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Abstract 
 

In this paper we develop a novel characterization for isomorphism of 
graphs. The characterization is obtained in terms of ordered adjacency 
lists to be associated with two given labeled graphs. We show that the 
two given labeled graphs are isomorphic if and only if their associated 
ordered adjacency lists can be made identical by applying the action of 
suitable transpositions on any one of these lists. We discuss in brief the 
complexity of the algorithm for deciding isomorphism of graphs and 
show that it is of the order of the cube of number of the number of edges.  
 
1. Introduction: The two given graphs G and H are isomorphic when an 

adjacency preserving bijection exists between their vertices. To 
determine whether two given graphs are isomorphic is called the 
Graph Isomorphism Problem (GI). GI is of great interest to computer 
scientists and researchers in other fields such as chemistry, switching 
theory, information retrieval, and linguistics. In particular GI is of 
profound interest to complexity theorists because yet the graph 
isomorphism problem is neither proved P nor proved NP-complete.   

                              In this paper we develop an isomorphism criterion in 
terms of ordered adjacency lists that can be associated with given two 
labeled graphs to be tested for their isomorphism. We show that 
testing isomorphism of two given graphs is equivalent to checking 
whether there exist suitable transpositions to be applied in a sequence 
on the ordered adjacency list of any one graph to make it identical to 
the ordered adjacency list of the other graph.  

 
2. Graph Isomorphism (Characterization using transpositions 

and reordering of ordered adjacency list): We now proceed to 
discuss our algorithm for Graph Isomorphism which in the worst 
case is of order ~ )( 3eO , where e stands for number of edges in the 
graph. In practice this algorithm works very efficiently and actually 
doesn’t require the worst case complexity, namely, ~ )( 3eO  to 
produce the decision about the isomorphism of given two (n, e) 
graphs G and H. In this algorithm we may need to apply in the 
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worst case the action of e transpositions, and each such action of 
transposition further requires ordering of e edge labels using any 
standard algorithm of order ~ )( 2eO , thus, total order of our 
algorithm becomes ~ )( 3eO  in the worst case. 

   
     Let G be a labeled (p, q) graph whose vertices are labeled with labels 

{1, 2, 3, …., p}. If there is an edge joining two vertex labels i and j say 
such that i < j then we associate pair (i, j) as label with that edge. 

      
     Definition 2.1: The ordered adjacency list is the ordered list of edge 

labels presented in a row (or column) as follows: If vertex with label 1 

is adjacent to vertices with labels },,,{
121 kiii L and 

}1{
121 kiii <<<< L then the first 1k  entries of adjacency list 

are ),1(),1)(,1)(,1(
1321 kiiii L . If vertex with label 2 is adjacent to 

vertices with labels },,,{
221 kjjj L  and 

}2{
221 kjjj <<<< L then the next 2k  entries of adjacency list 

are ),2(),2)(,2)(,2(
2321 kjjjj L . We then take in succession the 

vertices with the vertex labels 3, 4, …. and continue extending the list 
along same lines by the appending the next proper ordered pairs to the 
already constructed list till we reach the vertex with label (p-1) and 
finally by appending (or not appending) the vertex pair (p-1, p) when 
the vertex with label (p-1) is adjacent (nonadjacent) to vertex with 
label p we thus complete construction of ordered adjacency list for the 
graph. 

      
     It is well known to all that two graphs are isomorphic if and only if 

there exists one-one adjacency preserving map between their vertex 
sets, i.e. one graph can be transformed into other by relabeling the 
vertices of (any) one graph. More formally, let G and H be two (p, q) 
graphs and let HG AA , be the adjacency matrices associated with 
graphs G and H respectively then these graphs G and H are 
isomorphic if and only if there exists a permutation matrix P such that   

1−= PPAA HG .  
     Now the problem with using this result to test two given graphs for 

isomorphism is actually as follows: If given graphs are isomorphic 
how to discover such permutation σ  whose associated permutation 
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matrix, P say, satisfies 1−= PPAA HG ? Also, when given graphs will 
not be isomorphic there will not exists any such permutation σ whose 
associated permutation matrix, P say, achieves 1−= PPAA HG . How 
to conclusively arrive at the result that such permutation won’t exist 
when two given graphs under consideration are nonisomorphic?  

