(o'?x2+r9y2+ )—§+pgx p( +V3x+vyay+vza_z)

Using MLT
ML2T2 + 2T 2+ L2722 - 2T 24 2T ) = M(L 2T 2+ 2T 2 + 2T 2 + 2T 72)
Using kg—m—s

kg(m™2s 2 +m2s2+m 252 —m 252 +m 252 =kgm2s 2+ m 252+ ms T2 + m2s T2

variable acceleration  convective acceleration

viscosity pressure gradient (local rate of change of V, ) (rate of change in V due to motion)
—— ——
azv 9%V, a2vx ap, —— v, avx av IV,

inertia per volume



Solutions of the Navier-Stokes Equations
Preliminaries

Option 1
Solution of 3-D Linearized Navier-Stokes Equation
in the x-direction

The equation will be linearized by redefinition. The nine-term equation will be reduced to six terms.

. d%v, 82V v, op v, M, v, v,
Given: u(&x 57 + 8Z2 —§+pgx p( +V, o +VYW+VZ_82) (A)
v, v, P 8vx e Wy _
N8x2 —H 2 .u az +P pn =+ pV, e +pVy Yy +pV, o =P8y (B)
02 02 02 v
G+ S+ i+ Lo dp(G) = pg, (©)

Plan: One will split-up equation (C) into five sub—equatlons, solve them, and combine the
solutions. On splitting-up the equations and proceeding to solve them, the non linear terms could be
redefined and made linear. This linearization is possible if the gravitational force term is the subject
of the equation as in equation (B). After converting the non-linear terms to linear terms by
redefinition, one will have only six terms as in equation (C). One will show logically how equation
(C) was obtained from equation (B), using a ratio method.

Three main steps are covered.

In main Step 1, one shows how equation (C) was obtained from equation (B)

In main Step 2, equation (C) will be split-up into five equations.

In main Step 3, each equation will be solved.

In main Step 4, the solutions from the five equations will be combined.

In main Step 5, the combined relation will be checked in equation (C). for identity.

Preliminaries
Requirements and procedure for solving a partial differential equation

1. Integrate the partial differential equation.

2. Find the partial derivatives from the integration relation from Step 1

3. Substitute the derivatives from Step 2 in the original partial differential equation and simplify.
both sides of the equation.

4. If the left-hand side of the equation is equal to the right-hand side of the equation, then the
integration relation from Step 1 is a solution to the partial differential equation.
( Steps 2-4 can be summarized as checking for identity, or determining if the integration
relation satisfies the original partial differential equation.)

Note: If one does not successfully check for identity, one cannot claim a solution.

A ratio method will be used to split-up the partial differential equations into sub-equation which are
then integrated.



Solutions of the Navier-Stokes Equations
Preliminaries

Example 1: A grandmother left $45,000 in her will to be divided between eight grandchildren,
Betsy, Comfort, Elaine, Ingrid, Elizabeth, Maureen, Ramona, Marilyn, in
1 .1.1.1.5.1.7.2 11115 7,2 _
theratio 3¢ {5 15°9°36 636 9 (Note&: 3g+{g+75+g+35+g+36 75~ 1)
How much does each receive?

Solution:
Betsy's share of $45,000 = % x $45,000 = $1,250

1
6

Comfort's share of $45,000 = % x $45,000 = $2,500
Elaine's share of $45,000 = % x $45,000 = $3,750
Ingrid's share of $45,000 = % x $45,000 = $5,000
Elizabeth's share of $45,000 = % % $45,000 = $6,250
Maureen's share of $45,000 = % x $45,000 = $7,500
Ramona's share of $45,000 = % x $45.,000 = $8,750
Marilyn's share of $45,000 = % x $45,000 = $10,000

Check; Sum of shares |= $45,000

Sum of the fractions = 1

2 2
Example 2: Sir Isaac Newton left pg, units in his will to be divided between —u O;X‘; , — U 0;;; ,

2
%ZZ ,g, %Vt pV%‘;,pVy%,pVZ%‘/—;intheraﬁoa:b:c:d:f:h:m:n.

where a+b+c+d+ f+h+m+n=1. How much does each receive?

Solution —u %xz s share of pg, units = apg, units

's share of pg, units = bpg, units

d%v
‘u8y2

2y
-u 8z2x 's share of pg, units= cpg, units

%'s share of pg, units =dpg, units

P 8;“ 's share of pg, units= fpg, units

pV, %‘s share of pg, units = hpg, units

pV. %'S share of pg, units = mpg, units

Y dy
v,
PV, e L's share of pg, umts—npgx units
Sum of shares = Note: a+b+c+d+ f+h+m+n=1



Solutions of the Navier-Stokes Equations

Preliminaries
Example 3: Example 4: Solve the quadratic equation;
The returns on investments A, B, C, D are in the 6x2+11x—-10=0
ratio a:b:c:d.If the total return Method 1 (a common method)
on these four investments is P dollars, By factoring,
what is the return on each of these investments? 6x2+11x=10=0
(a+b+c+d=1) (3x—2)(2x+5) =0 and solving,

Solution Return on investment A = aP dollars Bx-=2)=0o0r 2x+5)=0

Return on investment B = bP dollars _2 ,__5

Return on investment C = cP dollars "3 2

Return on investment D = dP dollars Solution set: {—% , %}
Check
aP+bP+cP+dP=P
Pla+b+c+d)=P
a+b+c+d=1 (dividing both sides by P)
Example 4, Method 2: Step 2: 30042 — 12054 +300 =0

One will call this method the multiplier method.

60a? —241a+60=0
Step 1: From 6x2 +11x—10=0 (1) a a

_ 241% /2412 — 4(60)(60)

6x%+11x =10
6x2 =10a; (Here, a is a multiplier) 120
; : : p 241+ /43681
3x% =5a 2) =710
11x=10b (Here, b is a multiplier) a= 2411‘50209
PEmIOEa @ e st 4= 2412209 _ 2414209 241-209
1lx=10-10a 120 120 120
_10-10a _ 450 32
I =120 120
3(10 104)2 =54 (Substituting forx in (2) 12 15
100 — 200a +100a?) _
3( 121 =5a
Step 3: Since a+b =1, when a=% or 3% Step 4: When b——% —10(——)
b=1—3%:—2%0r—% x:_%
Whena:%, bzl_%:}_l When b= % 11x 10(%)
1011 _2
=113 =3

Again, one obtains the same solution set {—% , %} as by the factoring method.

The objective of presenting examples 1, 2, 3,, and 4 was to convince the reader that the principles to
be used in splitting the Navier-Stokes equations are valid.. In Examples 4, one could have used the
quadratic formula directly to solve for x, without finding a and b first. The objective was to show
that the introduction of a and b did not change the solution set of the original equation.

For the rest of the coverage in this paper, a multiplier is the same as a ratio term

The multiplier method is the same as the ratio method.



Linearization of Non-Linear terms

Main Step 1

Linearization of the Non-Linear Terms

Step 1: The main principle is to multiply the right side of the equation by the ratio terms
This step is critical to the removal of the non-linearity of the equation.
pg, 1s to be divided by the terms on the left-hand--side of the equation in the ratio
atbicidifithim:n (a+b+c+d+f+h+m+n=1
nonlinear terms

Rv,  Rv, v, . I, IV, v,

vV
- — _ x LT Xy v y X
o ‘ué’yz “az2 oax P TPYx o py&y Pzaz—pgx 1

o . . ~all acceleration terms
Apply the principles involved in the ratio method covered in the preliminaries, to the

nonlinear terms (the last three terms.)

Then pV, 80.)‘; L =npg o where n is the ratio term corresponding to pV, 8&\); L,
v
V.S =ng, 2
V, % = ng,. (One drops the partials symbol, since a single independent variable is involved)
dz 4V _ _dz _
dr o =8y vV, = di by definition)
dvx —
vV, dv
Therefore, |V, sz = tx =ng, 4)

Step 2: Similarly, Let pV, aa‘;x =mpg, ( m is the ratio term corresponding to pV, aa‘;x ) (B

|4 d d‘;x =mg, (One drops the partials symbol, since a single independent variable is involved)
DL g, v,=D)
P — g, ©)
Therefore, |V, d;;x = d;:;x =mg, (7N
Step 3: Let pV, %‘jé‘ = hpg, where h is the ratio term corresponding to pV, Wx
4 %Zx = hg, 8)
V. d d‘;x = hg, (One drops the partials symbol, since a single independent variable is involved)
de B g, (v, =)
da"/tx = hg, 9) Therefore, |V, %‘;x = d;;x =hg, (10)




Linearization of Non-Linear terms

From equations (4), (7), (10), V, % =V, % =V, % = %% ang
o4 o\ dv
K I (1)
Thus, the ratio of the linear term ;x i ; % +V % +V, %V—Z" in

equation (1) is 1 to 3. Unquestionably, there is a ratio between the sum of the nonlinear

. ov. o . :
terms and the linear term 7’5 This ratio must be verified experimentally.

Note: One could have obtained equation (C) from equation (A) by redefining the nonlinear
terms by carelessly disregarding the partial derivatives of the nonlinear terms in equation (1).
However, the author did not do that, but logically, the terms became linearized.

Note also that the above linearization is possible only if pg,. is the subject of the equation,
and it will later be learned that a solution to the logically linearized Navier-Stokes equation is
obtained only if pg, is the subject of the equation.

Step 4: Substitute the right side of equation (11) for the nonlinear terms on the left- side of
nonlinear terms

82V B 82V 22v, L9 s
Haa ~Hga ~Haa v octPo

IV, IV, IV,
+pV, ax+pV &y+pV 8 =pg, (12

all acceleration terms

d%v, 22%v, 22v, A% V.
THog TR TH gt gxp“’Tx”pr =P8y

all acceleration terms

Then one obtains

d%v, d%v, d%v, ov
—u 8x2 —-u 8y2 -u o %+4p7x=pgx (simplifying) (13)

Now, instead of solving equation (1), previous page, one will solve the following equation

PV, PV, Ve 1V L
K Ka';yz K3+ pox 5 = & (k_ﬁ) (14)

ax2
Main Step 2

Step 5: In equation (14) divide g, by the terms on the left side in the ratio atbicid: f.

&2V 82V 82V 10dp _ 07V
Kga =as —K5a=bgss —K7gam=cgs or=dgs 4755 = fs
(a, b, c,d, faretheratlotermsand a+b+c+d+ f=1).
2
i _&. — 8. _ 8. Pox _ 8. 13
As proportions: =15 b =7 c =T Td =T 7T

One can view each of the ratio terms a, b, ¢, d, f as a fraction (a real number) of contributed
by each expression on the left-hand side of equation (14) above.



Solutions of the five sub-equations

Main Step 3

Step 6: Solve the differential equations in Step 5.
Solutions of the five sub-equations

2%V, 82V 0%V, 1dp
_K&X—zxzagx &yz ng _Kﬁ:ch Eg_dgx
92V, 22V, 92V, 19p _
k o2 48 K 2? L= —bg K o7 cg Eg_dg
82Vx a 072Vx Q &2Vx c @ — dpg
gxz k 2 k %22 k ox
Ve __ag Ve cg p dpgx+C7
x kTG %— b]§y+C3 oz K itGs
Vi =55 22+ Cx + G be , Vis = =53 2% +Cs2+ Cg = /%
Vio = =5y +Gy+Cy 5
Vx _f
ot 4 8x
Vx4 = fix t
Main Step 4

Step 7: One combines the above solutions
Vx—V +V2+Vx3+Vx

ag bg Jg
= 2Ié‘x2+C1x+C2 2ky +C3y+C4 2kz +Csz+Co+ 751+ G
b
=-Zxx PV H Cyy - L+ Csz+ f%ﬁcg

_ag bg cg /8
ng - 2]?)72 2]:Z2+C1X+C3y+C5Z+Txt+C9

ag bg cg fg
—2]é‘x - 2Ié‘y - 2]§z +Cx+ Gy + Csz+ =1+ Cy
—g—x(axz+by2+cz2)+C1x+C3y+C5z+fgxt+C9

fgx

V.= ng(ax +by? +cz2) + Cix + Cyy + Csz + 25~ a t+Cy

X

P(x) = dpgx
Vx = Vxl + Vx2 + Vx3 + Vx4

V.(x,y,2,1) = —%(wﬂ +by? +cz2)+ Cix + C3y + Csz +%z+ Co
P(x) = dpg,x
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Main Step

5

Checking in equation (C)

Checking in equation (C)

