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Seeing is Knowing  

A theoretical model of moving bodies based on mere observations  

 

Abstract 

We consider inertial physical systems in which signals about physical measurements conducted in 

one reference-frame are transmitted to a receiver moving with relative constant velocity v, by an 

information carrier with a constant velocity 𝑣𝑐 with respect to transmitter's rest-frame. To render the 

model relevant to reality we assume that 𝑣𝑐 >  𝑣.  We make no other assumptions. For systems of 

this type we derive the relativistic time, distance, mass, and energy transformations, relating 

measurements transmitted by the information sender to the corresponding information registered at 

the receiver.  The sender and receiver need not be human or animate observers. The resulting 

relativistic terms are simple and beautiful. They are functions only of the normalized velocity β = 
𝑣

𝑣𝑐
 , 

implying that they are scale independent with respect to the velocity of the information carrier,  and 

mass and spatial dimensions of the observed bodies. The model's scale independency renders it 

applicable for all physical systems, irrespective of their size, the and velocity of the information 

carrier used in the system. For β << 1, all the derived transformations reduce to Galileo-Newton 

physics. 

The derived transformations disobey the Lorentz invariance principle. The time transformation 

predicts relativistic time dilation for distancing bodies and time contraction for approaching bodies. 

The distance transformation predicts relativistic length contraction for approaching bodies and 

length extension for distancing bodies. The mass transformation is conjugate to the distance 

transformation, implying increase in relativistic mass density for approaching bodies and decrease of 

mass density for distancing bodies, due to respective length contraction or extension along the body's 

travel path. For distancing bodies the relativistic kinetic energy as function of β displays a  
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monotonic pattern with a unique maximum at one maximum at β  = Φ, where Φ is the golden ratio (≈ 

0.618). At sufficiently high normalized velocities, the relativistic extension can maintain spatial 

locality between distanced particles, suggesting that quantum entanglement is not "spooky" since it is 

a proximal action.  

 For the special case of 𝑣𝑐 = c, where c is the velocity of light, application of the proposed model to 

yields new important insights and results and reproduces several important predictions of Special 

Relativity, General Relativity, observationally based  ΛCDM models, and Quantum Theory. The 

model makes excellent predictions of for the Michelson-Morley's "null" result, the relativistic 

lifetime of decaying Muons, the Sagnac effect, and the neutrino velocities reported by OPERA and 

other collaborations. Application of the model to cosmology, without alteration or addition of free 

parameters, is successful in accounting for several cosmological findings, including the pattern of 

recession velocity predicted by inflationary theories, the amounts of matter and dark energy in 

various segments of redshift, reported in recent ΛCDM cosmologies, the GZK energy suppression 

phenomenon, and the radius of gravitational black holes. . 3 In reference [3] we show that IR, despite 

being a deterministic and local ("non-spooky"), accounts, both qualitatively and quantitatively, for 

entanglement in a bipartite preparation like the one described in the famous EPR paper. In reference 

[4] we extended the analysis in [3] and showed that the theory is successful in explaining, both 

qualitatively and quantitatively, the matter-wave duality, quantum criticality and phasMore 

strikingly, the model account successfully for several quantum phenomena, including quantum 

criticality, entanglement and formation of Bose-Einstein condensates. Comparison between the 

dynamics of dark energy and quantum energy leaves no doubt that dark energy is the cosmic twin of 

quantum energy, exhibiting the same dynamics on cosmic scales.  

The multiplicity and range of the proposed epistemic model predictions, suggests that for inertial 

systems, mere observation of moving bodies is a potent tool for extracting the laws of nature as they 

are revealed to us. Put metaphorically we contend that the hidden secrets of the book of Nature often 
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disclose themselves, by leaving fingerprints on the book's cover. From observing the fingerprints, 

humans and other beings can reconstruct information valuable for their survival.   

Keywords: Information; Inertial systems; Special relativity; General relativity; Cosmology; ΛCDM 

models; Quantum Theory; Bell's inequality; Time dilation; Michelson-Morley experiment; Neutrino 

velocity; Sagnac effect; Dark Energy; Recession velocity; Black hole; Schwarzschild radius; 

Singularity; Entanglement; Quantum criticality; Bose-Einstein condensate. 

  

"Nature is pleased with simplicity. And Nature is no dummy". 

                                                                                                            Sir. Isaac Newton  

1. Introduction 

In this paper we take a completely new approach to the study of inertial systems involving the 

dynamics of inertially moving bodies. Our approach is epistemic and deterministic. We deal only 

with observable or measurable physical variables. We analyze the simple, yet very general case of a 

physical system in which two observers move with constant linear velocity (v) with respect to each 

other, while communicating information about physical observables, such as time durations of 

events, lengths of objects and their masses and kinetic energies. We assume that information about 

observations and measurements taken by one observer in his or her rest-frame are communicated to 

the second observer by an information carrier with a constant velocity 𝑣𝑐 with respect to information 

transmitter's rest-frame. For rendering the situation practical we assume that 𝑣𝑐 >  𝑣. We make no 

additional assumptions. We compare the information measured in one frame, by the corresponding 

information received in the second frame. The sender and receiver may not be human observers. For 

two reference frames moving with constant velocity v with respect to each other, Table 1 depicts the 

resulting information transformations about time duration, distance, mass and kinetic energy (for 

complete derivations, see supporting information). In the table, the variables 𝛥𝑡0,  𝛥𝑥0, and 𝜌0 denote 
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measurements of time duration, distance, and the body's mass density in the rest frame, respectively, 

β = 
𝑣

𝑣𝑐
, and 𝑒0 =  

1

2
 𝜌0  𝑣𝑐

2. 

Table 1 

Information Relativity Theory's Transformations 

Physical Term Relativistic Expression 

Time 𝛥𝑡

𝛥𝑡0
=  

1

1−𝛽
           .... (1) 

Distance 

 

𝛥𝑥

𝛥𝑥0
= 

1+𝛽

1−𝛽
        …. (2) 

Mass 
 𝜌

𝜌0
 = 

1−𝛽

1+𝛽
             .... (3) 

Kinetic energy  𝑒𝑘

𝑒0
=  

1−𝛽

1+𝛽
 𝛽2        ... (4) 

 

As eq. (1) shows, IR disobeys the Lorentz Invariance principle. It predicts time dilation with respect 

to distancing bodies, and time contraction with respect to approaching bodies. Note that eq. (1) 

resembles the Doppler formula for wave travel [1-2], which predicts red-shift or blue-shift, 

depending on whether the wave-source is distancing from or approaching the observer. The 

relativistic distance term (eq. 2) prescribes length contraction for approaching bodies and length 

extension for distancing bodies. The mass transformation is conjugate to the distance transformation, 

implying an increase in relativistic mass density for approaching bodies and decrease of mass density 

for distancing bodies, due to respective length contraction, or extension, along the body's travel path. 

For approaching bodies the relativistic kinetic energy density increases monotonically and quite 

sharply with the normalized relative velocity β, while for distancing bodies it displays a  non-

monotonic dependence on velocity, with a unique maximum at one maximum at β  = Φ, where Φ is 

the golden ratio (≈ 0.618). As shown in fig 1. As figure 1 shows the relativistic kinetic energy 
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increases monotonically, reaching a maximum at a transitional velocity equaling 𝛽𝑡 =  Φ, where Φ is 

the famous Golden Ration (
√5−1

2
 ≈ 0.618) [4-5], after which it declines more rapidly, reaching zero 

for β =1. No less interesting, the maximal value of the relativistic kinetic energy at the transition 

point is equal to 𝛷5 or ≈ 0.09016994.    

 

 

Figure 1. Kinetic energy as a function of velocity 

  

 The transformations in the table have some nice properties: First, they are deterministic and 

simple. Second, for low velocities 𝛽 << 1, all the transformations reduce to the classical Newtonian 

formulas. Third, the theory satisfies the EPR necessary condition for theory completeness, in the 

sense that every element of the physical reality has a counterpart in the physical theory [3]. Fourth, 

the theory is scale independent with respect to the size of the investigated physical system. It applies 

to the dynamics of very small and very large bodies, suggesting the dynamics of the too small and 

too large bodies abide by the same laws of physics. Fifth, the theory is also scale independent with 

respect to the information carrier's velocity 𝑣𝑐, (provided that 𝑣𝑐 > 𝑣), suggesting it could also be 
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applied to the dynamics of moving bodies in classical physical systems (e.g., acoustic, thermal, 

seismic, etc.). 

The non-axiomatic nature of the proposed epistemic model and its simplicity and beauty are 

undoubtedly three desirable, provided that the model can make good predictions of real phenomena. 

In the following sections we provide convincing evidence for the success of the our epistemic 

approach in predicting many experimental and observational results in elementary particles physics, 

quantum mechanics, and cosmology. To save space, the derivations of some of the results are given 

in the Supporting Information.  

2. Elementary particles dynamics  

We demonstrate here that the information relativistic model (hereafter IR) performs as well as 

Special Relativity predicting important findings concerning the dynamics of elementary particles, 

including the famous Michelson-Morley experiment [6] , the Frisch and Smith time dilation in muon 

decay experiments [7] and the relativistic time gains reported in "around-the-world atomic clocks" 

experiment [8].  We also demonstrate that IR yields excellent predictions for two types of 

experiments, which could not be accounted for by Special relativity: The Sagnac effect [9-10] and 

the neutrino velocity reported in recent experiments conducted by OPERA and other collaborations 

[11-16].  