 
     The answer to these questions can be extracted from the simple fact 

that any permutation (and so also the desired permutation) is product 
(composition) of transpositions. We will see that the desired 
permutation builds up from composition of suitable transpositions to 
be applied in succession on the ordered adjacency list of any one of 
the two given graphs. When the two given graphs are isomorphic one 
can write down their associated ordered adjacency lists. One then 
choose (any) one list and choose proper transpositions to be applied on 
this list for making it identical with the other ordered adjacency list. 
When the two given graphs are not isomorphic then one cannot make 
the lists identical by whatever transpositions one will choose to apply 
on (any) one ordered adjacency list to make it identical with the other 
ordered adjacency list, i.e. when one chooses the next transposition for 
further identification of two ordered adjacency lists, which have been 
made partially identical by earlier transpositions, then the new 
transposition disturbs the already obtained partial identification of the 
ordered adjacency lists.  

 
     Action of transposition on given ordered adjacency list: Let L be an 

ordered adjacency list associated with some labeled (p, q) graph G and 
its vertices are labeled with numbers {1, 2, 3, …, p}. Let us denote the 
transposition by ],[ ji . The action of this transposition on ordered 
adjacency list, expressed as )](,[ Lji , is a two step procedure:  
(i) It changes everywhere in the ordered adjacency list L the symbol 

i by symbol j and vice versa. 
(ii) After the above step it reorders the (modified) adjacency list so 

that again it becomes ordered in the sense of definition 2.1. 
 
    
    Theorem 2.1: Let G and H be two (p, q) graphs. G ≅  H if and only if 

there exists a permutation made up of composition of transpositions 
which when applied successively on ordered adjacency list of G say, 
converts it successfully into ordered adjacency list of H.   
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     Proof: Suppose G is isomorphic to H then by definition there exists 
permutation σ  whose associated permutation matrix, P say, satisfies 

1−= PPAA HG . If we break the permutation σ  into transpositions 
and will apply these transpositions successively on ordered adjacency 
list of H we will straightway get the ordered adjacency list of G.  

      Now, suppose G is not isomorphic to H then there will not exist 
permutation σ  whose associated permutation matrix, P say, satisfies 

1−= PPAA HG so if any σ will be taken and will be broken into 
transpositions and applied successively on ordered adjacency list of H  
it will certainly fail to produce the ordered adjacency list of G.  

    
 
     
    Algorithm 2.1 (Isomorphism using ordered adjacency list): 
   

1) Take labeled copies of given (p, q) graphs G and H labeled with 
labels {1, 2, …., p} and prepare ordered adjacency lists say GL  

and HL  and select HL  for applying transpositions and to see 

whether we can equalize HL  ultimately with GL  by action of 
successive suitable transpositions.  

2) Let the first elements in the ordered adjacency lists GL  and HL  be 

),1( 1i and ),1( 1j respectively. If 11 ji =  then proceed to next 

elements in the ordered adjacency lists GL  and HL , namely, 

),1( 2i and ),1( 2j to check whether 22 ji = . Else, if 11 ji ≠  then 

carry out action of transposition on HL that replaces 1i by 1j and  

vice versa everywhere in HL  and then order the changed HL  in the 

sense of definition 2.1. This new HL  now will stand for HL  for 
further actions of transpositions. We represent this (two stepped) 
action, carried out when 11 ji ≠ , symbolically as ],[ 11 ji ( HL ). 
Note that this step has equalized the first element in the ordered 

adjacency lists GL  and (new) HL  which will now stand for HL .    

3) Now, proceed to next elements in the ordered adjacency lists GL  and 

(new) HL , namely, ),1( 2i and ),1( 2j and check whether 22 ji = . If 
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22 ji =  then proceed to next elements in the ordered adjacency 

lists GL  and HL , namely, ),1( 3i and ),1( 3j  to check whether 

33 ji = .. Else, if 22 ji ≠  then carry out action of transposition on 

HL  that replaces 2i by 2j and vice versa everywhere in HL  and 

then as previous order the changed HL  in the sense of definition 2.1. 

This new HL  now will stand for HL  for further actions of 
transpositions. We represent this (two stepped) action that carried 
out symbolically as ],[ 22 ji ( HL ). Note that if action ],[ 22 ji ( HL ) 
performed to equalize second elements in the ordered adjacency 
lists GL  and HL does not disturbs the already achieved equality of 
first elements in the lists then up to this step one has equalized the 
first two elements in the ordered adjacency lists GL  and (new) HL  

which will now stand for HL .   .   

4) We continue in this way with equalizing next element in HL  with 

the element in GL  in the same place by the action of suitably chosen 

transpositions on (new) HL  which now stands for HL   till we can 
proceed along these lines without disturbing the equality of elements 
achieved earlier. 
 