Step 8:  Find the derivatives, using
V, = —g—%(aﬂ +by? +cz2)+ Cix + C3y + Csz + %t + Gy
P(x)=dpg,x
Ny _ s Ny __Pe. V. _ P8,
&X (2 )C)+C1 W_ T(by)+C3 8_2_ T(CZ)
1 2V, _ apgx 5 2V, __bpg, 3 v, __cpg, .
. axz .u . ayz ‘u J azz /.L s
av,
4. %degx, 5. atx:%
2 2
Step 9: Substitute the derivatives from Step 8 in —u( O;x‘; O;y‘; i Vx 50) + 3Px +4p 0—;"?/; =P8,
to check for identity (to determine if the relation obtained satlsfles the orlglnal equation).
92V, 82V Bsz p IV, Scrapwork
THCGa T gn T )T TP T P v, __apg,
apg, _ bpg, pgx fo2 ox? T
B T TR )+dpgx+4ngx—pgx Pv,  bpg, .
? n? u
apg, +bpg, +cpg, +dpg, + Pfgx?ngx 92v, _cpg. .
agy +bg, +cg, +dg, + f8,=¢& 2% mC
?
glat+btc+d+ f=g, P _ oo || Ve _ fox
v el | X
g, (=g, (a+b+c+d+f=1)
?
8,=8, Yes

An identity is obtained and therefore, the solution of equation (C), p.5, is given by

J 14 Cy; P(x)=dpg,x

Vo (x,y,2,t) = —g—%(ax2 +by? +cz2)+ Cix + C3y + Csz +

The above solution is unique, because all possible equations were integrated but only a single
equation, the equation with the gravity term as the subject of the equation produced the solution.
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Solutions Summary

Solution Summary for v,, v, and v,

For v, at+b+c+d+f=1
J2v 82 azvx dp w, o, v, v,
MG+ g+ g ‘a”’g =P Vet V)
2y 2y

7 " 32 Tpox 7‘5’
Vx:Vx1+Vx2+Vx3+Vx

s bg fe
=—2]§x2+C1x+C2_2/26)’2+C3y+c4 k22+C5Z+C6+ 4xt+C7+C
asy cg, i

b
) x2+C1x—%y2+C3y_ % 22 +Csz+ 7 1+G

_ag bg cg fe
= 2Ié‘x —2£y2—2gz2+C1x+C3y+C5z+ 4xt+C9

Vy(x,y,z,t)=—%(ax +by +cz2)+C1x+C3y+C5z+%t+C9
P(X)zdpgxx

For V, h+j+m+n+qg=1
82Vy 82‘/ 82‘/)’ (9]) — Y Y y Y
‘u(aXZ +&yZ 82 ) ay+pgy_p(7‘}‘vx§+‘/yw+‘/za—z)

%V, %V,

y _ y 1dp Y _
Koo K30 Kaz2+pay+48z g,
hg mg. ng
Vy:_zkx +Cx - kyy2+C3y——k’z2+C5z+Tyt
Vy(x,y,z,t)———(hx + jy? +mz )+C1x+C3y+C5z+%;+C
P(y) = npg,y
For v, r+s+u+v+w—1
Ve DV Ty Py vy Py
(8x2 2 8z2) o T P& = P( 8x +V, > +V, az)
%, 82 1dp ., 40V, _
—k axz 8y2 —k 82 '|'pa +4 o g,
rg. 58. ug, wg,
Vz=—2kx +C1.x_2ky +C3y 2kZ +C5Z+ 1 —Oz 4
P(z) =vpg.z

12



Discussion About Solutions

Discussion About Linearized N-S Solutions

o2 2
A solution to equation —p( &xv %y‘; 9 Vx) +2 dp

V.(x,y,2,t) = —g—%(axz + by2 +cz2)+ Cix+Cy+Csz+
P(x)=dpg x; (a+b+c+d+f=1)

ov. )
+4p(55) = pg, (©) s

v, .

This relation gives an identity when checked in Equation (C) above.

One observes above that the most important insight of the above solution is the indispensability of
the gravity term in incompressible fluid flow. Observe that if gravity, g, were zero, the first three
terms, the seventh term, and P(x) would all be zero.. This result can be stated emphatically that

without gravity forces on earth, there would be no incompressible fluid flow on earth as is known.
The above result will be the same when one covers the general case, Option 4.

The above parabolic solution is also encouraging. It reminds one of the parabolic curve obtained
when a stone is projected upwards at an acute angle to the horizontal..

More Observations Comparison of the Navier-Stokes solutions with equations of motion
under gravity and liquid pressure of elementary physics

Motion equations of elementary physics:

B): Vy=Vy+gt; (O): VF=Vi+2gx; (D): V=12¢gx; (E): x= V0t+%gt2
Liquid Pressure,
The liquid pressure, P at the bottom of a liquid of depth /4 units is given by P = pgh
x— direction linearized Navier—Stokes equation:
d%v, &ZV 82V Ny _
—p( 2 0~,y2 50) + 8px +4p

x— direction Navier—Stokes solution :

V.(x,y,z,t) = —g—‘%(ax2 + by2 +c72)+ Cix+Cy+Csz+ %fgxt +Cy; P(x)=dpg,x

Observe the following above:

1. Observe that the first three terms of the solution are parabolic in x, y, and z; the minus sign
showing the inverted parabola when a projectile is fired upwards at an acute angle to the horizontal;
Also note the " gt" in V = gt of (B) of the motion equations and the fg ¢ in the Navier-Stokes
solution.

2. Observe the P = pgh of the liquid pressure and the P(x)=dpg,x of the Navier-Stokes solution.

Note that d is a ratio term.
There are five main terms in the solution of the linearized Navier-Stokes equation. All of these five

apsy o _bpsy » _cpsy o
22U ,u g 2u R )TH u
constants involved ) to the terms in the equations of motion and fluid pressure of elementary
physics. This similarity means that the approach used in solving the Navier-Stokes equation is
sound. One should also note that to obtain these five terms simultaneously, only the equation with
the gravity term as the subject of the equation will yield these six terms. The author suggests that
this form of the equation with the gravity term as the subject of the equation be called the standard
form of the linearized Navier-Stokes equation, since in this form, one can immediately split-up the
equation using ratios, and integrate.

terms, namely, — , fg.t, and dpg x are similar (except for the

13




Discussion About Solutions

The author also tried the following possible approaches: (D), (E) and (F), but none of the possible
solutions completely satisfied the corresponding original equations (D), (E) or (F) .

2y 2y 2
“a&x2x+ua3y2x+ua8‘;x+pgx 4p%vt % (D) (One uses the subject o

K 0%V, +K82V +K82V 1

42 TATH? TATg2 Tap

d?v, Jd%v, P8, 4pov, 1&p 82V . |9%V,

_ > ~om o +—= o u&x &x2 (F)  (One uses subject o2
Integration Results Summary

2V, 2, azv P

v,
% +2£ ==X (E), (One uses the subject [—=*

Case 1: (07x 8y2 + )+ ©
__P8 2 2 2 S8
Vi(x,y,2,1) = 20 (@x”+by" +ez?) + Cx+ Gy + Csz+ 7401+ G <----Solution
P(x)=dpg.x; (a+b+c+d+f=1)

2 2 2
Case2: u %xv + ao.}y‘;x + U a&z‘;x +pg, —4p %Vtx = % (D). (One uses the subject %

Vi(x,y,zt)= gx(ax + by? +cz2)+C1x+ﬂ,px+C3y+C51—%t+C

P()C) = Hpgx

K&V K 9%V, K82V 1Jp_ 8 _0 x
Case 3: 4 o0 + T e + 5 12 4p8x+

av,
(E). (One uses the subject 8tx

2 32
V. (x,y,z,t) = (Cjcos A x+C2 sin A x)e_()L /ﬂ)t +(C5cosd,y+Cy sin/"tyy)e (Ay /w)t

+(Cscos A z+Cgsin A z)e S)t

P(x)=Ax =dpg,x

azvx 82‘/ pg 4p v, 1 azvx . 82Vx
N2 072 'ux + ,Lf a ugl; o2 (F).  (One uses the subject |-

4ft+ﬂ.x+C8

Case 4: —

_(Aa
VX(X,y,z,t)=(Acos/'Ly+Bsinly)(Ce( a )x+De Ca )x]

b _ b
+(Ecoslz+Fsin/lz{He( b )x+Le( b )x] pg;ﬂ+Ax+B+(Alcosﬂx+Blsinﬂ.x)e_()‘2/a)t

x%2 +Cyx + Cy); P(x)=dpg,x

2f

Note: Relations for equations with subjects g,

and P

=~ are almost identical.

By comparing possible solutions for equations (C) and (D), A, = —pg, in relation for (D).

V.(x,y,2,t) = g“—;t(aﬂ + by2 +c72)+ Cix+ /lpx + Gy +Csz— %t +C;, Px)= %pgxx

14



Discussion About Solutions

Comparative analysis of the possible solutions when checked in each corresponding equation

Equation| Number of terms of

Equation Subject | possible solutions not
satisfying original equation

2V, J2V, J2V av,
Case 1: —u( gxzx + 8y2x + 8z2x )+ % +4p( 8;‘) = P8y P2, None
Case 1 yields the solution

J2%v. d2%v. d%v ov

Case 2: u 8x2x +u 3y2x +u 822" +pg,; — 4p7x = % % One term
%V, 2%V, 0%V, V. A%

Case 3: % axzx +§ o'?yzx +§ o'?zzx —#%ng: &tx 7’6 At least 2 terms
2%v.  J?%v 4p ov d2%v 22V

Case 4: — &’yzx - 8z2x - Pﬁx +7P7x+%%: axzx 0%—2’“ At least 2 terms

2 2 2 xa%
Case 5: — %x‘;x - %Z‘;x - pftx + 47/)% + %% = %y‘;x —&yZX At least 2 terms

92V, PV, Ppgy _4p v,

R A A 1op_ 0%V, | 92V,
Case 6: a2 1 + o

Uox o2 072

At least 2 terms

Note above that only Case 1 is the solution, and this may imply that the solution to the Navier-Stokes
equation is unique. Out of six possible subjects, only one subject produced a solution. The above
results show that a relation obtained by the integration of a partial differential equation must be
checked in the corresponding equation for identity before the relation becomes a solution, Cases 2,
3,4,5 and 6, are not solutions but integration relations. For example, it would be incorrect to say
that the equation in Case 3 has a periodic solution; but it would be correct to say that the equation in
Case 3 has a periodic relation, since the relation obtained by integration does not satisfy its
corresponding equation. It would be correct to say that the equation in Case 1 has a parabolic
solution or a parabolic relation.

Below are detailed explanation of results of the identity checking process.

Outcome 1: With g, included and with g, as the subject of the equation. The solution is

straightforward and the possible solution checks well in the original equation (C). Also, if g, or pg,
is not the subject of the equation, the linearization of the nonlinear terms could not be justified.

Outcome 2: With g, included but with 8;)‘ as the subject of the equation.

. vV, 1 odp M ., & OV, gt
There are two problems when checking . 1. For F - dpox — ~dpd’ 2. D= ir

With d and f in the denominators, the multipliers sum a+b+c+d+ f =1 is false.

Outcome 3 : With g, excluded, and a;x as the subject of the equation, there is one problem:

1817_&Vx _i

dpx o  4dpd

.With d in the denominator a+b+c+d+ f =1 is false

2
Outcome 4 : With g, included, and 92V, as the subject of the equation, there are at least, two

Ox2
problems in the checking with the multipliers ¢ and f in the denominators.
Checking for a+b+c+d+ f =1 is impossible.

Outcomes 5 and 6 are similar to Outcome 4.

15



Discussion About Solutions

Characteristic curves of the integration results

Equation
Subject Curve characteristics

Equations
0%V, 82V 82V
Case 1: —u( 2 8y2 +—550)+ % +4p P8,

0?2 2%, 82 8V
Case 2: &x‘; +u 8y2x + U 82" +pg, —4p—=- o % % Parabolic

Parabolic and Inverted

02V, 02V, 02V, V. Vv,
3. K + K + K _L % + 82 - Quasiperiodic,and

Case % o
4 o T4 o T4 dk?  4p 4o o decreasingly exponential
2 2 2 02V
Case4: — ? ‘;x — %v P8y +— 4p % + l% = %x‘;x 2 Quasiperiodic,, parabolic, and
% S H decreasingly exponential
2 2 2 02
Case 5: — %x‘;x — aa‘;x PEx + = 4p % + l% = 9 ‘;x 8;;’“ Quasiperiodic, parabolic, and
< H H H & decreasingly exponential
2 2 2 %V,
Case 6: _9 ‘g a&x‘; _ P8y +— 4p % + l% = 88 Zx 3 5 Quasiperiodic, parabolic,
& A H H < < and decreasingly exponential

The following are possible interpretations of the roles of the terms based on the types of curves
produced when using the terms as subjects of the equations.

and 8p are involved in the parabolic motion; g, is responsible for the forward motion.