 

2.1. Michelson-Morley's null result 

Background: 

In their seminal paper [6], Michelson and Morley (M&M) reported an experiment set to test the 

velocity of the motion of Earth in the presumed. M&M analyzed the motion of the parallel and 

perpendicular waves (with respect to Earth’s motion). They found (incorrectly) that the displacement 

of the interference fringes is given by: 2 𝐷0(
𝑣

𝑐
)2 = 2 𝐷0𝛽2, where 𝐷0is the interferometer arm’s 

length at rest. It is well known that the results of the M&M experiment, and many subsequent 
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experiments [e.g., 48-53], were far less than the above prediction. As M&M reported, "Considering 

the motion of the earth in its orbit only, this displacement should be 2 𝐷0(
𝑣

𝑐
)2 = 2 𝐷0 x 10−8. The 

distance D was about 11 meters, or 2×10
7
 wavelengths of yellow light; hence, the displacement to be 

expected was 0.4 fringes. The actual displacement was certainly less than the 20th part of this 

(prediction) and probably less than the 40th part," ([6], p. 341) which is "too small to be detected 

when masked by experimental errors" ([6], p. 337). 

It is well-known that SR was successful in predicting the M&M null result without Inclusion of the 

notion of ether, and that by this, it opened a new era of post-Newtonian physics. Here, we show that 

the IR performs as well as SR in predicting the null effect. 

Prediction 

To account for the relativistic effects on the distance that light travels in the round trip, we replace 

2𝐷0 by 𝐷1 + 𝐷2in the equation derived by M&M, where D1 and 𝐷2 are the departure and arrival 

distances, respectively. Using the distance transformation depicted in Table 1, we get: 

Fringe Shift = (D1+ D2) 𝛽2= D0 ( 
1+ 𝛽

1− 𝛽
+ 

1− 𝛽

1+ 𝛽
 ) = 𝐷0

1+ 𝛽2

1− 𝛽2
 𝛽2            ….. (5) 

Where β= 
𝑣

𝑐
 , c ≈ 299792.458 𝑘𝑚

𝑠⁄  , and v is the velocity of Earth around the (v ≈ 29.78 𝑘𝑚
𝑠⁄ ). 

Substituting β = 
29.78 𝑘𝑚

𝑠⁄

299792.458 𝑘𝑚
𝑠⁄  
 ≈ 9.9340 x 10−5 and D0 =11m (the interferometer's arm length in the 

M&M experiment) in eq. (5), we obtain a predicted fringe shift of approximately 1.09 x 10
-7

, which 

is five orders of magnitude smaller than the reported experimental resolution (of ≤ 0.02). The 

comparable prediction made by SR is 2 D 𝛽2 =2 𝐷0 (√1 −  𝛽2 𝛽2), which after substitution yields ≈ 

1.97x 10
-8

. Given the resolution in the M&M experiment, the difference between the two predictions 

(≈ 8.9 x 10
-8

) is negligible. Table 2 summarizes similar calculations performed for several M&M 

type experiments, while contrasting them with the respective predictions of SR.  
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Table 2 

Predictions of findings reported by classical Michelson-Morley type experiments 

Experiment 

 

 

Arm length 

(meters) 

 

 

Expected 

Fringe shift 

 

 

 

Measured 

Fringe shift 

 

 

 

Resolution 

 

 

IR prediction 

 

 

SR prediction 

 

 

Michelson and 

Morley [6] 

 

 

 

11.0 

 

 

0.4 

 

 

< 0.02 or ≤ 0.01 

 

 

0,01 

 

 

≈ 4.34 x 10
-7 

 

 

≈ 4.34 x 10
-7 

 

 

Miller [17] 

 

 

32.0 

 

1.12 

 

≤ 0.03 

 

0.03 

 

≈ 1.27 x 10
-6 

 

≈ 1.26 x 10
-6 

 

Tomaschek 

[18]  

 

8.6 

 

0.3 

 

≤ 0.02 

 

0.02 

 

≈ 3.40 x 10
-7 

 

≈ 3.40 x 10
-7 

 

Illingworth 

[19]  

2.0 

 

0.07 

 

≤ 0.0004 

 

0.0004 

 

≈ 7.89 x 10
-8 

 

≈ 7.90 x 10
-8 

 

Piccard & 

Stahel 

 [20] 

 

2.8 

 

0.13 

 

≤ 0.0003 

 

0.0007 

 

≈1.11 x 10
-7

 

 

≈1.11 x 10
-7 

 

Michelson et 

al. [21] 

 

 

25.9 

 

0.9 

 

≤ 0.01 

 

0.01 

 

≈ 1.02 x 10
-6 

 

≈ 1.02 x 10
-6 

 

Joos [22] 

 

 

21.0 

 

0.75 

 

≤ 0.002 

 

0.002 

 

≈ 8.30 x 10
-7 

 

≈ 8.30 x 10
-7 

 

 

As the table shows, both theories predict the null results. Moreover, the differences between the 

predictions of IR and SR are either zero or in the order of magnitude of 10
-10

. 
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.2. Time dilation of decaying muons 

Background 

In muon-decay experiments, muons are generated when cosmic rays strike the upper levels of the 

Earth's atmosphere. They are unstable, with a life time of τ = 2.2 μ s. With counters that count muons 

traveling within a velocity of 0.99450c to 0.9954c, comparing their flux density at both the top and 

bottom of a mountain gives the rate of their decay. In the most famous muon-decay experiment [7], 

assuming a velocity of 0.992c of muons in air, researchers found that the percentage of the surviving 

muons descending from the top of Mt. Washington to the sea level (d ≈ 1907 m.) was (72.2 ± 2.1) %, 

considerably higher than 36.79%, the expected percentage resulting from non-relativistic calculation. 

Prediction 

To calculate the relativistic muon decay, denote the times at Earth and at a moun's frame by t and 

𝑡′ , respectively. Without loss of generality, assume that at the mountain's level, t = 𝑡′ = 0. For any 

time 𝑡′  (0 ≤  𝑡′ ≤ 𝑡𝐵
′ ), where 𝑡𝐵

′  is the muon's time arrival at the bottom, the flux density N(𝑡′ ) could 

be expressed as: 

N( 𝑡′ ) = N(0)   𝑒− 
 𝑡′ 

τ  ,                                                                                  ….. (6) 

where N(0) is the count at the mountain's level. Substituting the value of 𝑡′ from eq. (4), we get: 

N(𝑡)𝐶𝑅 = N(0) 𝑒− 
(1−𝛽)𝑡

τ   .                                                                             ….. (7)  

A similar analysis based on SR yields 

N(𝑡)𝑆𝑅 = N(0) 𝑒− 
√1− 𝛽2  𝑡

τ  .                                                                          ….. (8) 

For β =0.992, Figure 3 depicts the rates of decay predicted by IR, SR, and a nonrelativistic 

calculation. For an ascending time of 𝛿𝑡 = 
𝑑

𝑣
 = 

1907 𝑚.

2.998x 108 ≈ 6.36 μs., the predictions of IR and SR are, 

respectively, 
N(𝑡=6.36)𝐶𝑅

N(0)
 x 100= 𝑒− 

(1−0.992)𝑥 6.36 

2.2  x 100 ≈  97.7% and 
N(𝑡=6.36)𝑆𝑅

N(0)
 x 100= 
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𝑒− 
√1− 0.9922  𝑥 6.36

2.2  x 100 ≈ 69.42%. By contrast, according to nonrelativistic considerations, the 

expected percentage of surviving muons is only 
N(𝑡=6.36)𝑁𝑅

N(0)
 x 100= 𝑒− 

 6.36 

2.2   x 100 ≈ 5.55%. 

Comparison with the observed percentage of 72.2% strongly indicates that a classical analysis fails 

to account for the observed phenomenon, whereas the two relativistic approaches succeed in 

achieving that. Note that the predicted values of both theories are not precise, given the fact that the 

theoretical calculations ignore several factors affecting the flight of descending particles [23].   

   

 

Figure 2: Predicted rates of muon decay 

 

2.3 Around the World Atomic Clocks experiments 

Around the world type of experiments represent a direct way to test the time dilation prediction  

using  highly accurate atomic carried by aircrafts flying eastward or westward around the world (see 

e.g., [8]). Given the relatively low velocity of airliners compared with the velocity of light, such 

experiments, in similarity to the M&M experiments are incapable of discriminating between SR and 

IR, since, as will be shown hereafter, both theories yield almost identical predictions. 

For an "around the world trip", SR's time dilation is given by: 

  

τ𝑆𝑅 = 
𝑡

𝑡′
 =  

2

√1− 𝛽2  
,     β = 

𝑣

𝑐
         ….. (10) 

𝑁

𝑁0
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While IR's prediction is:   

τ𝐼𝑅 = 
𝑡

𝑡′
 = (

1

1−𝛽
 + 

1

1+𝛽
) = 

2

1− 𝛽2
       ….. (11)  

Figure 4 depicts the predictions of SR and IR for relatively low velocities.     

 

 

Figure 3: predictions of SR and IR for relatively low velocities 

 

For a cruising air speed for long-distance commercial passenger flights, the estimated velocity is 

475–500 knots (878-926 km/h). The resulting difference in relative time between IR and SR 

predictions for this speed range is ≈0.0007, which requires for its detection a measurement sensitivity 

of at least 4 degrees of magnitude more than the sensitivity of measurements reported in [8]. 

