
 1

Isomorphism of Graphs using Ordered Adjacency List

Dhananjay P. Mehendale
Sir Parashurambhau College, Tilak Road, Pune-411030,

India

Abstract

In this paper we develop a novel characterization for isomorphism of
graphs. The characterization is obtained in terms of ordered adjacency
lists to be associated with two given labeled graphs. We show that the
two given labeled graphs are isomorphic if and only if their associated
ordered adjacency lists can be made identical by applying the action of
suitable transpositions on any one of these lists. We discuss in brief the
complexity of the algorithm for deciding isomorphism of graphs and
show that it is of the order of the cube of number of the number of edges.

1. Introduction: The two given graphs G and H are isomorphic when an

adjacency preserving bijection exists between their vertices. To
determine whether two given graphs are isomorphic is called the
Graph Isomorphism Problem (GI). GI is of great interest to computer
scientists and researchers in other fields such as chemistry, switching
theory, information retrieval, and linguistics. In particular GI is of
profound interest to complexity theorists because yet the graph
isomorphism problem is neither proved P nor proved NP-complete.

 In this paper we develop an isomorphism criterion in
terms of ordered adjacency lists that can be associated with given two
labeled graphs to be tested for their isomorphism. We show that
testing isomorphism of two given graphs is equivalent to checking
whether there exist suitable transpositions to be applied in a sequence
on the ordered adjacency list of any one graph to make it identical to
the ordered adjacency list of the other graph.

2. Graph Isomorphism (Characterization using transpositions

and reordering of ordered adjacency list): We now proceed to
discuss our algorithm for Graph Isomorphism which in the worst
case is of order ~)(3eO , where e stands for number of edges in the
graph. In practice this algorithm works very efficiently and actually
doesn’t require the worst case complexity, namely, ~)(3eO to
produce the decision about the isomorphism of given two (n, e)
graphs G and H. In this algorithm we may need to apply in the

 2

worst case the action of e transpositions, and each such action of
transposition further requires ordering of e edge labels using any
standard algorithm of order ~)(2eO , thus, total order of our
algorithm becomes ~)(3eO in the worst case.

 Let G be a labeled (p, q) graph whose vertices are labeled with labels

{1, 2, 3, …., p}. If there is an edge joining two vertex labels i and j say
such that i < j then we associate pair (i, j) as label with that edge.

 Definition 2.1: The ordered adjacency list is the ordered list of edge

labels presented in a row (or column) as follows: If vertex with label 1

is adjacent to vertices with labels },,,{
121 kiii L and

}1{
121 kiii <<<< L then the first 1k entries of adjacency list

are),1(),1)(,1)(,1(
1321 kiiii L . If vertex with label 2 is adjacent to

vertices with labels },,,{
221 kjjj L and

}2{
221 kjjj <<<< L then the next 2k entries of adjacency list

are),2(),2)(,2)(,2(
2321 kjjjj L . We then take in succession the

vertices with the vertex labels 3, 4, …. and continue extending the list
along same lines by the appending the next proper ordered pairs to the
already constructed list till we reach the vertex with label (p-1) and
finally by appending (or not appending) the vertex pair (p-1, p) when
the vertex with label (p-1) is adjacent (nonadjacent) to vertex with
label p we thus complete construction of ordered adjacency list for the
graph.

 It is well known to all that two graphs are isomorphic if and only if

there exists one-one adjacency preserving map between their vertex
sets, i.e. one graph can be transformed into other by relabeling the
vertices of (any) one graph. More formally, let G and H be two (p, q)
graphs and let HG AA , be the adjacency matrices associated with
graphs G and H respectively then these graphs G and H are
isomorphic if and only if there exists a permutation matrix P such that

1−= PPAA HG .
 Now the problem with using this result to test two given graphs for

isomorphism is actually as follows: If given graphs are isomorphic
how to discover such permutation σ whose associated permutation

 3

matrix, P say, satisfies 1−= PPAA HG ? Also, when given graphs will
not be isomorphic there will not exists any such permutation σ whose
associated permutation matrix, P say, achieves 1−= PPAA HG . How
to conclusively arrive at the result that such permutation won’t exist
when two given graphs under consideration are nonisomorphic?