2. N, is involved in the quasiperiodic, and decreasingly exponential behavior.

ot

2 2 2
3. %x_vzx , %y—vzx d %Z—sz are involved in the parabolic, quasiperiodic, and decreasingly

exponential motion. As U increases, the quasiperiodicity increases

16



Discussion About Solutions

Definitions and Classification of Equations

PV, IV, PV, 1
a2 2 2 "o 81‘

-K

g
(k—p)

One may classify the equations involved in Option 1 according to the following:

Driver Equation: A differential equation whose integration relation satisfies its corresponding

equation.

Supporter equation: A differential equation which contains the same terms as the driver equation
but whose integration relation does not satisfy its corresponding equation but
provides useful information about the driver equation.

Note that the driver equation and a supporter equation differ only in the subject of the equation.

Equation # of terms of
Equation Subject | Type of | relation not
equation | satisfying original
equation
9%V, 82V o'? V,
Case 1: —u(— 5" ay2 50+ % + 4p( ") P8x | pg. Driver | None
Equation
d%v, 82V d%v v,
Case 2: u 8x 0’)y2x + U % zx +pg. —4p—- 8t 3xp % Supporter | One term
equation
%V, 9%V, %V, %
Case 3: [i 8x2 + Ij 8y2 + Ij 2 —%% % atx atx Supporter | Atleast 2 terms
equation
2 2 2 2 Supporter
Cased: — %y‘;x — %Z‘;x — pix + 7 X4 %% = a&x‘gx 8&;;( eqlrl)stion At least 2 terms
d?v, J%v, pg, 4p 1dp _d%v d%v
Case 5: — 2x — zx — ==y Lo Xy~ = Zx 2x Supporter At least 2 terms
o o " " pox oy % equation
0%V, 9?V, pg,  4p 1dp J%V,. | J?V
Case 6: 2 2 e + === 2)6 2x Supporter At least 2 terms
dy ox H H fax o o equation

The uniqueness of the above solution will guide one to save time and not try to solve some forms of
Euler or Navier-Stokes equation which do not produce solutions. That is, one will solve only the
equations with the gravity term as the subject. This uniqueness will also guide one to solve the
magnetohydrodynamic equations.
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Discussion About Solutions

Applications of the splitting technique in science, engineering, business fields

The approach used in solving the equations allows for how the terms interact with each other.
The author has not seen this technique anywhere, but the results are revealing and promising.
Fluid flow design considerations:

1. Maximize the role of g, forces, followed by; 2. % ; .a;t/x

Make g, happy by always providing a workable slope.

For long distance flow design such as for water pipelines, water channels, oil pipelines. whenever
possible, the design should facilitate and maximize the role of gravity forces, and if design is

p

impossible to facilitate the role of gravity forces, design for e to take over flow.

2y
—2" should be studied further, since its role is the most complicated: periodic,

ox

parabolic, and decreasingly exponential.

Tornado Effect Relief
Perhaps, machines can be designed and built to chase and neutralize or minimize tornadoes during
touch-downs. The energy in the tornado at touch-down can be harnessed for useful purposes.

Business and economics applications.
1. Figuratively, if g, is the president of a company, it will have good working relationships with all

The performance of

the members of the board of directors, according to the solution of the Navier-Stokes equation. If g,
is present at a meeting g, must preside over the meeting for the best outcome.

p

2.If g, is absent from a meeting, let P preside over the meeting, and everything will workout well.

However, if g, is present, g, must preside over the meeting.

To apply the results of the solutions of the Navier-Stokes equations in other areas or fields, the

p

properties, characteristics and functions of g, i 7* must be studied to determine analogous

terms in those areas of possible applications. Other areas of applications include investments choice
decisions, financial decisions, personnel management and family relationships.

Option 2
Solutions of 4-D Linearized Navier-Stokes Equations

One advantage of the pairing approach is that the above solution can easily be extended to any
number of dimensions.

2
If one adds u%s—‘zlx and pV, 0—;& to the 3-D x—direction equation, one obtains the 4-D Navier--

2 2 2
Stokes equation ,LL(O;XV 0;;; J V 07 Vx ) oy P + 4p(— %V =P8,
2 2 2
After linearization, —u( O;XV 0;;; + 07 Vx + 07 Vx ) + 81? + 5p( s )= P8y and its solution is
— P8 2 2 &
Vo (x,y,2,8,t) = 2 (ax® + by +cz> +es?) + Cix + C3y + Csz+ Cos + 3 t+Cy

P(x)=dpg,x (a+b+c+d+e+f=1)

For n—dimensions one can repeat the above as many times as one wishes.

18
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Solutions of the Euler Equations

Option 3
Solutions of the Euler Equations of Fluid flow

In the Navier-Stokes equation, if u =0, one obtains the Euler equation. From

v, Pv, Pv M, v,

x x Wy .
(8x N o2 —$+ng=P(7+Vx . +V, P +VZ8_Z) , one obtains
ov,

Euler equation : (1 = 0) —%+pgx p(=x x+V%‘;‘+V WX“LVz%)OT
X

p( a2 +V, (9&‘)/; +V %‘; +V, " )+ &px = pg,| <---driver equation.
v v v L1

X X X o 3 3
Euler equation (1 =0): +V, o +V, Vo +V 8 D ox = g <---driver equation

Split the equation using the ratio terms f, h, n, q, d,, and solve. (f+h+n+qg+d=1)

av v, vV, _ v, 19 _
= /8. 2.V, o =hg, : yay_”gx Vi =4q8x 5'p8x_dgx
x4 - fgx dV dvx dV
o - 1
V= for | oax M| iy T ddr 5% = 8.
VidV, =hg.dx | V,dV, =ng,dy V.dV, = q8.dz; p
o VV,=ngy+y, (V) | VoVa=agz +y. (V) | 5-=dps,
7 =hgror _ngy W)y, =982 Y (K) | p=dpgx+ G
2 Ve= X7 V. V.
V™ =2hg x X6~y 14 z z
y y V, %0
Ve=+2hgx | V,#0 '

_ oo ngy g8z VW) w.(V)

y z y z

P(x)=dpg x (f+h+n+q+d=1)V, #0,V, #0

Find the test derivatives to check in the original equation.

8V =fg | 2. V =2hg x; 2V, %V" =2hg ; . O—g;": n‘g/; %Vx — 48« 5. —&x:dpgx
iz
oV, _ hg, z
=V V. #0 Vy¢0 V. #0

Mo gy Mo yy Moy Me 1P _ - .
7+Vx o +V X +V, oo g. (Above, l//y(Vy) and y,(V,) are arbitrary functions)

hg. .y 18x a8y . 1 45, -
o+ Veymymy e Ve +pdpgx—gx

?
fgx +hgx + ng, +q8, +dgx =8x

?
g,(f+h+ ntqg+d=g,
?
g, (=g, (f+h+n+g+d=1)

?
8,=8, Yes
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Solutions of the Euler Equations

The relation obtained satisfies the Euler equation. Therefore the solution to the Euler equation

.ap V. V., V. Vel .
&x+p o +pVx&x +pV, oy +pV, Z)—pgx 1s

ng, 2 v,V oy (v)
(‘g/y_i_q{g; + yvy+ sz ; P(x)=dpg.x

y < y z

Vo (x,y,2,0) = fg t £ 2hg x +

x-direction
arbitrary functions

Vi#0,V, 20, (d+f+h+n+q=1)

Similarly, the equations and solutions for the other two directions are respectively

v, v, v
For V,, §yp+p8t +pV, 3xy+PVEy+PVza—y=ng

Agx Agz oy (V. V.
Vy(x,y,2,t) =Asg t £ 24,8,y + 65’ -+ 85 Wx‘g ) (V) s P(y)=A,08,y

« f " VZ y-direction

Vi20,V,20; (L, +A,+A+A4,+A,=1)

v, v, ov. v,
For VZ:%+p7Z+pVx§Z+pV 8yz+pv o = Ps:
%4 V)
V(xyzt) ﬁsgzti\/2ﬁ8gzz Lﬂﬁ{gz Lﬁ7‘<§zy WX‘E ) Wyv P(Z)=[34pgzz

x f x y z-direction
Ve#0,V,#0; (B +Bs+ P+ B+ PBg=1)

One will next solve the above system of solutions for V., Vy , V. in order to express

)CZ .
n%y and qe‘(/g in terms of x, y, z, and 7.
y Z

Solving for v, ,v,, v, 8 ana Ll
g

v,”’ 2
[ oo gy g8z, V() w (V)
Ve =Jgt £ \2hg x + v, + V. | v, . A (A)
/ )’6gyx )’Sgyz l//x(vx) l//z(vz)
‘/y =Z’5gyt+ 2l7g)y T Vx T ‘/Z T ‘/x + ‘/Z . (B)
x V) v, (V)
4 :ﬁsgztim+ﬂ6‘§z +ﬁ752y+ W"‘E ), 7 (©)
X y X y

Let V, =x, Vy =yand V,=z. (x,y and z are being used for
simplicity. They will be changed back to V, , Vy , and V, later, and they
do not represent the variables x, y and z in the system of solutions)
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Solutions of the Euler Equations

Step 1 From the above system of solutions, let
A=(fgt+2hg.x); D=(qg,z); E=(ng,y)
B=(Asgt +\;’217gyy) F =(Ag,%): G=(Ag,2)

Step 2: Then the solutions to the Euler
system of equations become
(ignoring the arbitrary functions)

— x=A+L2+E
C = (Bsg.1 +2PB:8.2 ); J = (Bsg,x) ;L=(Brg8.y) z oy
y:B+§+Q M
z=C+L+L
Xy
Step 3 Step 4
xyz =Ayz+ Dy+ E7 (D 0=Ayz+ Dy+ Ez— Bxz—Fz—Gx 4)
xyz =Bxz+Fz+Gx 2) ¢ N 0=Ayz+ Dy+ Ez—Cxy—-Jy—Lx o) P
xyz =Cxy+Jy+Lx 3)) 0=Bxz+Fz+Gx—Cxy—Jy+—-Lx (6)

Maples software was used to solve system P to obtain

Step 5

_ L(FCD-FCJ—-JLA+ JCE)
* = C(-BLD + BLJ + GLA- GCE)
L(FCD—-FCJ - JLA+ JCE)

Vi = C(-BLD+ BL/ + GLA—GCE) (backtoV,)
= — L i
C 9
Vi, =-— % (changing back to V; as agreed to)
_L(D-J)
LA-CE”
Vz _% (changing back to V, as agrred to)

Note:

None of the popular academic programs

could solve the system in M.

Maples solved system P (step 4 above) for
x, y,and z interms of A,B,C,D.E.F,G.
J. and L.

Note also that x, y and z are not the same as

the x, y and z in the system of equations..
They were used for convenience and
simplicity .