2.4 Sagnac effect 

Background 

The Sagnac effect, named after its discoverer in 1913 [24], has been replicated in many experiments 

(for reviews, see [25-29]). The Sagnac effect has well-known and crucial applications in navigation 

[29] and in fiber-optic gyroscopes (FOGs) [30-34]. In the Sagnac effect, two light beams, sent 

clockwise and counterclockwise around a closed path on a rotating disk, take different time intervals 

to travel the path. For a circular path of radius R, the time difference can be represented as ∆t =  
2 𝑣 𝑙

𝑐2  , 
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where v=ω R and l is the circumference of the circle (l=2πR). Today, FOGs have become highly 

sensitive detectors measuring rotational motion in navigation. In the GPS system, the speed of light 

relative to a rotating frame is corrected by ± ω R, where ω is the radial velocity of the rotating frame 

and R is the rotation radius. A plus/minus signs is used depending on whether the rotating frame is 

approaching the light source or departing from it, respectively. 

 Many physicists claim that because the Sagnac effect involved a radial motion, it does not 

contradict SR and that it should be treated in the framework of general relativity [35-36]. However, 

Wang at al. [9, 10] strongly refute this claim in two well-designed experiments that show 

unambiguously that an identical Sagnac effect appearing in uniform radial motion occurs in linear 

inertial motion. For example, Wang et al. [9] tested the travel-time difference between two counter-

propagating light beams in uniformly moving fiber. Contrary to the LI principle and to the prediction 

of SR, their findings revealed a travel-time difference of  
2𝑣 𝛥𝑙

𝑐2 , where 𝛥𝑙 is the length of the fiber 

segment moving with the source and detector at a v, whether the segment was moving uniformly or 

circularly. This finding in itself should have raised serious questions about the validity of the LI 

principle and SR. If the Sagnac effect can be produced in linear uniform motion, then the claim that 

it is a characteristic of radial motion is simply incorrect. Because the rules SR apply to linear uniform 

motion, the only conclusion is that SR is incorrect. Strikingly, the unrefuted detection of a linear 

Sagnac effect and its diametrical contradiction with SR has hardly been debated. 

Prediction  

Applying IR to the linear Sagnac experiment yields the following difference between the arrival 

times of the two light beams: 

𝛥𝑡 = 
𝛥𝑙

𝑐−𝑣
 - 

𝛥𝑙

𝑐+𝑣
 = 

2𝑣 𝛥𝑙

(𝑐−𝑣)(𝑐+𝑣)
 = 

2𝑣 𝛥𝑙

𝑐2− 𝑣2
 ≈ 

2𝑣 𝛥𝑙

𝑐2
  ,                            … (12) 

Which is in agreement with the analysis and results reported in [9].   
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2.5 Neutrino velocity 

Background 

In 2011, the OPERA collaboration at CERN announced that neutrinos had travelled faster than light 

[37]. The reported anticipation time was 60.7 ±6.9 (stat.)± 7.4 (sys.) ns, and the relative neutrino 

velocity was 
𝑣−𝑐

𝑐
 = (5.1 ±2.9) ×10

−5
. The excitement that swept physicists and laymen concerning the 

possibility that a new era was "knocking on physics doors" waned a few months later, after OPERA 

reported the discovery of hardware malfunctions in the GPS system, which resulted in a critical 

measurement error.  After accounting for the error, the anticipation time was only (2.7 ± 3.1 

(stat. ) + −2.8
+3.8  (sys.)) ×10

−6
, with corresponding 

𝑣−𝑐

𝑐
 = 2.67 x 10 

-6
 [11]. Since then, the OPERA and 

several collaborations, including ICARUS, LVD, and Borexino, have replicated the “null” result [12-

15]. The only "faster-than-light" result of which we are aware of was reported in 2007 by the 

MINOS collaboration [16], who reported an early anticipation time of 126 ± 32 (stat.) ± 64 (sys.) ns 

(C.L. = 68%), with corresponding 
𝑣−𝑐

𝑐
 = 5.1±2.9 (stat.+sys.)×10

−5
. However, the high statistical and 

system errors reported by MINOS impede the validity of the above quoted result. 

Prediction 

For a typical neutrino-velocity experiment, consider a neutrino that travels a distance d from a source 

(e.g., at CERN) and arrives at a detector (e.g., at Gran Sasso). According to IR, such an experiment 

includes three frames: the neutrino frame F, the source frame 𝐹′, and the detector frame 𝐹′′.  F is 

departing from 𝐹′ with velocity v and approaching 𝐹′′ with velocity – v.  𝐹′ and 𝐹′′are at rest relative 

to each other. Derivation of the term 
𝑣−𝑐

𝑐
  for a typical neutrino velocity experiments (see section II in 

SI) yields: 

𝑣−c

𝑐
=  √

2 

 1− 
c  𝛿𝑡

𝑑

− 12  - 1 .                                                                               …. (13) 
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Where d is the travel distance. δt  is the early neutrino arrival time with respect to the velocity of 

light c. For the OPERA-corrected result [29], d = 730.085 km and 𝛿𝑡 = (6.5 ± 7.4 (stat.)  ±

 −6.8
+9.2 (𝑠𝑦𝑠. )) ns. Substituting in eq. (13), we get:  

𝑣−c

c
 = (

2 

1− 
299792.458 𝑥 6.5 𝑥 10−9

730.085 

− 1)
1

2 – 1 ≈ - 2.67 x 10
-6

                             .… (14) 

Which is almost identical to the reported result of
 𝑣−c

c
 (𝐸𝑥𝑝. ) = (2.7 ± 3.1 (𝑠𝑡𝑎𝑡. ) ±−2.8

+3.8  (sys.)) 

×10
−6

. Applying eq. (13) to five other experiments, conducted by MINOS, OPERA, ICARUS, LVD, 

and Borixeno collaborations, yields the results summarized in Table 3. As the table shows, the mode 

yields precise predictions for all the tested experiments 

Table 3 

Predictions of ER for six neutrino-velocity experiments 

Experiment Experimental 
𝑣−c

c
 

 

Predicted  
𝑣−c

c
 

 

OPERA 2012 (corrected result) [11] 

 

(2.7 ± 3.1 (𝐬𝐭𝐚𝐭. ) + −𝟐.𝟖
+𝟑.𝟖  (sys.)) ×10

−6
 2.67 x 10 

-6
 

OPERA 2013 [12] 

 

(- 0.7 ± 0.5 (𝐬𝐭𝐚𝐭. ) +−𝟏.𝟓
+𝟐.𝟓 (sys.)) ×10

−6
 - 0.66 x 10

-6
 

ICARUS 2012 [13] 

 

(0.4 ± 2.8(stat.) ± 9.8 (sys.)) ×10
−7 

 

0.41 x 10
-7

 

LVD [14] 

 

(1.2 ± 2.5(stat.) ± 13.2 (sys.)) ×10
−7 

 

1.23 x 10
-7

 

Borexino [15] 

 

(3.3 ± 2.9(stat.) ± 11.9 (sys.)) ×10
−7 

 

3.28 x 10
-7

 

MINOS 2007 [16] 

 

(5.1±2.9) )(stat) ×10
-5

 5.14 x 10
-5
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3. Quantum Mechanics  

Quantum phenomena are empirically proven properties of nature with tremendous potential for 

future technologies. In particular, quantum entanglement has applications in emerging technologies 

of quantum computing and quantum cryptography, and quantum teleportation experimentally. A 

short list of exciting developments includes Ekert’s pioneering invention of a secure cryptographic 

key [38-39], quantum communication dense coding [40-41], and teleportation experiments, starting 

from pioneering experiments (e.g., [42-43]), to more recent experiments on teleportation in different 

scenarios (see, e.g., [44-45]). 

For many decades, quantum theory has been gaining much success in predicting quantum 

entanglement and other quantum phenomena. The common view of current physics adopts the 

assertion of Bell's theorem that no theory of nature that obeys locality and realism can reproduce the 

predictions of quantum theory [46-48]. Einstein, Podolsky, and Rosen formalized the most serious 

object to the nonlocality of quantum theory in their famous EPR paper [3]. In essence, the paper 

argues the nonlocality prescribed by quantum theory implies the theory is incomplete, such that its 

elements are not in one-to-one correspondence with physical reality. EPR concluded by asserting that 

the wave function does not provide a complete description of the physical reality. , EPR concluded 

their seminal paper by posing the rhetoric question of whether a complete description of physical 

reality exists, and reply to it by stating:  "We believe, however, that such a theory is possible" (see in 

[3], p. 780). 

John Bell formalized the EPR deterministic world idea in terms of a local hidden variables model 

(LHVM). The LHVM assumes (1) measurement results are determined by properties the particles 

carry prior to, and independent of, the measurement (“realism”), (2) results obtained at one location 

are independent of any actions performed at space-like separation (“locality”), and (3) the setting of 

local apparatus are independent of the hidden variables that determine the local results (“free will”) 

[49]. Bell proved the above assumptions impose constraints on statistical correlations in experiments 
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involving bipartite systems, in the form of the famous Bell inequality. He then showed that the 

probabilities for the outcomes obtained when suitably measuring some entangled quantum states 

violate Bell’s inequality. He concluded that entanglement is that feature of quantum formalism that 

makes simulating the quantum correlations within any classical formalism impossible. It is now 

commonly accepted by physicists that the correlations predicted by quantum mechanics and 

observed in experiments reject the principle of local realism and with it the possibility of "hidden 

variables" as a mediator of information about one system state to a distanced system.  However,  the 

restriction put by Bell's inequality on local and realistic theories is based on the presumption that 

non-locality between two distanced particles is synonymous to "faster-than-light" causation [46].  