 
 
Remark 2.1: Note that when given (p, q) graphs G and H are 

isomorphic we should be able to achieve equality of GL  and HL and 

when we are unable to achieve equality of GL  and HL by algorithm 
2.1 then G and H are not isomorphic.   
 
Remark 2.2: The algorithm 2.1 just discussed is designed for 
strongly regular graphs. When the pair graphs to be tested for 
isomorphism are not strongly regular (but having same degree 
sequence which is necessary condition for isomorphic graphs and so 
when not fulfilled one can directly declare the pair of graphs to be 
nonisomorphic!) we first arrange the vertices in nondecreasing 
order of their degrees and then label them with labels {1, 2, …., p}, 
i.e. we label the vertices such that )deg()2deg()1deg( p≥≥≥ L . 
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We then proceed with algorithm 2.1 and apply transpositions, ],[ ji ,  
and for they to be suitable to achieve the desired goal obviously we 
need )deg()deg( ji = .  

      
     Example 1: We now proceed to discuss an example to apply this 

algorithm. The graphs in this example are isomorphic. A similar 
example can be considered for the case of nonisomorphic graphs. 
There one will see that earlier obtained partial equality of ordered 
adjacency lists cannot be maintained in attempt of extending the 
equality further. Consider following labeled graphs G, H, K given 
below: 

  

 
We now proceed to record the ordered adjacency lists GL , HL , and KL .  

We then carry out action of suitable transpositions, firstly on HL  and 

then on KL , and show that we can identify HL , KL  with GL . This 
shows that graphs G, H, K are isomorphic. 
 

)6,3)(5,3)(4,3)(6,2)(5,2)(4,2)(6,1)(5,1)(4,1(=GL  
 

)6,5)(5,4)(6,3)(4,3)(6,2)(4,2)(5,1)(3,1)(2,1(=HL  
 

)6,5)(5,4)(6,3)(4,3)(5,2)(3,2)(6,1)(4,1)(2,1(=KL  

We first check whether HL  can be made identical to GL  by the action 
of properly chosen transpositions: Consider 

1)6,5)(6,4)(6,3)(5,2)(4,2)(3,2)(5,1)(4,1)(3,1()](4,2[ HH LL ==
 

Here we now set 
1
HH LL = . Proceeding with this (new) HL  we do  

GH LL == )6,3)(5,3)(4,3)(6,2)(5,2)(4,2)(6,1)(5,1)(4,1()](6,3[  

1 3

4 5 6

1 2

3 4 

5 6 
1 2

3

45

6

2

G H K 



 7

Let us now proceed to apply suitable transpositions on KL . Consider 

GK LL == )6,3)(5,3)(4,3)(6,2)(5,2)(4,2)(6,1)(5,1)(4,1()](5,2[  
Therefore, graphs G, H, K are isomorphic. 
 
Example 2: We have assigned labels to the following trees, G and H 
given below as per remark 2.2 and proceed to check their isomorphism 
as per the algorithm 2.1 
 

 
 
L(G) = (1,3)(1,6)(1,7)(1,8)(2,3)(2,4)(2,5) 
 
L(H) = (1,3)(1,4)(1,5)(1,6)(2,3)(2,7)(2,8) 
 
[4,6]L(G) = (1,3)(1,4)(1,7)(1,8)(2,3)(2,6)(2,5) = (new)L(G) 
 
We now set L(G) =  (new)L(G) and consider 
 
[5,7]L(G) = (1,3)(1,4)(1,5)(1,8)(2,3)(2,6)(2,7) = (new)L(G)  
 
We now set L(G) =  (new)L(G) and consider 
 
[6,8]L(G) = (1,3)(1,4)(1,5)(1,6)(2,3)(2,7)(2,8) = (new)L(G) = L(H). 
 
Therefore, graphs G, H, K are isomorphic trees. 
 

Example 3: Consider following labeled graphs G and H given below for 
testing their isomorphism: 

6 7

1 8

3
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3

2

7 8

G H
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L(G) =  (1,4)(1,5)(1,6)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6) 
 
L(H) =  (1,3)(1,5)(1,6)(2,4)(2,5)(2,6)(3,4)(3,5)(4,6) 
 
[3,4]L(H) =  (1,4)(1,5)(1,6)(2,3)(2,5)(2,6)(3,4)(3,6)(4,5) =  (new)L(H) 
 
 We now set L(H) =  (new)L(H). In this  L(H) the sequence now differs in 
the fourth place where if we try to change (2,3) to (2,4) by transposition 
[3,4] then it will disturb the earlier obtained partial identification, hence 
G and H are not isomorphic.     
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