Step 5:  Apply and substitute from in steps 6-8 below

A=(fgr£2hg.x); B=(Asgt+,22,8y); C=

(Bsg.t £ 2B:8.2); D=(qg,2);

E= (ngxy); F= (lﬁgyx); G= ()“Sgyz)‘] = (:B6gzx) L= (ﬁ7gzy)
Step 6
v =_L_ (B18.5) Step 7
Y0 (Bt 2Bg.2) ng.y _ |Bsg.1l(ng,y) H\2p,8.2)(ng,y)
"8Y oy (— (Pr8:Y) Vi Brgey
e (B t288.7) ng.y _ npgt , (J2hig.2)ng,)
ng.y _ _(ng.y)psg.t +2B,8.2] 20 v, B Ba8.
Vy ﬁ7gzy ’

ngxy — _nﬁsgzt + ('\/zﬁ&gzz(ngx)
ﬁ7 ﬁ7gz

V

Y
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Solutions of the Euler Equations

Step 8:
v __LDb-J)
¢~ LA-CE

_ (B18:9)1q8,2 — Beg.X]
(B78-3)(f8,t £ 2hg,x) — (Bsg.t £/2By8.2 )(ng,y)
a8.2_ L (B18.0)lq8,z — Beg x]
v = (48:2) +—( B " - ny )
z L2 V)(f8,t £ 2hg x) — (Bsg.t £,2B,8.2 )(ng,y)
(q8,2) ® (B78.y)(f8,1 £ 2hg x) — (Bsg.t 28,2 )(ng,y)
(Br8:3)48.2 — Beg.¥]
_(q8,2) ® (B78.3/8.1 = 2hg, X P18,y — Bsg.ing,y £2B;8.2 ng,y
(B18:9)1q8,z — Beg X1
98,8.2B71fg.yt £ \2hg x B18,8.qY% — P58 8.1qtyZ £\ 2:8.2 8,8:1qYZ
(Br8:9)a8.z — Beg.x]
48,2 _ _ 98x8:2P181 ¥ |2hg x18,8.9% — Bs8.8.nqiz +\|28.Z 8.8.:19Z

V. (B78.)lagz — Peg.x]
((Dividing out the "y" in the numerator and the denominator)

48,2 _ _ 48:8.%P71/8:1 = 2hg,xP18,8.97 — Bs8.8.nq!z +\2 B8 2 8:8.NG2

|4 (B18.)lag,z — Beg,x]

98,2 qugxszgzﬁv2thXﬁ7gxgzqz B8:8.1q1z +\2B,8.2 8,8.1qz
V. B1B68.8.x — B798.8.2

q8.2 _ (B7/8:8:8.9 — Bs8:8.19)1z + 2hg x78.8,92 +\2Bs8.Z 8:8.192
VZ ﬁ7ﬁ6gzgzx ﬁ7qugx

Summary for the fractional terms of the x-direction solution
ng.y and q8.<

% V., in terms of x,y,zand ¢

or

- V

ng.y _ _npsgt (\ 2py8.2)(ngy ) B ng.y _ —kig + N 2k2gz ® 8.k;
v, B Brs. y

k1=£; ky = Pg: k3=

B, B

q8.2 _ (B7/c8:8x8.9 — Bs8:8.1. 912 % 12hg xB8.8.q92 £\2B,8.7 8,814z
VZ ﬁ7ﬁ6gzgzx ﬁ7qugx

q8.2 (gxgzk4 8.8.ks)iz £ \[2g kex @ g, 8. k77 % \[28 kgz ® g2koz

V. g2kiox — 8,8.k1 12

ky=PB7fq ; ks = Bsngs; ke =h; kg = Bg; kg =nq kio = B1B¢ ki1 = Brq

C
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Solutions of the Euler Equations

Analysis of the Euler Solutions

V) V)
s ngy qg.z, VW) w.(V)
Ve(x,y,2,0) = feut £ 2hg x + =5 + 17 yvy : ZV ; P(x)=dpg x

y < y z

x-direction

arbitrary functions

Vi#0,V,#0; (d+f+h+n+tqg=1)

ng.y __nBgt wzﬂggzzxngx)} 5

V,V ﬁ7 h ﬁ7gz
98,2 _ (Br/s:8:4 ~ Bsg:8.:n91z £ \2hg X Br8.8:q2 £\2p,8:2 &gz |
£ B1Bsg7x — Br48 8.2

d+f+h+n+qg=1, L +A,+A+A +A =1 B, +B+Ps+P+Bs=1
One observes above that the most important insight of the above solution is the indispensability of
the gravity term in incompressible fluid flow. Observe that if gravity, g, were zero, the first four

terms of the velocity solution and P(x) would all be zero. This result can be stated emphatically

that without gravity forces on earth, there would be no incompressible fluid flow on earth as is

known.

More Observations: Comparison of the Euler solutions with equations of motion under
gravity and liquid pressure of elementary physics

Motion under gravity equations: (B): V=g, (C): V=,2gx;

Liquid Pressure, P at the bottom of a liquid of depth % units is given by P = pgh

Observe the following similarities above:

1. Observe the "gt" in V = gt of (B) of the motion equations and the fg, ¢ in the Euler solution.

2. Observe the " 2gx "in V =2gx of (C)and the \2hg x in the Euler solution.

3. Observe the P = pgh of the liquid pressure and the P(x)=dpg,x of the Euler solution.
There are five main terms (ignoring the arbitrary functions) in the Euler solution. Of these five

terms, three terms, namely, fg,f, \/2hg x , dpg. x are the same (except for the constants involved )

as the terms in the equations of motion under gravity. This similarity means that the approach used
in solving the Euler equation is sound. One should also note that to obtain these three terms
simultaneously, only the equation with the gravity term as the subject of the equation will yield
these three terms. The author suggests that this form of the equation with the gravity term as the
subject of the equation be called the standard form of the Euler equation, since in this form, one can
immediately split-up the equations using ratios, and integrate.

The velocity profile of the x—direction solution consists of linear, parabolic, and hyperbolic terms.
If one assumes that in laminar flow, the axis of symmetry of the parabola for horizontal velocity
flow profile is in the direction of fluid flow, then in turbulent flow, the axis of symmetry of the
parabola would be at right angles to that for laminar flow. The characteristic curve for the integral

of the x—nonlinearterm is such a parabola whose axis of symmetry is at right angles to that of
laminar flow. The integral of the y-nonlinear term is similar parabolically to that of

the x—nonlinear term. The characteristic curve for the integral of the z—nonlinearterm is a
combination of two similar parabolas and a hyperbola. If the above x—direction flow is repeated
simultaneously in the y—and z— directions, the flow is chaotic and consequently turbulent
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Solutions of the Euler Equations

Standard form of the x-direction Euler equation for incompressible fluid flow

One will call the Euler equation with the gravity term as the subject of equation in (A) , the
standard form of the Euler equation for the ratio method of solving these equations, since this form
produces a solution on integration. None of the other forms in (B), (C), (D), (E), or (F), produces a

solution. That is, the integration results of each of the other five equations do not satisfy the
corresponding equation.

p %Vt +pV, a&‘;x +pV, % +pV, %V—Zx + %p; =pg, (A)| <standard form

o V. i il
P ~PVage TPV TPV P8 = %); (B)

v, o, v, ., o,
ay PVt s =P (©

* O
il il o V.
—pgx—p‘@j—p‘éa—x—%wgﬁ e (D)
v, A A v,
P at -pVi = 2o %;C"'pgx PVW (E)

av. av, v, av

Py TPVag TPV &p" e tP8x =PV (B)
Uniqueness of the solution of the Euler equatlon
When each term of the linearized Navier-Stokes equation was made subject of the N-S equation,
only the equation with the gravity term as the subject of the equation produced a solution.
(vixra:1405.0251 of 2014). Similarly. the solution of the Euler solution is unique.
Extra:
Linearized Euler Equation: If one linearizes the Euler equation as was done in the linearization of

& 1 g g, > whose solution is
V.= %t +C; P(x)=dpg.x.
Euler solutions in terms of x, y, z, and 7.
Vi(x,y,2,0) =
fe tW npsg.t 40 Zﬁsgzz)(”gx) (gxgzk4 gxgzks)tz+\/2gxk6x *8:8: K77 2gzkgzgxk9z
* By Brs. 87kiox — 8,8:k112
vy(Vy)  w (V.
o "’ZV(Z 2. p(x) = dpg,x

arbitrary functions

Vi#20,V,#20; (d+f+h+n+q=1)

Note: By comparison with Navier-Stokes equation and its relation, a relation to Euler equation can
be found by deleting the Navier-Stokes relation resulting from the (1 -terms.
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Solutions of the 3-D Navier-Stokes Equations (Original)

Option 4
Solutions of 3-D Navier-Stokes Equations (Original)
Method 1

As in Option 1 for solving these equations, the first step here, is to split-up the equation into eight
sub-equations using the ratio method. One will solve only the driver equation, based on the
experience gained in solving the linearized equation. There are 8 supporter equations.

nonlinear terms

82V &2V d%v, odp IV av. V. av.

Hoga ~H G ~H 3 toc TP TPV TP G PV = pes )

d%v, d%v, 9%V, 18p av, av, v, av,
_K&xZ_K&y2_K82+p8x 8t+V 8x+v8y+v8 =g,

Step 1: Apply the ratio method to equation (B) to obtain the following equations:

(K=2) (B)

072V ) BZV ) %V, a1l Y,
1. 0.)2 =ag; 2. - 9y2 t=0g; 3. - K 8z2x =cg ;4. oo dg ;5. 8tx = /8,
V., Vv, aV,
6. V, e =hg. 1.V, P =q8,; 8'VZ_8Z =ng,

where a, b, ¢, d, f, h, n, g are theratiotermsand a+b+c+d+ f+h+ n+qg=1

Step 2: Solve the differential equations in Step 1.
Note that after splitting the equations, the equations can be solved using techniques of ordinary
differential equations.

One can view each of the ratio terms a, b, c, d, f, h, n, g as a fraction (areal number) of
contributed by each expression on the left-hand side of equation (B) above.

Solutions of the eight sub-equations

1. axzx =ag, 2. - K 8y2 =bg, 3. - K aZZX = cg. 4. Ez_dgx
IV, 92V 92V,
k axe - _agx K ay2x = _ng K azzx = ng %% = dgx
Vi _ _a o2V b IV, _ ¢ ap—d
o2 k8 3y2x =-78. o072 % 8x 2 = dps.
88‘;)‘ ——“kg +C v, _ b, 3(;@ :_%HCS p=dpg.x+C;
vt G E
~ 48y % €8x 2 5. =55 =J8.
Vxl = 2k x +C1x+C2 V _ ng 2 C C Vx3 = — 2k z +CSZ+C6 &t
S SRR Vi = ft
avx &Vx 8V .
6. V, o hg, Yy =ng, 5 = 48 Note:
V.—>=hg dVy _ X = are arbitrary
v ; Y dy ~ e ¢y 9 functions
ngiVx = hgadx V,dV, = ng,dy g ?’/V 48x df_ W) (integration
=qg.z
Ve _ hg x V Ve =ngy +y (V) 98 x W(ZV )z constants)
e gy WV | V=T V,#0
Vis =%y2hg x + G Vi = f/xy o TV, VZ v £0
y y
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Solutions of the 3-D Navier-Stokes Equations (Original)

Step 3: One combines the above solutions
Vi(x,y,2,t) = 1+V2+V3+V4+V5+V6+Vx7

ag, bg oo gy g8z V() w (V)
= 2kx +C 2ky + Gy — 2kZ +Csz+ fg,t+2hg x + v, + 2 + v, + 2
relation for linear terms relation for non - linear terms
— vV
—%(ax2 +by* +cz2?)+ Cx + C3y + Csz + fg 1 £ 2hg x+ M8xY | A8x% | v, (V) i v.(V,) + Gy
,LL Vy Vz Vy Vz

arbitrary functions

P(x)=dpg.x; (a+b+c+d+f+h+n+qg=1) Vy;tO, v, #0

Step 4: Find the test derivatives

Test derivatives for the linear part Test derivatives for the non-linear part
2v, |ov, v, o |av, | V=2hgx oV, _ng, |V, _4q8,
X TR T T T T |y Mg @d Y|k V
_9Pg. | _bpg, | _cP8: | dPEr | JE o
u u H %‘% = ‘ix Ve 20

Step 5: Substitute the derivatives from Step 4 in equation (A) for the checking.
9%V, 9%V, 9%V, Vv, aV, vV,
u3x2 ‘uayz .ugz +§P+p&[ X Ox Y oy 2o = P8x (A)

apgx bpgx Cpgx gX ngx 48x ;
Cop T T AR P+ PV )+ PV + V() =,
?

apg, +bpg, +cpg, +dpg, + fpg, + hpg.+ npg, + qpg.=pg,

?
ag, +bg, +cg, +dg +fg.+ hg + ng. +qg =8,
)

ga+tb+c+d+f+h+n+q)=g,
)

-1

g (D=g, Yes (a+b+c+d+f+htn+qg=1)

Step 6: The linear part of the relation satisfies the linear part of the equation; and the non-linear
part of the relation satisfies the non-linear part of the equation.(B) below is the solution.

Analogy for the Identity Checking Method: If one goes shopping with American dollars and
Japanese yens (without any currency conversion) and after shopping, if one wants to check the cost
of the items purchased, one would check the cost of the items purchased with dollars against the
receipts for the dollars; and one would also check the cost of the items purchased with yens against
the receipts for the yens purchase. However, if one converts one currency to the other, one would
only have to check the receipts for only a single currency, dollars or yens. This conversion case is
similar to the linearized equations, where there was no partitioning in identity checking. Note that
for the Euler equations, there was no partitioning in taking derivatives for identity checking.

g.y q,8.<
V and Vv

Z
partitioning in 1dent1ty checking.