Bell was very concerned with this temporal aspect of non-locality, perhaps due the contradiction it 

created between quantum mechanics and Special relativity theory. In Bell's words, "We have an 

apparent incompatibility, at the deepest level, between the two fundamental pillars of contemporary 

theory” (Bell, 1984, p. 172, quoted in [49]). However, John Bell did not pay attention, whatsoever, to 

the possibility of special locality between distanced particles. As a result Bell's Theorem gives no 

regard to this dimension of locality, nor did the numerous experimental tests of the theory (e.g., [50-

55].  Researchers might have never entertained the possibility of spatial locality between distanced 

particles, because our intuition and common sense tell that particles that are distanced from each 

other become spatially disconnected. This intuition, however, has never been tested experimentally. 

It follows that Bell's inequality cannot forbid the proposed model of being a candidate for 

reproducing the results of quantum mechanics.  With this "pass" at hand, we proceed by 

demonstrating that IR is in fact successful in reproducing the predictions of quantum theory for key 

phenomena, including matter-wave duality, quantum phase transition, quantum entanglement and the 

formation of Bose-Einstein condensate.      
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.2 Matter-Wave Duality 

The concept of matter-wave duality is central to quantum theory, ever since 1924, when Louis de 

Broglie introduced the notion [58-59]. Nonetheless, it remains a strange and unexplained 

phenomenon. Here we show that IR sheds a new light on this issue by demonstrating that it is a 

natural consequence of relativity. To show this we use a setup involving a simple closed system in 

inertial linear motion. Specifically, we consider a particle of rest mass 𝑚0 which travels along the 

positive x axis, with constant velocity v away from the rest frame F of another particle. Denote the 

"traveling" particle's rest frame by 𝐹′. The kinetic energy of the particle, as function of the relative 

velocity β = 𝑣 𝑣𝑐⁄  (see eq. 8), is depicted by the continuous line in Fig.1. The dotted line in the figure 

corresponds to the classical Newtonian term. At very low velocities relative to the information 

carrier velocity, the bulk of the particle's energy is carried by its matter while at high enough 

velocities, relative to the carrier velocity, the particle's energy is carried by the particle's wave (see 

fig. 4). Thus, although completely different in its approach, IR's description of the matter-wave is 

akin to de Broglie's matter-wave model. Interestingly, IR predicts that the relativistic body's matter 

and wave energies are equal at normalized velocity β = 
1

3
.   

The difference, shown by the dashed line, corresponds to the energy carried by the body's wave. 

Formally we define the body's wave energy at a given velocity as the difference between the matter's 

Newtonian energy term  𝑒0 and its relativistic energy term 𝑒𝑘, or: 

𝑒𝑤  =  𝑒0 -  𝑒𝑘  = 
1

2
 𝜌0 𝑣𝑐

2 𝛽2   - 
1

2
 𝜌0 𝑣𝑐

2 
1−𝛽

1+𝛽
 𝛽2   = (

1

2
 𝜌0 𝑣𝑐

2) 
2𝛽3

1+𝛽
 = 

2 𝛽3

1+𝛽
  𝑒0 .. (19) 

Where  𝑒0 = 
1

2
 𝜌0 𝑣𝑐

2.  
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Figure 4. Matter energy and wave energy as functions of velocity 

3.3 Matter Phase Transition  

Figure 4 reveals that the predicted particle's wave energy increases quite sharply with 𝛽.  In contrast; 

the matter energy function is non-monotonic with β. It increases up to a maximum and then 

decreases to zero at β = 1. 

The critical velocity 𝛽𝑐𝑟 at which the matter energy achieves its maximum value can be obtained by 

deriving  𝑒𝑘  in eq. 8 with respect to β and equating the derivative to zero, which yields (see section 

c in SI): 

 β
2
 + β – 1 = 0                       … (20) 

Which for β ≠ 0 solves for: 

𝛽𝑐𝑟 = 
√5−1

2
 = Φ ≈ 0.618                        … (21) 

Where Φ is the famous Golden Ratio [4] . Substituting 𝛽𝑐𝑟 in the eq. 19 yields: 

 (𝑒𝑘)𝑚𝑎𝑥

 𝑒0
 = 𝛷2 1−Φ 

1+ Φ
                          …. (22) 

From eq. 20 we can write: Φ2 + Φ – 1 = 0, which implies  1 −  Φ =  Φ2 and 1+ Φ = 
1

Φ
.  
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Substitution in eq. 22 gives: 

 (𝑒𝑘)𝑚𝑎𝑥

 𝑒0
 =  Φ5  ≈ 0.09016994                                              …. (23) 

The above result is precisely equal to Hardy’s maximum probability of obtaining an event which 

contradicts local realism [60]. More importantly, the point of maximum marks a point of matter phase 

transition, at which matter becomes critically quantum. Up to this point (0 <β < Φ) the relationship 

between energy and velocity is semi-classical, in the sense that higher velocities are associated with 

higher matter energies, while for (Φ <β < 1), higher velocities are associated with lower matter 

energies. This result confirms with a recent experimental result by Coldea et al. [61] who 

demonstrated that applying a magnetic field at right angles to an aligned chain of cobalt niobate 

atoms, makes the cobalt enter a quantum critical state, in which the ratio between the frequencies of 

the first two notes of the resonance equals the Golden Ratio. 

The critical point of matter phase transition could be described in terms of the relativistic extension, 

or "stretch" 𝑙, defined as 𝑙 𝑙0⁄ .  From eq. 6 we can write: 

β = 
𝑙̂−1

𝑙̂+1
                                …. (24) 

Substituting the value of β from eq. 24 in the eq. 4 yields: 

 𝑒𝑘

𝑒0
=

1

𝑙
 .

(𝑙−1)2

(𝑙+1)2 .                         ….. (25) 

The point of maximum energy is obtained by deriving the above expression with regard to 𝑙  and 

equating the result to zero, which yields: 

𝜕
 𝑒𝑘
𝑒0

𝜕𝑙
=

(𝑙−1)(𝑙 ̂2−4𝑙−1)

𝑙 2 (𝑙+1)3   = 0 ,           ….. (26) 

Which for 𝑙 ≠ 0 solves for 
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  𝑙̂𝑐𝑟 = 2 + √5  ≈ 4.2361            ….. (27) 

𝑙̂𝑐𝑟 could be expressed in terms of the Golden Ratio as: 

𝑙̂𝑐𝑟 = 2 + √5  = 
1 + Φ

1− Φ
  =(1 +  Φ)3                           …. (28) 

Notably, the resulting critical "stretch" is the "silver mean" [62-63], a number related to topologies of 

the Hausdorff dimension [64]. 

3.4 Wave Phase Transition and the Bose-Einstein Condensate 

The body's wave energy as a function of the relative stretch is obtained substituting the value of β 

from eq. 24 in eq. 19, yielding:   

 𝑒𝑤

𝑒0
 =  

2  (
𝑙̂−1

𝑙̂+1
)

3

1+(
𝑙̂−1

𝑙̂+1
)
  = 

 (𝑙−1)
3

𝑙 (𝑙−1)
2                       …. (29) 

The matter and wave energies as functions of the relative stretch 𝑙 are depicted in Figure 5.  

  

 

Figure 5:  𝑒𝑚 and  𝑒𝑤  as functions of stretch 𝑙 
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The figure reveals that the normalized wave energy 
 𝑒𝑤

 𝑒0
 increases rather sharply with the stretch 𝑙, 

and then levels relatively slowly, approaching 1 as 𝑙 → ∞. The turning point of the function's slope 

could be found by deriving  𝑒𝑤 in eq. 29 with respect to 𝑙 twice, and equating the result to zero, 

yielding: 

 

𝜕2𝑒𝑤

𝜕𝑙2  = 
2 (5 𝑙4−16 𝑙3+6 𝑙2+4𝑙+1 )

3

𝑙3 (𝑙+1)
4   𝑒0 = 0                          …. (30) 

For 𝑙 > 1 we get: 

5 𝑙4 − 16 𝑙3 + 6 𝑙2 + 4𝑙 + 1  = 0,          …. (31) 

Which solves for: 

𝑙𝑐𝑟=
1

15
 (11+√2906 − 90√113

3
 + √2906 + 90√113

3
) ≈ 2.612139 ≈ ζ(

3

2
)   .. (32) 

Where ζ is the Riemann zeta function [65-66]. 

Thus, the critical stretch at which the wave energy density undergoes a "second order" phase 

transition is predicted to occur at stretch  𝑙̂𝑐𝑟 ≈ 2.612375 ≈ ζ(
3

2
). Strikingly, this result is identical to 

the critical de Broglie wave-length in connection with the critical temperature Tc for the formation of 

a Bose-Einstein condensate [67-68]. As it is well known, in the framework of de Broglie's wave-

particle model, the statistical quantum mechanical analysis yields a critical de Broglie wave-length 

given by: 

𝜆𝑑𝐵 = (
2𝜋ћ2

𝑚𝑇𝑐𝐾𝐵 
)

1

2
  = ζ(

3

2
)                          …. (33) 
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Where m is the particle's atomic mass m, Tc is the critical temperature, 𝐾𝐵  is Boltzmann Constant, 

and ћ is the reduced Planck's constant. From equations 32 and 33 we can write:  

𝑒𝑤𝑐𝑟
=  

 (𝑙𝑐𝑟−1)
3

𝑙𝑐𝑟 (𝑙𝑐𝑟−1)
2  𝑒0 ≈ 0.1229  𝑒0             …. (34) 

3.5 Quantum Entanglement  

According to quantum theory, entanglement between observables in two separate systems implies 

the existence of global states of composite systems that cannot be written as a product of the states of 

individual subsystems [48, 69-70]. For example, one can prepare two particles in a single quantum 

state such that when one is observed to be spin-up, the other one will always be observed to be spin-

down and vice versa. As a result, measurements performed on one system seem to be instantaneously 

influencing other systems entangled with it, even when the systems are at large distances from each 

other. 