 The answer to these questions can be extracted from the simple fact

that any permutation (and so also the desired permutation) is product
(composition) of transpositions. We will see that the desired
permutation builds up from composition of suitable transpositions to
be applied in succession on the ordered adjacency list of any one of
the two given graphs. When the two given graphs are isomorphic one
can write down their associated ordered adjacency lists. One then
choose (any) one list and choose proper transpositions to be applied on
this list for making it identical with the other ordered adjacency list.
When the two given graphs are not isomorphic then one cannot make
the lists identical by whatever transpositions one will choose to apply
on (any) one ordered adjacency list to make it identical with the other
ordered adjacency list, i.e. when one chooses the next transposition for
further identification of two ordered adjacency lists, which have been
made partially identical by earlier transpositions, then the new
transposition disturbs the already obtained partial identification of the
ordered adjacency lists.

 Action of transposition on given ordered adjacency list: Let L be an

ordered adjacency list associated with some labeled (p, q) graph G and
its vertices are labeled with numbers {1, 2, 3, …, p}. Let us denote the
transposition by],[ji . The action of this transposition on ordered
adjacency list, expressed as)](,[Lji , is a two step procedure:
(i) It changes everywhere in the ordered adjacency list L the symbol

i by symbol j and vice versa.
(ii) After the above step it reorders the (modified) adjacency list so

that again it becomes ordered in the sense of definition 2.1.

 Theorem 2.1: Let G and H be two (p, q) graphs. G ≅ H if and only if

there exists a permutation made up of composition of transpositions
which when applied successively on ordered adjacency list of G say,
converts it successfully into ordered adjacency list of H.

 4

 Proof: Suppose G is isomorphic to H then by definition there exists
permutation σ whose associated permutation matrix, P say, satisfies

1−= PPAA HG . If we break the permutation σ into transpositions
and will apply these transpositions successively on ordered adjacency
list of H we will straightway get the ordered adjacency list of G.

 Now, suppose G is not isomorphic to H then there will not exist
permutation σ whose associated permutation matrix, P say, satisfies

1−= PPAA HG so if any σ will be taken and will be broken into
transpositions and applied successively on ordered adjacency list of H
it will certainly fail to produce the ordered adjacency list of G.

 Algorithm 2.1 (Isomorphism using ordered adjacency list):

1) Take labeled copies of given (p, q) graphs G and H labeled with
labels {1, 2, …., p} and prepare ordered adjacency lists say GL

and HL and select HL for applying transpositions and to see

whether we can equalize HL ultimately with GL by action of
successive suitable transpositions.

2) Let the first elements in the ordered adjacency lists GL and HL be

),1(1i and),1(1j respectively. If 11 ji = then proceed to next

elements in the ordered adjacency lists GL and HL , namely,

),1(2i and),1(2j to check whether 22 ji = . Else, if 11 ji ≠ then

carry out action of transposition on HL that replaces 1i by 1j and

vice versa everywhere in HL and then order the changed HL in the

sense of definition 2.1. This new HL now will stand for HL for
further actions of transpositions. We represent this (two stepped)
action, carried out when 11 ji ≠ , symbolically as],[11 ji (HL).
Note that this step has equalized the first element in the ordered

adjacency lists GL and (new) HL which will now stand for HL .

3) Now, proceed to next elements in the ordered adjacency lists GL and

(new) HL , namely,),1(2i and),1(2j and check whether 22 ji = . If

 5

22 ji = then proceed to next elements in the ordered adjacency

lists GL and HL , namely,),1(3i and),1(3j to check whether

33 ji = .. Else, if 22 ji ≠ then carry out action of transposition on

HL that replaces 2i by 2j and vice versa everywhere in HL and

then as previous order the changed HL in the sense of definition 2.1.

This new HL now will stand for HL for further actions of
transpositions. We represent this (two stepped) action that carried
out symbolically as],[22 ji (HL). Note that if action],[22 ji (HL)
performed to equalize second elements in the ordered adjacency
lists GL and HL does not disturbs the already achieved equality of
first elements in the lists then up to this step one has equalized the
first two elements in the ordered adjacency lists GL and (new) HL

which will now stand for HL . .

4) We continue in this way with equalizing next element in HL with

the element in GL in the same place by the action of suitably chosen

transpositions on (new) HL which now stands for HL till we can
proceed along these lines without disturbing the equality of elements
achieved earlier.

Remark 2.1: Note that when given (p, q) graphs G and H are

isomorphic we should be able to achieve equality of GL and HL and

when we are unable to achieve equality of GL and HL by algorithm
2.1 then G and H are not isomorphic.