Note: After expressing in terms of x, y, z, and ¢, there would be no
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Solutions of the 3-D Navier-Stokes Equations (Original)

Summary of solutions for V. V,, V, ( P(x)=dpg,x; P(y)=A,pg,y , P(z)=,pg.2)

v, -~ v. v, ~ v, "7

\%
Vi =—%(ax2+ by2+ ez W Cyx+ Csy + Csz+fg b & \[2hg x+ 2822 98,2 VyV) v, (V.), C
y z y b4

P(x)=dpg x; (a+b+c+d+h+n+q=1) vy #0,V,#0

pg A8 X Mgz w (V) v (V)
Vy= —z—ﬁ(%szfﬂzszr 2321 Croxt Cpyyt Crozt Asg t £, 22,8,y + 6ny + = WV x +WZV z

Z X Z

Pg. g NUAR'4 v,)
V.= pg (ﬁl 24 Bzy + Bz 2)'|'Cl4x+ Cisy+ Cigzt ﬂsgzt +\/2ﬁ8gz ﬂ6gz ﬁ7\§y WV x% yv :

x y X Y

The above solutions are unique, because from the experience in Option 1, only the equations with
the gravity terms as the subjects of the equations produced the solutions.

\%
V= —%(ax2+ by2+ 7P Cix+ Gy + Csztfg t = \|2hg x+ ngxy+ quZ+Wy( y)+ v, (V)

VY
pg A8, x AsgyZ w (V) w. (V)
¥ Vy_ - (ﬂ,lx2+ quz‘l' /132 HCoxt Gyt Cppzt lsgvt i\/2/17g y 6Vx) szy - Vi WZV

V V. V

y X y

AR (V)
V=- pgz (ﬂl 2+ By*+ Byz?) + Cryxe Cisy+ Gzt Big 1 12 B, 'ﬁﬁgz Lﬂ7gzy Volv) Vy

One will next solve the above system of solutions for V, , Vy, V, in order to express

Z
n%y and qe{/g'x in terms of x, y, z, and ¢ The author used the help of the Maples software
y Z

for the simultaneous algebraic solutions for V|V, . The basic expressions are of the forms

P8x 2 P8x 1 2 _ P8x
—2uax ’_Zuby ST
terms of the equations of motion under gravity and liquid pressure of elementary physics. Note that
the explicit solutions will be the results of the basic operations (addition, subtraction, multiplication,
division, power finding and root extraction) on the expressions in Step 1 below.

: ng.y . 987
Solving for v, v,, v, ®5>,and =<

y Z

Let V., =x, Vy =yand V,=z. (x,y and z are being used for simplicity. They will be changed

cz?, fg.t, v 2hg.x ,and dpg x; These expressions are similar to the

back to V., Vy, and V, later, and they do not represent the variables x, y and z in the solutions)

Step 1 From the above system of solutions, let Step 2 Then the solutions

Pg: . o 5 o I to the N-S system of
A= ——(ax +by“+ cz” 1 Cixt Gy + Csztfg,t £12hg x equations become

(ignoring the arbitrary functions)

x=A+L2+E
0y

C= pgz (ﬁl 24 By*+ Bz?) + Cryx+ Cisyt Crozt Big i 28 2 y=B+% T G M

D=quz,E ngyy; F=2A.g,x z—C+J L
G =282 J=Peg.x; L=Pgy Y

B pg} ( MxP+ A y2+ Ay z® W Croxt Cpy + Cppz+ Asg 1 £ 21,8y

27



Solutions of the 3-D Navier-Stokes Equations (Original)

Step 3 Step 4

xyz = Ayz+ Dy+ E7 (1) 0=Ayz+ Dy+ Ez— Bxz—Fz—Gx 4
xyz =Bxz +Fz+Gx 2) ¢ N 0=Ayz+Dy+Ez—Cxy—-Jy—Lx  (5)
xyz =Cxy+Jy+Lx 3)) 0=Bxz+Fz+Gx—Cxy—Jy+-Lx (6)

Maples software was used to solve system P to obtain

Step 5 Note:
_ L(FCD-FCJ—-JLA+ JCE) None of the popular academic programs
C(—BLD+ BLJ + GLA- GCE) could solve the system in M.
L(FCD - FCJ - JLA+ JCE) Maples solved system P (step 4 above) for
Vi C( BLD+ BLJ + GLA—- GCE) (back to V) x, y,and z interms of A,B,C,D.E.F,G.
_ L. J. and L.
- Note also that x, y and z are not the same as
vy =— % (changing back to V}, as agreed to) the x, y and z in the system of equations..
L(D-1) They were used for convenience and
~TA_CE® simplicity .
Vz = Ii,f4D—_C'l?) (changing back to V, as agrred to)

Step 5: Apply the following and substitute for A, B,C,D.E.F,G.,J. and L in steps 6-8 below
A= —&(ax2+ by?+ cz? W Cix+ Cyy + Csztfg, t + \2hg,x

B= pg} (ﬂ‘]x2+ )‘Qy2+ /'L3Z2)+ C]0x+ C] 1y + C]zZ + )“Sgyt * ’2l7gy

C= sz (ﬁl 2+ ﬂzy2+ ﬁ3 2) + C14x+ C15y+ C16Z+ ﬁsgzt +’\/ 2ﬁ8gz
D= quz s E=ng.y; F=2Agx
G=Agyz; J=[egx; L=Ppgy

Step 6
__L__ (B78.y)
Yy=-¢*= Pg 2 2 2
o (ﬁl + Byt Biz”) + Crx+ Cyy+ Cszt Big.t + 2ﬁ88z1
n
yo =g+ _( D (B2 By B Pk TPl
Y oI (ﬂl + ﬁzy + ﬂa )+ Cpx+ Giyt+ Cszt ﬂsgzt T 2ﬂ8gz
ng.y (ng, WI(- sz (ﬂl 24 ﬂ2y2+ ﬁ% 2) + Cx+ Cyy+ Gzt BSth +\/ Zﬁsgz )]
Vy B :B7gzy ,
ng.y _( gx)(_ sz (ﬁl 2+ ﬁ2y2+ [33 2) + C1x+ C3y+ C5Z+ ﬁsgzt 2[38&2)
= ; (cancel "y")
Vy ﬁ7gz
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Solutions of the 3-D Navier-Stokes Equations (Original)

Step7: V.=~ [P = Li- CF
qu I (Br8. [ ggﬁ (ax?+ by*+ cz? M Cix+ Cyy + Csztfg b + \[2hg x ] —
V. g (B78:)Bsg.x — 48,2
(ng, = pgz (ﬂl 2+ Byy2>+ Byz?) + Craxt Cisy+ gzt Big.t 128,21
(B78:)Bsg.x — q8,7]
2.2 (B8, ng (ax2+ by*+ cz> v Cix+ Cyy + Csztfg t £ 2hg x]—
v, =982 (B78)1Bsg.x — q8.2]
(ng)l="5 £8: ([31 2+ By*+ Biz?) + Crax+ Cysy+ Crozt Big t & \m]
(B18)1Beg.x — q8,2]

Summary for the fractional terms of the x—direction solution
ng.y and q8.<

in terms of x,y,zand ¢

v,

_ _ sz 2 2 2 +/7
ng.y (n gx)( (ﬁ1 + ﬂzy + ﬁ3 )+ C1X+ C3y+ C5Z+ [))ng A\ ﬁsgzz)
Vx = ; (cancel "y")
y :B7gz

487 (Bygo =55 (ax>+ by ey Croxt Cay + Csztfiyd £ | 2hg ] -
x = °
v = (48:2) (B78. ) Bsg,x — g8zl

(ng,)[- pgz (.31 24 B,y2+ Byz?) + Cyx+ Csy+ Crozt Bsg.t 2 8.2]

(CE=~(ng,y) (-2
d+f+h+n+q—L

(ﬁ7gz ﬁngx qu]

(ﬁl 2+ Boy>+ Byz?) + Cryx+ Cisy+ Crozt Big.t 2 Bsg, Z)
A +A+ A+ A+ A4 =1 B +B+Ps+B+Bs=1
Expanded N-S Solutions (in explicit solutions)

P8

V. (x,y,2,t)=A+ B+ F
A= —%(ax2+ by*+ cz? W+ Cix+ Gyy + Cszt+fg it £ 2hg x+ Gy
—(ng, )(_ P8, (ﬁl >+ ﬁ2y2+ Bz )+ Cyx+ Cayt+ Cszt Bsg 1 £238.2) l// V)
B=
:B7gz Vy
(Brg )1~ gx (ax2+ by*+ cz* i+ Cix+ Cyy + Csztfg, 1 + | 2hg x] -
F = [ ]
(d82) (B18:)[Begx — 4g,2]
(ng, )= b8, (ﬁl 2+ Boy*+ Biz®) + Cryxee Crsy+ ozt Big 1 £2Byg,2] (V)
(B78)Beg . x — q8.7] v
P(x)=dpg.x; (a+b+c+d+h+n+q=1) B+B,+B,+Bs+Bs+P;+Ps=1
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Solutions of the 3-D Navier-Stokes Equations (Original)

Analysis of N-S Solutions

x—direction solution

V.
v, :_%(ax%by%czz}k Cix+ Cyy + Csztfg t +[2hg x+ MExY quZ=Wy( y)a v(V), Cy
H VT,

P(x)=dpg.x; (at+b+c+d+h+n+qg=1) vy #0,V,#0

_(ngx)(_ PE. (.le2+ ﬁ2y2+ [))3Z2) + Cx+ Gyy+ Csz+ ﬁsgzt iNfZﬂSgZZ)

ng.y _ 2u
Vy ﬂ7gz

go.z  ~a8:UB8 (- gfj (ax?+ by*+ cz? /- Cyx+ Cyy + Cszfg 0 £ 2hg x]—[CE]}
. (B78:¥)(q8.z — Bsg:x)

(CE= —(ngxy)(_g_%(ﬁlx2+ B,y*+ Biz2) + Cax+ Cisyt Crozt Big.t +258.2)
One observes above that the most important insight of the above solution is the indispensability of
the gravity term in incompressible fluid flow. Observe that if gravity, g, , were zero, the first three
terms, the seventh, the eighth, the ninth, the tenth terms of the velocity solution and P(x) would all

be zero. This result can be stated emphatically that without gravity forces on earth, there would be
no incompressible fluid flow on earth as is known.

More Observations Comparison of the Navier-Stokes solutions with equations of motion
under gravity and liquid pressure of elementary physics

Motion equations of elementary physics:
B): Vy=Vy+gt: (O): VF=Vi+2gx; (D): V=12gx; (B): x= Vot+%gt2
Liquid Pressure,

The liquid pressure, P at the bottom of a liquid of depth 4 units is given by P = pgh

Observe the following above:

1. Observe that the first three terms are parabolic in x, y, and z; the minus sign showing the usual
inverted parabola when a projectile is fired upwards at an acute angle to the horizontal. Also note
the " gt" in V = gt of (B) of the motion equations and the fg,t in the Navier-Stokes solution.

2. Observe the P = pgh of the liquid pressure and the P(x)=dpg,x of the Navier-Stokes solution.
Note that d 1is a ratio term.

3. Observe the " @ "in V=,2gx of (D)and the \Tgxx in the Navier-Stokes solution.
There are eight main terms (ignoring the arbitrary functions) in the Navier-Stokes solution. Of these

apsy 2 _bpsy » P8y -

2u 7 2u o 2u
similar (except for the constants involved) to the terms in the equations of motion. This similarity
means that the approach used in solving the Navier-Stokes equation is sound. One should also note
that to obtain these six terms simultaneously on integration, only the equation with the gravity term
as the subject of the equation will yield these six terms. The author suggests that this form of the
equation with the gravity term as the subject of the equation be called the standard form of the
Navier-Stokes equation, since in this form, one can immediately split-up the equation using ratios,
and integrate.

eight terms, six terms, namely, — , Jgxt, \/2hgx and dpg x are
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Solutions of the 3-D Navier-Stokes Equations (Original)

Velocity Profile, Polynomial and Radical Parabolas, Laminar and Turbulent flow

For communication purposes, each of the terms containing the even powers x2, y? and zZ will
be called a polynomial parabola, and each of the terms containing the square roots

+x, i\g and 'z will be called a radical parabola. For each polynomial parabola, the axis

of symmetry is in the direction of fluid flow; but for each radical parabola, the axis of

symmetry is at right angles to the direction of fluid flow.