In the following we show entanglement could be accounted for by the causality of spatial locality. 

For demonstration we treat here a simple EPR bipartite system comprised of two identical particles 

moving away from each other with constant linear velocity. Suppose that at 𝑡 =  𝑡0 = 0 the two 

particles are distanced from each other, such that particle A moves leftward (in -x direction) toward 

Alice's box, while the particle B is moving rightward (in +x direction) toward Bob's box (see Figure 

6).  

 

  

 

 

Figure 5: Illustration of an EPR-type experiment 
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For a relative distancing velocity β = 
𝑣

𝑣𝑐
, the relative length "stretch" of particle B in the frame of 

reference of particle A is given by eq. 2, that is: 𝑙 𝑙0⁄  =  
1+𝛽

1−𝛽
  ,  and its relative mass density from eq. 

3 is given by: 𝜌 𝜌0⁄ = 
1+𝛽

1−𝛽
  .  These relationships are depicted in Figure 6.  

 

Figure 6. Relative length and mass density as functions of velocity 

The above results could be summarized as follows: when a particle is distanced from another particle 

with velocity v, it will incur a relativistic "stretch" in the rest frame of the other particle, and the 

amount of stretch will depend on the relative velocity as described by eq. 2 (see Figure 6). 

Concurrently, the particle's total rest mass 𝑚0 will be distributed along the stretched length and its 

mass density along the travel path will be diminished (see eq. 3 and Figure 6). The rates of stretching 

in distance and decrease in density will always balance, such that the total rest mass of the body 

remains unchanged. Note that the state of affairs described above is consistent with de Broglie's 

wave-particle model. In general, at high-enough velocities, 𝛽,  a distancing particle with respect to a 

rest frame of reference will gradually abandon its matter properties and behave more like a wave 

packet. Similarly, wave quanta that are forced to decelerate will eventually reach a point of phase 

transition, after which it will behave more like a particle than a wave. Put simply, in the framework 
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of Information Relativity, waves could be considered extremely stretched matter, whereas matter 

could be viewed as extremely crunched waves.  

The cross correlation between the two energy densities of particles A and B for a given relative 

velocity β, over the dimension of motion, could be calculated as 

𝑟(𝑙) =  𝑒𝑘 ∗  𝑒0 = ∫ 𝑒𝑘(𝜉)
𝑙≥1

𝑒0(𝜉 + 𝑙) 𝑑𝑙 = ln (
𝑙 +1

𝑙 
 ) - 

4

(𝑙 +1)(𝑙 +2)
  .              …. (35) 

Maximum correlation is obtained at 𝑙 satisfying  
𝜕( 𝑒𝑘∗  𝑒0)

𝜕𝑙 
 = 0, which yields: 

- 𝑙3 + 3 𝑙2 +4 𝑙 - 4 = 0 ,               …. (36) 

Which for 𝑙 ≥ 1, solves at 𝑙 ≈ 3.7785. 

Substitution in eq. 35 gives 𝑟𝑚𝑎𝑥 ≈ 0.08994.    

4. Intergalactic cosmology 

In applying our epistemic model for investigating the intergalactic universe, several simplifications 

assumptions are made: 1. that the universe is isotropic, 2. that each galaxy could be represented by a 

lumpy point mass, and 3. that intergalactic interactions are weak and thus negligible. The isotropy 

assumption concurs with the "cosmological principle" and with abundant observations indicating that 

the universe looks the same in all directions. The second and third assumptions are justified by the 

gigantic number of galaxies in the observable universe, estimated to be   ̴ 100 billion galaxies and the 

enormous (and continually increasing) distances between galaxies. Obviously, the present simplified 

model fits better for describing the dynamics of more distant galaxies from an observer on Earth. We 

know for example that the Milky Way and the smaller galaxy Andromeda are continually attracted to 

each other, and that Andromeda will be eventually sucked by our home galaxy. 

4.1 Recession velocity 
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Given the above simplification, we consider an observer on Earth who conducts measurements of an 

event taking place on a distant galaxy which during the measurement recedes from the observer's 

reference frame with uniform velocity v. Assume that the event is associated with the emission of 

light or another wave with similar velocity c, and that the observer on earth measures the time 

duration of the event by means of the signals emitted from the galaxy in which the event has taken 

place. Using Eq. 1 together with the classical Doppler formula, it is shown in [71] that the arriving 

waves red-shift z, due to the body's recession at velocity β = 
𝑣

𝑐
 is given by:            

z = 
𝛽

1−𝛽
                                                                                                  ….. (37) 

And the transverse relationship is: 

𝛽  = 
𝑧

1+𝑧
                                                                                                   ….. (38) 

The comparable expression of SR is: 

𝛽  = 
 (1+𝑧)2−1

(1+𝑧)2+1
                    ….. (39) 

 

Figure 7. Predicted recession velocity as a function of redshift z 
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Figure 7 depicts IR's prediction of the universe’s recession velocity with respect to an observer on 

earth as function of the redshift z. The dashed line depicts the comparable prediction of SR. The 

qualitative resemblance between the predictions of the two theories is easily noticeable. Roughly 

speaking, IR predicts that for very high redshifts (from z  ̴  8 to z  ̴  1089), the recession velocity is 

close to the velocity of light, and its deceleration rate is low and relatively steady. This prediction 

confirms with the well accepted inflation theory [72-74] predicting an early period of accelerated 

expansion of the universe.  For very low redshifts (z ≤ 0.1), the recession velocity is very low, and its 

deceleration rate is low and relatively steady. The epoch spanning from z ̴ 1089 to z ̴ 8 likely 

corresponds to the time of massive galaxy formation in the early universe, whereas the epoch of very 

low redshifts (z < 0.1) corresponds to the time of young stars and galaxy formations. In the midrange 

of redshifts, between z ̴ 8 and z ̴ 0.1, the universe underwent a period of rapid deceleration.  

4.2. Kinetic Energy 

To further investigate the cosmology constructed by Information Relativity theory, we use the 

relationship between recession velocity and redshift (eq. 38) to express the transformation depicted in 

Table 1 in terms of redshift. Simple calculations yield the results depicted in Table 4. 

As the table shows IR prescribes that relativistic time and distance stretch linearly with redshift, while 

the "dilution" in mass density is hyperbolic with z.  Far more interesting is the dependence of 

relativistic kinetic energy density on redshift depicted by the continuous line in Figure 8. The dotted 

line in the figure depicts the relativistic "loss" in the observed kinetic energy density, defined as 

𝑒𝑁− 𝑒𝑘

𝑒0
,  where 𝑒0 =  

1

2
 𝜌0 𝑐

2, and 𝑒𝑁 is the classical Newtonian term of kinetic energy per mass density 

of 𝜌0. For shall call this term hereafter "unobservable" or "dark" energy. Strikingly, the distribution of 

the kinetic energy in the universe is predicted to be bell shaped, with quite unexpected, yet fascinating 

symmetries: It is centered at redshift equaling the Golden Ration, z = 
√5

2
+1

2
 = φ ≈ 1.618, with 
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maximum equaling (
1

φ
)5  ≈ 0.09016994 .  These results could be verified by deriving the term in Eq. 

43 with respect to z and equating the result to zero: 

Table 4 

Information Relativity Transformations in terms of Redshift z 

 

Physical Term 

 

Relativistic Expression 

Time 𝑡

𝑡0
 = z +1                     (40) 

Distance 𝑥

𝑥0
 = 2z +1                    (41) 

Mass density
 𝜌

𝜌0
=  

1

2𝑧+1
                    (42) 

Kinetic energy density  𝑒𝑘

𝑒0
=  

𝑧2

(𝑧+1)2(2𝑧+1)
       (43) 

 

 

Figure 8: Densities of kinetic and unobservable energies as functions of redshift z 
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𝑑

𝑑𝑧
(

𝑧2 

(𝑧+1)2(2𝑧+1)
) = 

2𝑧 (−𝑧2 + 𝑧+1)

(𝑧+1)3(2𝑧+1)2 = 0                …. (44) 

 

For z ≠ 0, we have 

 

𝑧2 −  𝑧 − 1 = 0               ….. (45) 

 

Or 

𝑧𝑚𝑎𝑥  = 
√5

2
+1

2
 = φ ≈ 1.618                      …. (46) 

Where φ is the Golden Ratio. 