Remark 2.2: The algorithm 2.1 just discussed is designed for
strongly regular graphs. When the pair graphs to be tested for
isomorphism are not strongly regular (but having same degree
sequence which is necessary condition for isomorphic graphs and so
when not fulfilled one can directly declare the pair of graphs to be
nonisomorphic!) we first arrange the vertices in nondecreasing
order of their degrees and then label them with labels {1, 2, …., p},
i.e. we label the vertices such that)deg()2deg()1deg(p≥≥≥ L .

 6

We then proceed with algorithm 2.1 and apply transpositions,],[ji ,
and for they to be suitable to achieve the desired goal obviously we
need)deg()deg(ji = .

 Example 1: We now proceed to discuss an example to apply this

algorithm. The graphs in this example are isomorphic. A similar
example can be considered for the case of nonisomorphic graphs.
There one will see that earlier obtained partial equality of ordered
adjacency lists cannot be maintained in attempt of extending the
equality further. Consider following labeled graphs G, H, K given
below:

We now proceed to record the ordered adjacency lists GL , HL , and KL .

We then carry out action of suitable transpositions, firstly on HL and

then on KL , and show that we can identify HL , KL with GL . This
shows that graphs G, H, K are isomorphic.

)6,3)(5,3)(4,3)(6,2)(5,2)(4,2)(6,1)(5,1)(4,1(=GL

)6,5)(5,4)(6,3)(4,3)(6,2)(4,2)(5,1)(3,1)(2,1(=HL

)6,5)(5,4)(6,3)(4,3)(5,2)(3,2)(6,1)(4,1)(2,1(=KL

We first check whether HL can be made identical to GL by the action
of properly chosen transpositions: Consider

1)6,5)(6,4)(6,3)(5,2)(4,2)(3,2)(5,1)(4,1)(3,1()](4,2[HH LL ==

Here we now set
1
HH LL = . Proceeding with this (new) HL we do

GH LL ==)6,3)(5,3)(4,3)(6,2)(5,2)(4,2)(6,1)(5,1)(4,1()](6,3[

1 3

4 5 6

1 2

3 4

5 6
1 2

3

45

6

2

G H K

 7

Let us now proceed to apply suitable transpositions on KL . Consider

GK LL ==)6,3)(5,3)(4,3)(6,2)(5,2)(4,2)(6,1)(5,1)(4,1()](5,2[
Therefore, graphs G, H, K are isomorphic.

Example 2: We have assigned labels to the following trees, G and H
given below as per remark 2.2 and proceed to check their isomorphism
as per the algorithm 2.1

L(G) = (1,3)(1,6)(1,7)(1,8)(2,3)(2,4)(2,5)

L(H) = (1,3)(1,4)(1,5)(1,6)(2,3)(2,7)(2,8)

[4,6]L(G) = (1,3)(1,4)(1,7)(1,8)(2,3)(2,6)(2,5) = (new)L(G)

We now set L(G) = (new)L(G) and consider

[5,7]L(G) = (1,3)(1,4)(1,5)(1,8)(2,3)(2,6)(2,7) = (new)L(G)

We now set L(G) = (new)L(G) and consider

[6,8]L(G) = (1,3)(1,4)(1,5)(1,6)(2,3)(2,7)(2,8) = (new)L(G) = L(H).

Therefore, graphs G, H, K are isomorphic trees.

Example 3: Consider following labeled graphs G and H given below for
testing their isomorphism:

6 7

1 8

3

2

4 5

4
5

1 6

3

2

7 8

G H

 8

L(G) = (1,4)(1,5)(1,6)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)

L(H) = (1,3)(1,5)(1,6)(2,4)(2,5)(2,6)(3,4)(3,5)(4,6)

[3,4]L(H) = (1,4)(1,5)(1,6)(2,3)(2,5)(2,6)(3,4)(3,6)(4,5) = (new)L(H)

 We now set L(H) = (new)L(H). In this L(H) the sequence now differs in
the fourth place where if we try to change (2,3) to (2,4) by transposition
[3,4] then it will disturb the earlier obtained partial identification, hence
G and H are not isomorphic.

Acknowledgements

 I am thankful to Prof. M. R. Modak for useful discussions.

$$$$$$$$$$$$$$$$$$$$

G H

4
4

5 6 5
6

21 3 1 2 3