The fluid flow in the Navier-Stokes solution may be characterized as follows. The x—direction
solution consists of linear, parabolic, and hyperbolic terms. The first three terms characterize
polynomial parabolas. The characteristic curve for the integral of the x—nonlinearterm is a radical
parabola. The integral of the y—nonlinear term is similar parabolically to that of the x—nonlinear
term. The integral of the z—nonlinear term is a combination of two radical parabolas and a

hyperbola. If the above x—direction flow is repeated simultaneously in the y—and z— directions, the
flow is chaotic and consequently turbulent.

In the N-S solution, during fluid flow, both the polynomial and radical parabolas are present at any
speed. The polynomial parabolas are prominent and dominate flow while the radical parabolas are
dormant at low speeds. At a low speed, a radical parabola (or a polynomial parabola susceptible to
radicalization).is not active, since the radicand of the parabola is small and consequently, the root is

"y

small. When the speed becomes large, the "x" in /2hg,x becomes large and therefore the radical
parabola becomes active. One can also observe how gravity interacts with the "x" of the radicand.

By "g" and "x" being factors of the radicand (instead of "g" being outside the radical), "g" is
closely aligned with x. Note that the radical parabola will be moving at right angles to the direction
of fluid flow, the direction of which is also that of the axis of symmetry of the dominating
polynomial parabola. Consequently, the flow profile becomes relatively more uniform or flattened

due to the radical parabola moving at right angles to the direction of fluid flow. When viscosity
increases, speed decreases, and the radicand (the factor x in \ 2hg,x decreases) of the radical

parabola decreases. Consequently, the disruptive behavior of the radical parabola diminishes. When
the fluid flows over an obstacle, the radical parabolas temporarily become significant resulting in
turbulence. For a low value of x (i.e., from low fluid velocity), the viscous term dominates and the
inertial term is not significant. At high fluid velocity, the factor " x" of the radicand is large. Also
when density increases, velocity increases and the radicand increases, adding to the effect of the
radical parabola.

Analogy:

Imagine a crowded marathon race involving one thousand runners at various positions on the race
route, all running in the same direction. Imagine also that at certain points on the route, during the
race, some of the runners at various positions suddenly begin to run to the left or to the right in
directions at right angles to the direction of the race route; and imagine the resulting collisions and
chaos. The polynomial parabolas are those runners following the route of the race, and the radical
parabolas are those runners making ninety-degree turns from various positions. Literally, the radical

parabolas disrupt the laminar flow.
Uniqueness of the solution of the Navier-Stokes equation
When each term of the linearized Navier-Stokes equation was made subject of the N-S equation,

only the equation with the gravity term as the subject of the equation produced a solution.
Similarly, the solution of the Navier-Stokes equation solution is unique.

Back to Options
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Solutions of the 3-D Navier-Stokes Equations (Original)

Option 5
Solutions of 4-D Navier-Stokes Equations

In the above method, the solution can easily be extended to any number of dimensions..
2
Adding ,u% and pV, aaL to the 3-D x—direction equation yields the 4-D N-S equation
%V, 82V A2V, V.  op vV, v, Vv, av, av,

xL X —
u(ax 8y2+ +a2)+ax+pat+pvax'pvay+pva pVas P8
whose solution is given by
Ve(x,y,2,8,1) =
P 7,18,
—%(ax2+ by?+ cz? + es? W Cyx+ Cyy+ Csz + Cestfg, t *\2hg x4 ‘{g/’y‘y : q({g/;c i (‘g/s .
l//y(vy)Illf VD) vV,
/N A A
arbitrary functions
P(x)=dpg,x (a+b+c+d+e+f+h+n+qg+r=1) v, #0, vy 0, Vv, #0,
For n—dimensions one can repeat the above as many times as one wishes.
Option Sb
Two-term Linearized Navier-Stokes Equation (one nonlinear term)
V. % V.

By linearization as in Option 1, if one replaces pV, Yoy +pV, % by 2p—=* 3 in

d%v,  J%v,  d?%v, av. av. av, v,
,u&x2 H&yz 'u8Z +§+p a +pV, o +pVY, Yoy +pV, 3 = pg, one obtains

d vx+a2v

_u( (9)62 (9y2

x )+ P» +3p(_)+ pVy ‘;_ = pgx , whose solution is

Vi(xy.zn = —%(ax2+ by?+ cz?) + Cyx + C3y + Csz+ fg% +./2hg, x+ Cg

Back to Options
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Solutions of the 3-D Navier-Stokes Equations (Original)

Conclusion (for Option 4)

One will begin from the general case and end with the special cases.

Solutions of the Navier--Stokes equations (general case)
x—direction Navier-Stokes Equation (also driver equation)

2V, RV, PV, op v, v, v,

u8x2 “8y2 ,u&,2 +ax+pat+pV 8x"+pV P o = pg,| x—direction
Vx(x’y’Z9t) =
solution for linear terms solution for non - linear terms
4%
—pﬁ(ax2 +by* +cz2)+ Cix+ Cyy + Csz + fg, t +./2hg x+ M8y | 48x% | v,( y)+ v.(V,) +C
2/.1 X X Vy VZ V} VZ

arbitrary functions
P(x)=dpgx; (a+b+c+d+h+n+q=1) V, 20,V #0

—(ng,)(=5 PE: (,31 2+ B,y%+ B,z2) + Cix+ Cyy+ Cszt Bigt +2B,8,2)

ng.y _
‘/)’ ﬂ7gz

q9.2 —(qg, DB (= gﬁf (ax*+ by>+ cz* i+ Cyx+ Gy + Csztfg, ¢ £ 2hg x ] - [CE]}
V. (B78.5)(q8.z — Beg.X)

—(”gx)’)(— bs. (ﬁl 2+ .32)’2"‘ Bz 2)+ Ciyx+ Cisy+ Cigzt Bsg t = §2ﬁ8g2z

One observes above that the most important insight of the above solution is the indispensability of
the gravity term in incompressible fluid flow. Observe that if gravity, g, , were zero, the first three

terms, the 7th term, the 8th term, the 9th term, the 10th term and P(x) would all be zero.

This result can be stated emphatically that without gravity forces on earth, there would be no
incompressible fluid flow on earth as is known. The author proposed and applied a new law, the
law of definite ratio for incompressible fluid flow. This law states that in incompressible fluid flow,
the other terms of the fluid flow equation divide the gravity term in a definite ratio, and also each
term utilizes gravity to function. This law was applied in splitting-up the Navier-Stokes equations.
The resulting sub-equations were readily integrable, and even the nonlinear sub-equations were
readily integrated.

The x—direction Navier-Stokes equation was split-up into sub-equations using ratios. The sub-
equations were solved and combined. The relation obtained from the integration of the linear part of
the equation satisfied the linear part of the equation and the relation obtained from integrating the
nonlinear part of the equation satisfied the nonlinear part of the equation. By solving algebraically

and simultaneously for V,, V) and V_, the (ng,y/V;) and (gg,z/V.) terms woe expressed

explicitly in terms of x, y, z and ¢. The above x—direction solution is the solution everyone has
been waiting for, for nearly 150 years. It was obtained in two simple steps, namely, splitting the
equation using ratios and integrating.
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Solutions of the 3-D Navier-Stokes Equations (Original)

Special Cases of the Navier-Stokes Equations

1. Linearized Navier-Stokes equations

One may note that there are six linear terms and three nonlinear terms in the Navier-Stokes
equation. The linearized case was covered before the general case, and the experience gained in the
linearized case guided one to solve the general case efficiently. In particular, the gravity term must
be the subject of the equation for a solution. When the gravity term was the subject of the equation,
the equation was called the driver equation. A splitting technique was applied to the linearized
Navier-Stokes equations (Option 1). Twenty sub-equations were solved. (Four sets of equations
with different equation subjects). The integration relations of one of the sets satisfied the linearized

Navier-Stokes equation; and this set was from the equation with g, as the subject of the equation.
In addition to finding a solution, the results of the integration revealed the roles of the terms of the
Navier-Stokes equations in fluid flow. In particular, the gravity forces and dp/dx are involved

mainly in the parabolic as well as the forward motion of fluids; dV.,/dt and 9%V, / ox? are involved
in the periodic motion of fluids, and one may infer that as u increases, the periodicity increases.
One should determine experimentally, if the ratio of the linear term JV, /o to the nonlinear sum

V, (9V, /) + V, (OV, /) + V.(OV, /%) is 1 to 3.

Solution to the linearized Navier— Stokes equation

Vi(x,y,z,t) = —g;if(axz +by? +cz2)+ Cix + Cyy + Csz + fix t+C, ; P(x)=dpg x

Linearized Equation

v,  J%v, %, 8p v,
“Ho5 u&yz TH g T AP = P8y,

2. Solutions of the Euler equation
Since one has solved the Navier-Stokes equation, one has also solved the Euler equation.

Euler equation (¢ =0): 8Vx +Vi aa‘;? +V i’)‘;c +V 0"’1 ;1)% &x

o V.
Vo (x,y,2,) = fg.t £ 2hg x + n‘;”}y + q(‘g/xZ + Wy‘g 2 + W‘gv) +C
' : > - x-direction

arbitrary functions

P(x)=dpg x (f+h+n+g+d=1)V,#0,V, 20

ngxy — nﬂng (N 2ﬁ8gzz)(ngx)} B

Vy B ﬁ7 ﬂ7gz
98,2 _ (B1/8:8:4 ~ Bs8x8.n91z £  2hg X 188,92 £\ 2By8.2 &gz |
£ B1Bsg7x — Br48 8,2
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Solutions of the 3-D Navier-Stokes Equations (Original)

Comparison of Linearized N-S Solutions, Euler Solutions. and N-S Solutions

x- direction linearized N-S Solution

axis in direction of fluid flow

Ve(x,y,z,t) =— %(axz +by? +cz?) +C1x+C3y+C5z+&t+C9 ; P(x)=dpg.x L

4
x-direction Euler Solution
axis rotated 90° vo(V) v
e — n z
Vo(x,y,z,) = fg £ 2hgx  + f;y‘y + qf/;‘ + yVy Y~ + W‘Z ) +c >E
arbitrary functions
P(x)=dpg x (f+h+n+qg+d=1)V,#0,V, 20
ng.y __npsg.t (258 2)(ng,) B
Vy ﬁ7 B ﬁ7gz
rotated axis rotated axis
— ——
g,z (Prfe.gia—Bsg.gnptzt 2hg x Brg 8.9+ [2Pgg, 2 gingz
£ ﬁ7ﬂ6g§x - /37qung
x- diretion N-S Solution
fluid flow direction axis rotated axis v (V ) (V )
_ P8x 2 2 2 D ho v 8xY 48x2 Py\Vy) W (V) ~
P(x)=dpg x; (a+b+c+d+h+n+q=1) vy #0, v, #0
pg axis in direction of fluid flow rOFated axis
ng.y —(ng,)(— 2,uz (ﬂ1x2+ ﬁ2y2+ ﬁ3zz) + Cx+ C3y+ Csz+ Big.t £2B58.2)
Vy B ﬁ7gz
q8,2 _
A T
—(q8:){- ’;ﬁ; [(Br8.a - ngBx*—(Br8:b—ng. By~ (Brg-cz® — ng Byz* H(Br8.Ci — ng Cia)x
+(B78.C3— 18 Ci5)y+ (B18.Cs— ng Cio)zH B8, f8x— 18, Bsg )it 2hg, x Brg, F\ 2 Byg,ang,}
(B78.)(q82 — Beg.X)

Back to Options
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Solutions of Navier-Stokes Equations (Method 2)

Option 6
Solutions of 3-D Navier-Stokes Equations
(Method 2)

Here, the three equations below, will be added together; and a single equation will be integrated

RV, RV, RV p Ny Ny

“HCHS ay;‘+ SRR Gl A ayx+V Z")=pgx (1)
J2v, a2v a2xg ap v, v, v, vV,
(ax ayg 32) at (&+V ax+V8y )—pgy (2)
PV, PV, PV, P v . V. av

“HCA St e 92) +(a¢ aX+Vy(9y ) =P8 )
Step 1: Apply the axiom, if a =b and ¢ =d, then a+c = b +d; and therefore, add the left sides
and add the right sides of the above equations . That is, (1) +(2) +(3) = pg, + pg, + pg.
%V, %V, %V, 82V B 82V B 82V d2V, d2V, %V, 8p ap
TH e THGE THTGE THGe TR TR THGe THGR TR gty

V., av, aV. Vv, Vv, WV, av, av, v,
§p+pat+p&t+p &tz+pV &x+pv é)y+pV = +pV, axy+pV>’W+pVZa_z
+pV, gz +pV, gz +pV, azz =(pg, +pg, +pg.) (Three lines per equation)