The corresponding max value of  
 𝑒𝑘

𝑒0
  is equal to: 

 𝑒𝑘

𝑒0
= 

1−(𝜑−1)

1+(𝜑−1)
 (𝜑 − 1)2 = 

1−(𝜑−1)

𝜑
 (𝜑 − 1)2                       ….(47) 

Using the relationship 𝜑 − 1= 
1

𝜑
, we get 

 𝑒𝑘

𝑒0
=   (

1

φ
)5 ≈ 0.09016994             .... (48) 

The corresponding recession velocity at z = φ is: 

 

𝛽  = 
φ

φ+ 1
 = φ − 1 ≈ 1.618- 1 = 0.618              .... (49) 

 

The physical meaning of the above results could be described as following: For an observer on Earth, 

the relativistic kinetic energy density is predicted to increase with redshift up to redshift z  ̴  1.618, at 

which its reaches its maximum value equaling ≈ 0.09016994. This value is quall, to the eighth 

decimal digit, to L. Hardy’s probability of entanglement [18]. From z = 0 to z ≈ 1.618 (recession 

velocity β between zero and ≈ 0.618) galactic bodies are predicted to exhibit a quasi-classical 
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behavior. That is, despite continuous depreciation in kinetic energy density relative to the classical 

Newtonian value, more recession velocity is still associated with higher energy density. Starting from 

the critical kink point at z ≈ 1.618, galactic bodies are predicted to undergo a relativistic phase 

transitions, after which the classical monotonous increase in kinetic energy with velocity (and 

redshift) is converted, such that higher recession velocities (higher redshift) are associated with lower, 

rather than higher kinetic energy density. The apparent energy "loss" is contained in an unobservable 

or "dark" form (see figure 8), such that the total energy is conserved. 

The resemblance between the predicted non-monotonicity of normal energy density with redshift, and 

the well-known GZK cutoff limit could not be overlooked. In their well-known papers, Greisen [75], 

and Zatsepin and Kuzmin [76], proposed an upper limit to the cosmic-ray energy spectrum. A first 

observation of the Greisen-Zatsepin-Kuzmin suppression was reported in the High Resolution Fly’s 

Eye (HiRes) experiment [77]. HiRes measurement of the flux of ultrahigh energy (UHE) cosmic rays 

showed a sharp suppression at an energy of 6 × 1019 eV, consistent with the expected cutoff energy. 

Interestingly, in the HiRes experiment the evolution of QSO’s and AGN’s has been measured and 

both types of source show a break in their luminosity densities at about z=1.6, quite consistent with 

the Golden Ratio prediction of z ≈ 1.618. Strong support to the maximal energy density at z ≈ 1.618 

has been reported by numerous discoveries of quasars, galaxies, and AGNs, indicating a break in 

luminosity densities at about z=1.6 (e.g., [78-79]), including a recent discovery of galaxies at redshift 

equaling exactly 1.618 [80]. 

However, it is also known that several experiments (e.g., [81-82]) have reported the detection of one 

event each above 1020 eV, and a continuing, unbroken energy spectrum beyond the predicted GZK 

threshold was later reported by a larger experiment, the Akeno Giant Air Shower Array (AGASA) 

[83-84]. These seemingly contradicting results are reconciled by the cosmology of IR, as could be 

directly verified from the relativistic kinetic energy density depicted in Figure 8.   
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4.3. Dark Energy 

Background 

One of the big challenges facing modern cosmology pertains to the nature of dark energy. No existing 

theory is capable of explaining what dark energy is, but it is widely believed that it is some unknown 

substance with an enormous anti-gravitational force (negative energy), which drives the galaxies of 

our universe apart. Despite efforts to ascribe the theoretical discovery of dark energy to Einstein's 

cosmological constant λ, the reference to λ in current ΛCDM cosmologies is no more than 

metaphoric. In fact, adherence to general relativity requires that for λ ≠ 0, its magnitude should be ≈ 

10120 (!) times the measured ratio of pressure to energy density [85]. An alternative explanation 

argues that dark energy is an unknown dynamical fluid, namely, one with a state equation that is 

dynamic in time. This type of explanation is represented by theories and models that differ in their 

assumptions regarding the nature of the state equation dynamics [86–88]. This explanation is no less 

problematic, because it entails the prediction of new particles with masses 35 orders of magnitude 

smaller than the electron mass, which might imply the existence of new forces in addition to gravity 

and electromagnetism [85]. At present, no persuasive theoretical explanation accounts for the 

existence, dynamics, and magnitude of dark energy and its resulting acceleration of the universe. 

Prediction 

In IR theory, the cosmic unobservable (or dark) energy density at a given recession velocity (redshift) 

is defined here as the energy "loss" due to relativity, or: 

 

ed(β) = 
1 

2
𝜌0

2𝑣2 −  
1 

2
𝜌0

2𝑐2 (1− 𝛽)

(1+ 𝛽)

 𝛽2 

=  
1 

2
𝜌0

2𝑐2 𝛽2 (1− 
(1− 𝛽) 

(1+ 𝛽)
)= 

1 

2
𝜌0

2𝑐2 2 𝛽3

(1+ 𝛽)
                                                  ... (50) 

And: 

 𝑒𝑑(𝛽)

𝑒0
 = 

2 𝛽3

(1+ 𝛽)
          …. (51) 
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 Where β is the recession velocity with respect to an observer on Earth. In terms of redshift, the above 

equation becomes: 

 𝑒𝑑(𝑧)

𝑒0
 = 

2𝑧3

(𝑧+1)2(2𝑧 +1 )
                                                     …..(52) 

It is important to stress that IR's interpretation of unobservable (dark) energy has nothing to do with 

the current belief holding that dark energy is some sort of unknown negative energy that is 

responsible to the accelerating recession of the universe. 

The redshift at which the densities of kinetic and "dark" energy densities are predicted to be equal is 

obtained from solving the equation  𝑒𝑘(𝑧) =   𝑒𝑑(𝑧),  or: 

𝑧2

(𝑧+1)2(2𝑧+1)
 = 

2𝑧3

(𝑧+1)2(2𝑧 +1 )
         …. (53) 

Yielding 

z =
1

2
  (or β =  

1

3
)          ….. (54) 

Figure 9 depicts the ratios of the two energy densities 
 𝑒𝑘(𝑧)

𝑒0
  and 

 𝑒𝑑(𝑧)

𝑒0
 as functions of redshift. As 

shown in the figure IR predicts that kinetic and "dark" energies mirror image each other around an 

axis of symmetry 
 𝑒𝑘(𝑧)

𝑒0
 =  

 𝑒𝑑(𝑧)

𝑒0
 = 0.5, such that kinetic energy dominates the universe only from 

now up to redshift z = 
1

2
 , while dark energy dominating the rest of the universe from z > 0.5 the Big 

Bang era.     
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Figure 9. The ratios of the kinetic and dark energy densities as a function of redshift 

4.4 Comparison with ΛCDM cosmologies  

To compare the theory's predictions with observationally based ΛCDM cosmologies, we calculated 

the total normal and dark energy densities for any redshift range (𝒛𝟏, 𝒛𝟐),  𝒛𝟐 > 𝒛𝟏. The results are 

respectively:  

 𝒆𝒌(𝒛𝟏− 𝒛𝟐)

𝒆𝟎
   = ∫

 𝒆𝒌(𝒛)

𝒆𝟎
 

𝒛𝟐

𝒛𝟏
𝒅𝒛 =  ∫

𝒛𝟐

(𝒛+𝟏)𝟐(𝟐𝒛+𝟏)

𝒛𝟐

𝒛𝟏
𝒅𝒛  =  

𝟏

𝟐
 ln( 

𝟐𝒛𝟐+𝟏

𝟐𝒛𝟏+𝟏
 ) - 

𝒛𝟐−𝒛𝟏

(𝒛𝟐+𝟏)(𝒛𝟏 +𝟏)
     … (55)                                                      

and  

 𝑒𝑑(𝑧1− 𝑧2)

𝑒0
 = ∫

 𝑒𝑑(𝑧)

𝑒0
 

𝑧2

𝑧1
𝑑𝑧 = ∫

2z3

(z+1)2(2z +1 )

𝑧2

𝑧1
𝑑𝑧  

= (𝑧2 − 𝑧1) +2 
(𝑧2−𝑧1)

(𝑧 2+1) (𝑧 1+1)
 – 2 ln(

(𝑧 2+1) 

(𝑧 1+1)
 - 

1

2
 ln(

(2𝑧 2+1) 

(2𝑧 1+1)
                                            …..(56) 

We tested the above results using data from Wittman et al. (2000) [89] who reported the detection of 

cosmic shear using 145,000 galaxies, at redshift ranging between 1 to 0.6, and along three separate 

lines of sight. The analysis was based on weak lensing data from COBE and on galaxy clusters. The 

study concluded the dark matter is distributed in a manner consistent with either an open universe, 

with Ω𝑏 = 0.045, Ω𝑚𝑎𝑡𝑡𝑒𝑟 - Ω𝑏 = 0.405, ΩΛ = 0, or with a ΛCDM with Ω𝑏 = 0.039, Ω𝑚𝑎𝑡𝑡𝑒𝑟 - Ω𝑏 = 
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0.291, ΩΛ = 0.67, where Ω𝑏 is the fraction of critical density in ordinary (baryonic) matter, Ω𝑚𝑎𝑡𝑡𝑒𝑟 is 

the fraction of all matter, and ΩΛ is the fraction of dark energy. In the open universe model, we have 

Ω𝑚𝑎𝑡𝑡𝑒𝑟 = 0.045 + 0.405 = 0.45, and ΩΛ = 0, whereas in the ΛCDM, we have Ω𝑚𝑎𝑡𝑡𝑒𝑟 = 0.039 + 

0.291 = 0.33, and ΩΛ = 0.67.  To test the prediction of IR, we calculated the ratios of kinetic and dark 

energies in redshift range from 𝑧1=0.6 to 𝑧2=1, by substitution in equations 55 and 56, respectively, 

yielding:  