+ gz‘ to obtain

Let pg, +pg, + pg. = pG , where G =
82V B 82V 3 82V 82V 82V B 82V 6’2V 2V, J?V,
waz 8y2 Hoz ~Hae 8y2 Hop ~H o2 —H oy? o2
P P, M, W I IV, V. vV,
+8x+07y a'*”aﬁpaﬁpaﬁpva*”"ay PV, o

av, v, aV, a, A av,
+pvx3;+p\/y&y+prz azy+pVx o +pV, 8y+pV 8Z—pG

Step 2: Solve the above 25-term equation using the ratio method. (24 ratio terms)
The ratio terms to be used are respectively the following: (Sum of the ratio terms = 1)

a.b,c.d,fom,n, q,r, By, By Bs. By Bs. Bo- Mi» Ao, As. Ay As, A g A7, A5, Ag

92V, 92V, o2V, 92V,
M X =apG ; /,tayz =bpG ; “0"’2 =cpG ; _u&x{:dpG;
ov, 32V, a v , v,
.y 7 = fpG ; —-u 8z =hpG ; &xz =mpG ; _“#yz =npG ;
92V,
—.U?zz:rPG; %:ﬁlpG; %:ﬂZPGQ %: BspG ;
v, v, V. oV,
P = BapG; P = BspG P =BG PVi = ApG
v, IV, v, v,
PVi gy =hpGs PVoTgi=AapGr pVigm=AipG PV, gy =APG
v, vV, vV, v,
PVige =ApG: PVt =ApG: pVy 5t =2epG V.~ = kPG
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Solutions of Navier-Stokes Equations (Method 2)

1 2 3
Vi __a %V, _ RV, _
;xz ——ﬁpG “H57 =bpG - 8‘92Z2 =cpG
V. _ & NPV, b Vi
X = - G +C X —_Z - = G
& T uP j ! B = uPe 8/:V8Z2 P
V. —%pG%+C1x+C2 8;3 :_%pGyJFQ 7 —ﬁpG
2 9Vx _C
x=—%pGy7+C3y+C4 % = uPoitGs
2
V, =—ﬁpG%+C5z+C6
4 5 6
2V, _ 2V, _
“Hoe =dpG L o2V, - G “H o2 =hpG
82 8x2 82‘/} pr 822 u
Vo__d T N, __h
ox2 - U G aVy f . . a—z——ﬁpGZ-i-C]l
) = _J + 2
%=—ipGx+C7 Jy T uPIT V,=-LpGL+C 2+,
b _Lpc Y scyrc 3
Vy:—%pG%+C7x+C8 Vo= =P TG+ Gy
7 8 9
02V, 22V, o2V
g g e o0
ox? ,qu ﬁ_ ‘qu 2 ‘uPG
VN, m V. N, _ _r
j“‘ﬁpGx"‘Cw j&=—ﬁpGy+C15 ﬁz“——ﬁPGZ‘i‘Cn
2 5 2
V.= —%pGXT+C13x+C14 V, = —%pG%+C15y+C16 V.= _ﬁpG%+C17Z+C18
10 11 12
% =BipG % = BopG %é BspG
dp _ d dp _
7: = PipG d—l;,=ﬁ2PG &z = PapG
P(x) = BipGx + Cyg P(y)= BopGy +Cy, | (D =P3pGz+Cyy
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Solutions of Navier-Stokes Equations (Method 2)

13 14 15 16
av, V. av, v,
P =BarG p—-=BspG P =PspG PV = 2apG
av. dv. dav. A%
dtx =B.G Tty_ﬁ5G dtz =BG VxWx: MG
V. = B4Gr+ Cy V, = BsGt + Cy V. =BGt +Cyy Vi aiilxx =G
V.dV, = A,G dx
2
sz =1Gx
V2, =21,Gx
V., =+ 24,G x + Cys
17 18 19 20
av, av, av, av,
PV Wx =hpG PV. 5 =MpG PVy o= MpG pY, W) = AspG
av v, _ av dv
V, S =AG Vogz = M6 Vogt=2,G Vyd_yy: G
VVX:)QG);.FW (V) ‘/ZV)C_ 3GZ+WZ(‘/Z) Vx‘/y:ﬂ%Gx-{-l//x(‘/x) V2
Y oy MGz w (V) o
v (V)| V.= + MG x  y (V) =AsGy
V. = 2’2c;y + yy VZ VZ Vy =TV + v 2
=T, v, x | V?=24Gy
V, =+245G y + Cy4
21 22 23 24
av, av, av. av,
PV =APG pVi o =ApG PV oy = AspG PV. 5= hopG
dav. av. dv. dv.
R Wne | whEen
V.dV, = 2G dz VidV, = 2;G dx V,dV, = AG dy szVz = AoG dz
V¥, = 46G ey (V)| VeV SOV vy < 4Gy, v Ko 22,6
AGz y. (V) V:ﬂqu+l,l/x(Vx) MGy WV, (V) 22
Vy: Vv + ZVZ z Vx Vx VZ: 8V + yVy Vz :22’9GZ
) ) y Y v =+ 20,62 + Gy
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Solutions of Navier-Stokes Equations (Method 2)

Step 3 : One Collects the integrals of the sub-equations, above, for V., V,, V., P(x), P(y) ,P(z)

x> 'y> 'z
For V., P(x) For V,, P(y) For V,, P(2)
Sum of integrals from Sum of integrals from Sum of integrals from
sub-equations #1, #2, #3, sub-equations #4, #5, #6, sub-equations #7, #8, #9,
#13,#16, #17,#18, #10 #14, #19, #20, #21 #11 #15, #22,#23,#24, #12,
Vx:_%PG%+C1x+C2 Vy:—%pG%+C7x+C8 V. :_%PG%"'CBX"'CM
b G f o~y __m Gy
Vi== PG +Gy+C, Vy==3PGH+Coy+Cy V== PG + Gy + G
Vx:_ﬁPG%"'CsZ"‘Cs Vy:—%pG%+CHz+C12 V. :_ﬁPG%"'CnZ"'Cls
V, =BGt + G, V, = BsGt +Cy, V, = BsGt + Gy,
V, = + == z V. V.
V. = lsz n Wy(vy) Y Ve Vi # /lng v ()‘C/ )
TV, v, V,=%,24;G y + Cy V=870 e
_ MGz y (V) Gz w.(V) v
P(x) = BpGx + Cyq P(y) = BopGy + Cy P(2) = B3pGz + Gy

From above,

For V., Sum of integrals from sub-equations #1, #2, #3, #13, #16, #17, #18, #10
Vx(x’y’z’t)

2 b 2 2 G Gz
:—QpGx?+C1x——pGyT+C3y—QpG%+C5z+B4Gti4/2;thx +—’12V v, 4Gz

u u u g v,
Vi

P(x) = BpGx + Cyy ‘/’y‘g ») + W‘(/V)
y Z

arbitrary functions

For Vy : Sum of integrals from sub-equations #4, #5, #6 #14, #19, #20, #21 #11

Vy(-x’yazat)

__d x> _f o aY hoo R MGx AGz

= uPG2+C7x #pG2+C9y ‘qu2+Cllz+ﬁ5Gt+i4/2lsGy+ V. + V.

P(y) = ﬂszy + C20 + ll/x(Vx) WZ(VZ)
v, V.

%f_—/
arbitrary functions

For VZ: Sum of integrals from sub-equations #7, #8, #9 #15, #22, #23, #24,#12,

m x> n .~y ro 2> s MG x
V.
P(Z) _ ﬁ3sz+C21 + 2'8‘?)) + WX‘E'VX) + WY‘E' y)
y x y

arbitrary functions
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Solutions of Navier-Stokes Equations (Method 2)

Step 4: Simplify the sums of the integrals from above..(Method 2 solutions of N-S equations

G LGy MGz
Vi(x,y,2,1) = —12)—‘u(61x2 +by? +¢z2) + Cix + Cyy + Csz + B,Gt £ 24,G x + sz + 3VZ
v,(Vy) oy (V)
P(x) = BipGx + Cyy (v, #0, v, 20)  + yVyy + VZZ
arbitrary functions
A Gx 26G 2
Vi(x,y,2, t)——z (dx® + f? +hz?) + Cox + Coy + Cy 2+ Cyo BsGt £ 1245G y + 4V 6VZ
V V.
P(y) = BopGy + Cy (v. #0, v, #0) +Wx( ) l//Z( )
X z Vx VZ
arbitrary functions
Vo(x.y.2.0) = (mx +ny? +7122) + Cjyx + Cisy + Cipz + PGt £ 226G 7 + 17\9)6 igVGy
x y
- v, (V) ¥, (V)
P(z) = B3pGz + Cy, (v, #0, v, #0) + xVx x) o v
arbitrary functions

The above are solutions for V, V,, V. P(x), P(y), P(z) .of the Navier-Stokes Equations
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Solutions of Navier-Stokes Equations (Method 2)

Comparison of Method 1 (Option 4) and Method 2 (Option 6)
of Solutions of Navier-Stokes Equations

Method 1: x—direction solution of Navier-Stokes equation

% ng.y 48,2

Vo (x,y,2,t) = —%(ax2+ by*+cz?) + Cix + Cyy + Csz + fg, 1 £ 2hg x+ /A
y b4
V.
P(x)=dpg.x; (a+b+c+d+h+n+q=1) (v, #0,V,#0) :Wyé y)a ""(,V)a Co (A)
y b4

arbitrary functions

Method 2: x—direction solution of Navier-Stokes equation

Vo (x,y,2,0) = PG 2 by? +cz2)+ Cx + Cyy + Csz+ B,Gt £ 24,G x + WGy MGz
* 2‘u N Vy ‘/Z
V.
P(x) = BipGx + i (v, #0,v,#0)  + Wyé 2 L (B)
v y z
arbitrary functions

It is pleasantly surprising that the above solutions (A) and (B) are almost identical (except for the
constants), even though they were obtained by different approaches as in Option 4 and Option 6.
Such an agreement confirms the validity of the solution method for the system of
magnetohydrodynamic equations (see viXra:1405.0251.. For the system of magnetohydrodynamic
equations, there is only a single "driver" equation. For the system of N-S equations, there are three
driver equations, since each equation contains the gravity term. Therefore, one was able to solve
each of the three simultaneous equations separately (as in Method 1); but in addition, one obtained
an identical solution (except for the constants) in solving the simultaneous N-S system by adding
the three equations in the system and integrating a single driver equation. In Method 1, the gravity
term was pg.In Method 2, the gravity term was pG, where G is the magnitude of the vector sum
of the gravity terms. Note that in Method 1, the sum of the ratio terms (8 ratio terms for each
equation) equals unity, but in Method 2, the sum of the ratio terms (24 ratio terms) for the single
driver equation solved equals unity. Note that in Method 2, only a single "driver" equation was
solved, but in Method 1, three "driver" equations were solved. In Method 2, one could say that the
system of N-S equations was "more simultaneously" solved than in Method 1.

To summarize, solving the Navier-Stokes equations by the first method helped one to solve the
magnetohydrodynamic equations (not presented in this paper.. See viXra:1405.0251) and solving
the magnetohydrodynamic equations encouraged one to solve the Navier-Stokes equations by the
second method.

( " Navier-Stokes equations "scratched the back" of magnetohydrodynamic equations; and in return,
magnetohydrodynamic equations "scratched the back" of Navier-Stokes equations")

About integrating only a single equation

If one asked for help in solving the N-S equations, and one was told to add the three equations
together and then solve them, one would think that one was being given a nonsensical advice; but
now, after studying the above Option 6 method, one would appreciate such a suggestion.

Back to Options
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Solutions of 3-D Linearized Navier-Stokes Equations: Method 2

Option 7
Solutions of 3-D Linearized Navier-Stokes Equations
Method 2
Here, the three equations below, will be added together; and a single equation will be integrated.
82V 82V %V,
axz - 8}72 —u o2 al?+4p 81‘ = P8x (1)
%V, %V, %V, é?p
\ .u&xz ‘ué’yz .uaz 8y+4p8t =P8y (2)
PV, _ PV PV p
—H 8)(2 - &yz —u 8Z2 8Z +4P atz =P8 (3)

Step 1: Apply the axiom, if a =b and ¢ =d, then a+c=b+d; and therefore, add the left sides
and add the right sides of the above equations . That is, (1) +(2) +(3) = pg, + pg, + pg.

82V 9%V, 92V, dp, 82V 82Vy 82Vy ap s
W2 —Hoan “az'ax“”at “Hga T hgn T ey
d2V, %V, %V, . .

-u 8x2 -u 8y2 -u 2 g‘z4p 3:‘ = pg, + P8y + pg. (Two lines per equation)
Let pg, +pg, +pg, = pG ,where G=g, +g,+ gz‘ to obtain
PV, Ve PV, op PV, Ve PV W,

THE THGE TR a+4pa¢ THga THga TH TPy
2 2 2

—u %x‘g .y %y‘; -u 88‘2/ glz) + 4p# pG (Two lines per equation)

Step 2: Solve the above 15-term equation using the ratio method. (14 ratio terms)

The ratio terms to be used are respectively the following:
a,b,c,d,f,h,j,m,n, q,r,s,u v, w.

(Sum of the ratio terms = 1)
(Sum of the ratio terms = 1)

PV _ PVy o PV Pp_
—H 55 = apG;, - U 3 - bpG; —u P cpG; P dpG
v, %V, I’v, %V,
p— =IPG  — U5 =hpG — 22 =JpG: —H—s =mpG:
P_ e Ny e Ve PV _ o
oy npG; 4p o qpG; —u o2 rpG; M N spG;
2
—u% =upG; % =vpG; 4p%/h =wpG
%V, v, 2%V,
—H—3 =apG —-u 52 =bpG —-u o2 =cpG
PV, a4 2V, p ?Ve __c
1 aax2 =Tuho 5 T 3 a&z2 =Tuho
% : V,
P :—%PG?HQ a&‘;" =—%pGy+C3 o _‘ﬁPGHCs
Ga Gc
V, = pz—ux“CvHCz Vx=—p2CLby2+C3Y+C1 V,=— p2/»tz +Csz+Cy
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Solutions of 3-D Linearized Navier-Stokes Equations:

4 5 6
AV, %V,
P 4pG s = oG 0%V G
ox
P(x)=dpGx + C; %zf_G 82Vy o G
ot fG4 o2 __Hp
Vi=g1+G v, h oG s C
h T uPeT o
Vyz—pz—ihx2+C9x+C10
7 8 9
92V, 92V, dp _
ﬂo';yzy:JPG ,u0~,2y=mpG @_HPG
PV PV mog P(y) = npGy+ Cis
= uf o2 H
V. aV,
Wy:_iPG)""Cn 9_;:_%pGZ+C13
pGm
Vy=- g,u] y:+Cy+Cp, Y= T 2u 22 +Cp3z+Cyy
10 11 12
v, %V, a%v,
4p—>-=qpG U =1pG “Hga =P
N, 4G %V, r 92V,
_4 -5
Iy ad =Tk & = uPo
G V.
pG
V.= 2 S+ Crx+Cg sz—%y + Coy + Cy
13 14 15
9 P _ Ve _
~H g =upG o~ VPC P =wpG
92V, G P(z) =vpGz+Cy3 IV, _wG
o> M x4
N, v.=2G, 4
TZ:_HPGZ+C21 z 4 24
Vo=- pz(; 27+ Gzt Cy
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Solutions of 3-D Linearized Navier-Stokes Equations: Method 2

Step 3: One collect the solutions from Step 2 for (V, Vy, V., P(x), P(y), P(z))

For V., Sum of integrals from sub-equations #1, #2, #3, #5, and for P(x), from #4

Vo (X,y,2,t) = —%(ax2 +by? +cz2)+ Cix + Cyy + Csz + %t +Cq: P(x)=dpGx +C,
For Vy Sum of integrals from sub-equations #6, #7, #8, #10, and for P(y), from #9.
Vi(x,y,z,0) = —%(hx2 + jy? +mz?) + Cox + C,,y + Cpsz + %t +Cie: P(y)=npGy+Cis
For VZ: Sum of integrals from sub-equations #11, #12, #13, and for P(z), from #14

V.(x,y,2,1) = —%(rx2 +sy? +uz?) + Cx+Coy+Cyzt+ %t + Gy P(2)=vpGz+Cyy

Comparison of the above methods for the solutions of
Linearized Navier-Stokes Equations

Note below that the solutions by the two different methods are the same except for the constants
involved. Now, one has two different methods for solving the system of Navier-Stokes equations.
Such an agreement and consistency confirm the validity of the method used in solving the
magnetohydrodynamic equations.

Solutions by Method 1

Vo(x,y,z,t) = —g—“%(axz +by? +cz?) + Cix+CGy+Csz+ fix t+Cy; P(x)=dpgx

P8, . q8
Vi(x,y,z,0) = —2—‘J(iz)c2 + jy2 +mz?) + Cix+CGy+Csz+ Tyt +C; P(y)=npg,y

V(x,y,2,t) =~ g‘% (rx? + sy2 +uz?) + Cix+CGy+Csz+ sz t+C;  P(2)=vpg.z
Solutions by Method 2
Vi(x,y,2,0) = —%(axZ +by? +cz2)+ Cix + Cyy + Csz + %t +Cg; P(x)=dpGx +Cy
PG . 2 .2 2 qG
Vy(x,y,z,t)z—ﬁ(hx +y°+mzt)+ Cox + Gy + Caz+ =t + Cg: P(y)=npGy + Cis
Vz(x,y,z, t) = _%(K}(Q + sy2 + uZZ) + C17.x + Cl9y + CZIZ + %t + C24; P(Z) = VpGZ + C23
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Overall Conclusion

Overall Conclusion

The Navier-Stokes (N-S) equations in 3-D and 4-D have been solved analytically for the first time
by two different methods. In Method 1, the three equations were separately integrated.

In Method 2, the three equations were first added together and a single equation was integrated.
The solutions from these two methods were the same, except for the constants involved. The

N-S solution is unique. The experience gained in solving the linearized equation helped the author
to propose a new law, the law of definite ratio for incompressible fluid flow. This law states that in
incompressible fluid flow, the other terms of the fluid flow equation divide the gravity term in a
definite ratio, and each term utilizes gravity to function. The sum of the terms of the ratio is always
unity. The application of this law helped speed-up the solutions of the non-linearized N-S
equations, since there was no more experimentation as to the subject of the equation. It was also
shown that without gravity forces on earth, there would be no incompressible fluid flow on earth as
is known.

The solutions and relations revealed the role of each term of the Navier-Stokes equations in fluid
flow. Most importantly, the gravity term is the indispensable term in fluid flow, and it is involved in
the parabolic as well as the forward motion. The pressure gradient term is also involved in the
parabolic motion. The viscosity terms are involved in parabolic, periodic and decreasingly
exponential motion. As the viscosity increases, periodicity increases. The variable acceleration term
is also involved in the periodic and decreasingly exponential motion. The convective acceleration
terms produce square root function behavior and behavior of fractional terms containing square root
functions with variables in the denominator. In terms of the velocity profile, the first three terms
characterize parabolas. If one assumes that in laminar flow, the axis of symmetry of the parabola for
horizontal velocity flow profile is in the direction of fluid flow, then in turbulent flow, the axis of
symmetry of the parabola would have been rotated 90 degrees from that for laminar flow. The

characteristic curve for the x—nonlinearterm is such a parabola whose axis of symmetry has been
rotated 90 degrees from that of laminar flow. The y—nonlinear term is similar parabolically to

the x—nonlinear term. The characteristic curve for the z—nonlinear term is a combination of two
similar parabolas and a hyperbola. If the above x—direction flow is repeated simultaneously in the

y—and z— directions, the flow is chaotic and consequently turbulent.

The following statements can be made:

(a) The N-S equations have unique solutions; (b) The N-S equations have parabolic solutions;

3. The N-S equations have square root function solutions. 4. The N-S equations do not have periodic
solutions but have periodic relations. 5.. The N-S equations do not have decreasingly exponential
solutions but have decreasingly exponential relations.

In applications, the ratio terms a, b, ¢, d, f, h, n, g and others may perhaps be determined using

information such as initial and boundary conditions or may have to be determined experimentally.

The author came to the experimental determination conclusion after referring to preliminaries...The

question is how did the grandmother determine the terms of the ratio for her grandchildren? Note

that so far as the general solutions of the N-S equations are concerned, one needs not find the
specific values of the ratio terms.

Finally, for any fluid flow design, one should always maximize the role of gravity for cost-

effectiveness, durability, and dependability. Perhaps, Newton's law for fluid flow should read
"Sum of everything else equals pg" ; and this would imply the proposed new law that the other

terms divide the gravity term in a definite ratio, and each term utilizes gravity to function.

P.S.

Maples software was used to help express the implicit terms in terms of x, y, z, and ¢, by solving

System P (p.27, 28). None of the academic programs could solve the system of solutions M. The
author would like to find a software that can solve the original system, System M, for comparison
purposes.
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Option 8
Spin-off: CMI Millennium Prize Problem Requirements

Proof 1

For the linearized Navier-Stokes equations

Proof of the existence of solutions of the Navier-Stokes equations

Since from page 11, it has been shown that the smooth equations given by

Vi(x,y,2.0) = —g;‘;f(ax2 +by? +cz2)+ Cix + Cyy + Csz + fix t+ Cy ; P(x) = dpg x|are solutions

2 2
a&’x‘;x agy‘; 9 Vx)+ % +4p% = pg, » it has been shown that

smooth solutions to the above differential equatlon exist. and the proof is complete.

of the linearized equation, —u(

From,above,jfy:(),z:() V()C t)——piz‘ax +C1X+f§xl+C9; P(x):dpgx+C10

Therefore, V,(x,0) = V°(x) = p% ax? + Cipx + G
Finding P(x,t)
1. V.(x,1) = —%(axz) +Cpx+ %t +Cy; P(x)=dpgx 2. % = dpg;

Required: To find P(x,t) (thatis, find a formula for P in terms of x and ¢)

dp _ dp dx
dt — dx dt
dp _dp @_
dt ~ dx Va ( =V
d, d,
p dpgx( P8« (ax?)+Cx + fi" t+C, ) (d—{i:dpgx)

P(x,t)= J‘dpgx(—%(aﬂ) +Cix+ %t +C, ) dt

P(x,t) = dpgx(—ag%x% + Cyxt + fééx 12 +Cyt )+ Cio

For the corresponding coverage for the original Navier-Stokes equation, see the next page
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Proof 2

For the Non-linearized Navier-Stokes equations (Original Equations)

Proof of the existence of solutions of the Navier-Stokes equations
From page 30, if y=0,z=0in

Solution to Linear part
(v
Ve y,z,0=— pgx (ax2+ by*+cz?) + CxtCy+Cz+ fg t x 2hgxx+n€"y+quz+w-‘"(/ y)+%‘(/vz)
contlnuedl Y : ! -
solution of Euler equation
P(x)=dpg x

one obtains

V.(x,0)= p(g;f ax? + Cjx + fg t £2hg x + Cy;  P(x) = dpg x;

V. (x,0)=V2(x) = ,Dg/’j ax? + Cyx £ 2hgxx +Cy; P(x)=dpg x;
Since previously, from p.21, it has been shown that the smooth equations given by
V.(x,t)=- p(‘ng ax®> +Cyx + fg, 1+ \/2th)¢ +Cy: P(x)=dpg x; are solutions of

%V,
“H—5 8x2 8p o T P 8t
shown that smooth solutions to the above differential equation exist, and the proof is complete.
Finding P(x,t):

03; = pg, (deleting the y—and z — terms of (A)), p.25, one has

1. V.(x,t)=- p“g;f ax® +Cyx + fg,t £ 2hgxx +Cy; P(x)=dpg x; 2. %zdpg;

dp _dp dx

dr ~ dx dt

dp _dp dx _
dr ~ dx Vi Car =V

d Pg g,
lezdpgx(_ 2 x (ax2)+C]xi4/2hgxx + fg, 1+ C ) (d—];:dpgx)

%

P(x,t) = fdpgx( (ax?)+Cyx £\ 2hg x + fg t+ Cg) dt

P(x,t)=dpgx( gix X t+C1xt+tW+fgx +Cyt J +Cyp

References:

For paper edition of the above paper, see Chapter 11 & Appendix 7 of the book entitled "Power of
Ratios "by A. A. Frempong, published by Yellowtextbooks.com.Without using ratios or proportion,
the author would never be able to split-up the Navier-Stokes equations into sub-equations which
were readily integrable. The impediment to solving the Navier-Stokes equations for over 150 years
(whether linearized or non-linearized ) has been due to finding a way to split-up the equations.
Since ratios were the key to splitting the Navier-Stokes equations, and solving them, the solutions
have also been published in the " Power of Ratios" book which covers definition of ratio and
applications of ratio in mathematics, science, engineering, economics and business fields.

Adonten
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