 

 𝑒𝑘(0.6 −1)

𝑒0
   =  

1

2
 ln( 

2+1

2 x 0.6+1
 )  - 

1−0.6

(1+1)(0.6+1)
  = 

1

2
 ln( 

3

2.2
 )  - 

0.4

3.2
 ≈ 0.0301        …… (57) 

and  

 𝑒𝑑(0.6 −1)

𝑒0
 = (1 − 0.6) +2 

(1−0.6)

(1+1)(0.6+1)
 – 2 ln(

1+1 

0.6+1
) - 

1

2
 ln(

2+1 

2x 0.6+1
)     

= 0.4 +  
0.8

3.2
 – 2 ln( 

2 

1.6
 ) - 

1

2
 ln( 

3 

2.2
 ) ≈ 0.0486                                                ….. (58) 

 

Thus, the ratios of 𝑒𝑘 𝑎𝑛𝑑 𝑒𝑑 in 𝑧 = 0.6 → 1 are: 

  

𝑒𝑘

𝑒𝑡𝑜𝑡
 = 

𝑒𝑘

𝑒𝑘+𝑒𝑑
 = 

0.0300775 

0.0300775 +0.0486354 
 ≈ 0.382 (≈ 38.2%)                                    …. (59) 

And: 

𝑒𝑑

𝑒𝑡𝑜𝑡
 = 

𝑒𝑑

𝑒𝑘+𝑒𝑑
 = 

0.0486354

0.0300775+0.0486354
 ≈ 0.618 (≈ 61.8%)                         …. (60) 

 

Which is in agreement with the observations based ΛCDM model with (Ωm = 
1

3
, ΩΛ = 

2

3
).  

Calculation of the ratios of normal and dark energy in the range spanning from now (𝑧1=0) to the 

critical redshift 𝑧2 = φ ≈ 1.618 yields:  

 𝑒𝑘(0 −𝜑)

𝑒0
 = 

1

2
 ln( 2𝜑 + 1 ) - 

𝜑

(𝜑+1))
 ≈ 0.1038                …. (61) 
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And: 

 𝑒𝑘(0 −𝜑)

𝑒0
 = φ+2 

𝜑

𝜑+1 
 – 2 ln(φ +1)- 

1

2
 ln(2φ) ≈ 0.3420                                                 ….(62) 

Thus we have, 

𝑒𝑘

𝑒𝑘+ 𝑒𝑑
  = 

0.138

0.138+0.3420
 ≈ 0.233 (or 23%)                  …. (63) 

And 

𝑒𝑑

𝑒𝑘+ 𝑒𝑑
  = 

0.3420

0.138+0.3420
 ≈ 0.767 (or 76.7%)                                     …. (64) 

Notably, the above prediction is in excellent agreement with the ΛCDM cosmology with Ωmatter = 

0.23, ΩΛ = 0.77 (see, e.g., [90-92]), and quite close to the Ωmatter = 0.26, ΩΛ = 0.74 cosmology (see, 

e.g., [93-95]). 

Equations 55 and 56 can be used to put constraints of future observations based cosmologies. For 

example, for a cosmology that best fits the entire range from z = 0 to z = 8, we have: 

 𝑒𝑘(0 −8)

𝑒0
 = 

1

2
 ln (17) - 

8

9
 ≈ 0.5277                       …. (65) 

     And 

 𝑒𝑘(0 −8)

𝑒0
 = 8 + 

16

9
 – 2 ln(9) - 

1

2
 ln(17) ≈ 3.9967                 …. (66)  

And the predicted ratios of kinetic and dark energies are, respectively, 

𝑒𝑘

𝑒𝑡𝑜𝑡
 = 

𝑒𝑘

𝑒𝑘+𝑒𝑑
 = 

0.5277

0.5277+3.9967 
 ≈ 0.12 (12%)                             …. (67) 

And 

𝑒𝑑

𝑒𝑡𝑜𝑡
 = 

𝑒𝑑

𝑒𝑘+𝑒𝑑
 = 

3.9967

0.5277+3.9967 
 ≈ 0.88 (88%)                   …. (68)  
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4.5 Gravitational Black Holes 

Background 

The term “black hole” was coined by John Wheeler in 1964, but the possibility of its existence 

within the framework of Newtonian physics was conjectured by John Michell in 1784, who argued 

for the possible existence of an object massive enough to have an escape velocity greater than the 

velocity of light [96]. Twelve years later, Simon Pierre LaPlace also predicted the existence of black 

holes. Laplace argued that “It is therefore possible that the largest luminous bodies in the universe 

may, through this cause, be invisible” [97]. 

A better understanding of black holes, and how gravity and waves intermingle, had to wait until 

1915, when Albert Einstein delivered a lecture on his theory of General Relativity (GR) to the 

German Academy of Science in Berlin. Within a month of the publication of Einstein’s work, Karl 

Schwarzschild, while serving in the German Army on the Russian front, solved Einstein’s field 

equations for a non-rotating, uncharged, spherical black hole [98-99]. For a star of a given mass, M, 

Schwarzschild found the critical radius R = 
2 𝐺 𝑀

𝑐2 , where G is the gravitational constant and c is the 

velocity of light, at which light emitted from the surface would have an infinite gravitational redshift, 

and thereby infinite time dilation. Such a star, Schwarzschild concluded, would be undetectable by 

an external observer at any distance from the star.  

Our understanding of the processes involved in the evolution and decay of black holes is largely due 

to quantum mechanical and thermodynamic theories. Early in 1974, Stephen Hawking predicted that 

a black hole should radiate like a hot, non-black (“gray”) body [100]. Hawking’s theory of black 

holes, is consistent with Bekenstein's generalized second law of thermodynamics [101], stating that 

the sum of the black-hole entropy and the ordinary thermal entropy outside the black hole cannot 

decrease. According to this prediction, black holes should have a finite, non-zero, and non-

decreasing temperature and entropy. 
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The first X-ray source, widely accepted to be a black hole, was Cygnus X-1 [102]. Since 1994, The 

Hubble Space Telescope, and other space-crafts and extremely large ground telescopes (see, e.g., 

[103-104], have detected numerous black holes of different sizes and redshifts. We now know that 

black holes exist in two mass ranges: small ones of (M ≲ 10 M⊙) (M⊙, solar mass), believed to be 

the evolutionary end points of the gravitational collapse of massive stars, and supermassive black 

holes of M ≳ 106 M⊙, responsible for the powering of quasars and active galactic nuclei (AGN) 

[105-107]. Supermassive black holes, residing at the centers of most galaxies, are believed to be 

intimately related to the formation and evolution of their galaxies [105- 109]. 

Pathology and Previous Solutions 

As mentioned above, the solution to Einstein’s field equations [98-99] yields a critical hole radius of 

R = 
2 𝐺𝑀

𝑐2 . However, Schwarzschild’s solution suffers from a serious pathology, because it predicts a 

singularity whereby the fabric of spacetime is torn, causing all matter and radiation passing the event 

horizon to be ejected out to an undefined spacetime, leaving the black hole empty, thus, in violation 

of the laws of thermodynamics and contradiction with quantum mechanics [e.g., 100-101]. Many 

believe that the black holes (and the Big Bang) singularities mark a breakdown in GR. 

Attempts to solve the singularity problem are aplenty. Bardeen was the first to propose a regular 

black hole model [110]. In 1968, he produced a famous model, conventionally interpreted as a 

counterexample to the possibility that the existence of singularities may be proved in black hole 

spacetimes without assuming either a global Cauchy hyper-surface or the strong energy condition. 

Other regular “Bardeen black holes” models have been also proposed [e.g., 111-116], but none of 

these models is an exact solution to Einstein equations [117]. Other solutions to produce singularity-

free black hole come from string theory (e.g., [118-119]), and quantum mechanics [e.g., 120-124]. 

As examples, Ashtekar and others [121-122] proposed a loop quantum gravity model that avoids the 

singularities of black holes and the Big Bang. Their strategy was to utilize a regime that keeps GR 

intact, except at the singularity point, at which the classical spacetime is bridged by a discrete 
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quantum one. Although the solution is mathematically difficult, its strategy is simple. It begins with 

semi-classical state at large late times (“now”), and evolves it back in time, while keeping it semi-

classical until one encounters the deep Planck regime near the classical singularity. In this regime, it 

allows the quantum geometry effects to dominate. As the state becomes semi-classical again on the 

other side, the deep Planck region serves as a quantum bridge between two large, classical 

spacetimes [120]. 

Prediction 

Figure 10 depicts a schematic representation of a supermassive black hole with mass M and radius R 

residing at the center of its host galaxy.  

 

 

 

 

 

 

  

 

 

The figure shows three particles, with equal masses and velocities, at different distances from the 

center of the black hole. As depicted in the figure, the more distant particle will be deflected toward 

the black hole, but will escape it due to its large distance, and continue its travel in space. By 

contrast, the closest particle to the black hole will experience a strong enough gravitational force to 

cause its absorption into the black hole. Now consider the third particle, which rotates around the 

black hole at radius r. Such particle could be a baryon or wave quanta entrapped at a critical distance, 
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ensuring that it rotates around the black hole. For such particle, the acceleration |𝑎⃗| supporting a 

uniform radial motion with radius r should satisfy 

𝑎 = |𝑎⃗| = 
𝑣2

𝑟
 = 

𝑐2

𝑟
 𝛽2                                                                                             … (69) 

The force supporting such motion, according to Newton's second law, could be expressed as: 

𝐹= 
𝜕𝑃

𝜕𝑡
 = 

𝜕(𝑚𝑣)

𝜕𝑡
 = m 

𝜕(𝑣)

𝜕𝑡
 + v 

𝜕(𝑚)

𝜕𝑡
  

= m 𝑎+ 𝑣 
𝜕(𝑚)

𝜕𝑣
 
𝜕(𝑣)

𝜕𝑡
 = m 𝑎 + v a 

𝜕(𝑚)

𝜕𝑣
   =  (m + v 

𝜕(𝑚)

𝜕𝑣
) a                                         …(70) 

Substitution the term for m from Eq. 3 in Table 1, and deriving m with respect to v yields: 

F = 
1−2𝛽−𝛽2

(1+𝛽)2    𝑚0  a                                                                    ….(71) 

Substitution the value of a, from Eq. 69 in Eq. 71 yields: 

F = 
1−2𝛽−𝛽2

(1+𝛽)2    𝑚0  a =  
1−2 𝛽− 𝛽2

(1+ 𝛽)2
 𝑚0  

𝑣2

𝑟
 =  𝑚0 𝑐2 

1−2 𝛽− 𝛽2

(1+ 𝛽)2
 𝛽2 

1

𝑟
                  …. (72) 

Using Newton’s general law of gravitation, we get: 

G 
 𝑚0 𝑀

𝑟2
 = 𝑚0 𝑐2 

1−2 𝛽− 𝛽2

(1+ 𝛽)2
 𝛽2 

1

𝑟
                                                                       .… (73) 

Solving for r yields: 

r = 
 𝐺 𝑀

𝑐2
 

(1+ 𝛽)2

1−2 𝛽− 𝛽2
  𝛽2                                                                                      ….. (74) 

Assuming spherical symmetry, eq. 74 describes the dynamics of the host galaxy as a function of 

velocity. For a light photon (𝛽 = 1), we have: 

 

r ((𝛽 = 1) = R= 
2 𝐺 𝑀

𝑐2
                          ….. (75)  
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Which exactly equals the Schwarzschild radius, but with no singularity in the hole’s interior.  

Interestingly, the solution (eq. 74) has a naked spatial singularity at 𝛽 satisfying: 

1 − 2 𝛽 −  𝛽2 = 0                           .... (76) 

Solving for β, we have: 

β =√2
2

 -1 ≈ 0.4142                          ….. (77) 

With corresponding redshift of z = 
β 

1−β 
 = 

1

√2
2  ≈ 0.707. 

It is important to stress that the predicted singularity is in space and not in spacetime, as prescribed 

by the Schwarzschild's solution of General Relativity's field equations.  In fact, Newtonian Relativity 

in general, including in its present application to the black hole problem, does not require reference 

to the notion of spacetime. To express the derived radius in terms of redshift, we substitute the value 

of β from Eq. 38 in Eq. 74 and solve for 𝑟, yielding:  

 

𝑟 = (
 𝐺 𝑀 

𝑐2
) 

𝑧2(1+2𝑧)2

(1+𝑧)2 (1−2𝑧2 )
                              …. (78) 

Figure 11 depicts the ratio 𝑟, normalized by 
 𝐺𝑀 

𝑐2
, as a function of z. 

  

Figure 11. r / (
 𝐺𝑀 

𝑐2
)  as a function of redshift 

Z ≈ 1.618 

Z ≈ 0.707 Z ≈ 2.0782 

≈ 1.5867 
≈ 1.618 

z 
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As shown by the figure, for very high redshifts 𝑟 converges to 2
 𝐺 𝑀 

𝑐2  (the Schwarzschild radius). 

Moreover, the result in Eq. 19 has some interesting properties. (1) 𝑟 has a naked spatial singularity, 

at z = 
1

√2
2  ≈ 0.707, (2) It displays a striking Golden Ration symmetry, such that for z = φ ≈ 1.618, 𝑟 / 

(
 𝐺 𝑀 

𝑐2
) ≈ 1.618, (3) It has a point of minimum in the range between the above mentions redshifts. To 

find the point of minimum we derive 𝑟 / (
 𝐺 𝑀 

𝑐2
) with respect to z and equate the result to zero, 

yielding: 

 4 𝑧4 − 2 𝑧3 − 10 𝑧2 − 6 𝑧 − 1 = 0                    …. (79) 

Which solves at 𝑧𝑚 ≈ 2.078, yielding 𝑟𝑚 ≈ 1.5867 (
 𝐺 𝑀 

𝑐2
). 

The prediction of an extreme galactic activity at z ≈ 0.707 is supported by many observational 

studies, which reported the detection of quasars, blazars and other AGNs at z ≈ 0.707 [e.g., 125-128]. 

For example, a recent study by Steinhardt et al. [126] reported the discovery of a Type 1 quasar, 

SDSS 0956+5128, with extreme velocity offsets at redshifts z  = 0.690, 0.714, and 0.707. The 

prediction of AGNs at z ≈ 2.078 is also confirmed by observations (e.g. [129-130]). 

We also compared the dynamical dependence of r on redshift (eq. 78) with the dynamics reported in 

[131] for a cosmology of ΩM = 0.3 and ΩΛ = 0.7, H0 = 70 km s−1 Mpc−1. Figure 12a depicts the 

predicted radius r (in Km) as a function of redshift for intermediate and massive black holes and 

Figure 12b depicts comparable results reported in [131]. Comparison of the two figures, despite 

differences in scaling, reveals a remarkable similarity between the results of the two models. 
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Figure 12a 

Figure 12b 

Figure 12. Predicted r as a function of z (Fig. 12a) and comparable results based on ΛCDM model 

(ΩM = 0.3,  ΩΛ = 0.7, H0 = 70 km s−1 Mpc−1) reported by Hook (2005) [131] (Fig 12b).  

 

5. Summary and Concluding Remarks 

We considered an inertial physical system in which signals about physical measurements of time and 

other physical variables conducted in one reference-frame are transmitted to a receiver moving with 

relative constant velocity v, by an information carrier with a constant velocity 𝑣𝑐 with respect to 

transmitter's rest-frame (𝑣𝑐 >  𝑣).  Without making any further theoretical assumptions or putting 

constrains on the systems variables, derived relativistic time, distance, mass, and energy expressions, 
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relating measurements transmitted by the information sender to the corresponding information 

registered at the receiver. The derived relativistic distance expression violates the Lorentz principle 

for distancing bodies, by predicting length extension instead of contraction. This feature of the 

proposed model leads to the prediction that at sufficiently high normalized velocities, distanced 

bodies can maintain spatial locality, acting at each other proximally and not at a distance. In other 

words the model predicts that at sufficiently high velocities, distance bodies can get entangled 

physically. 

Since the proposed model is scale independent with respect to the size of spatial dimension and mass 

of moving bodies, it is applicable without alterations or additions of free parameters for studying the 

dynamics of Nano particles and galactic structures. In the present article we demonstrated that the 

model accounts well for a multitude of phenomena and experimental findings. In the sector of 

elementary particles, the theory makes excellent predictions of the Michelson-Morley's "null" result, 

the relativistic lifetime of decaying Muons, the Sagnac effect, the neutrino velocities reported by 

OPERA and other collaborations, and more. Application of the model to cosmology, without 

alteration or addition of free parameters, yields successful accounts for several important 

cosmological findings, including the pattern of recession velocity predicted by inflationary theories, 

the amounts of matter and dark energy in various segments of redshift, reported in recent ΛCDM 

cosmologies, the GZK energy suppression phenomenon, and the radius of gravitational black holes, 

equaling  the Schwarzschild radius (R= 
2 𝐺 𝑀

𝑐2
), but without a troubling interior singularity. For the 

quantum sector we showed that the model, despite being deterministic and local, accounts, both 

qualitatively and quantitatively, for matter-wave duality, quantum criticality, quantum entanglement 

and the formation of Bose-Einstein condensates. 

We cannot conclude without underscoring the simplicity and beauty of the proposed model, which 

would have probably impressed Isaac newton, Albert Einstein, Paul Dirac, and other fathers of 

modern physics, who emphasized the importance of the mathematical simplicity and beauty in 
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theorizing about the physics of the world, which they believed to be harmonious and simple. The 

Golden Ratio symmetry revealed at the critical point of transition in kinetic energy, in the quantum 

and cosmic sectors alike deserves special given the key role played by the Golden Ratio and the 

related Fibonacci numbers as ordering and symmetry numbers in esthetics and arts [46-48], biology 

[49], brain sciences [50-51], the social sciences [52-54], and more. We believe that the emergence of 

these numbers in many systems in the physical and social world might be associated with some 

optimal self-organization processes common to all dynamical system in equilibrium.  

The model's scale independency with respect to the velocity of the information carrier is no less 

intriguing, since it holds the promise of successful applications of the model to classical systems of 

bodies moving with relatively low velocities and communicating information with relatively low 

velocities, including acoustic, thermodynamic and seismic systems. No less important it suggest that 

quantum phenomena might have their replicas in the same rules governing quantum phenomena, as 

phase transition and entanglement apply to cosmic structures and to classical systems. ,   

It seems to us that the proposed epistemic model is the closest model to what is usually termed "a 

theory of everything", except the fact that it has no axioms, rendering the term theory inappropriate.   

We are puzzled as to how mere observations and measures of observables concerning initially 

moving bodies, regardless of their dimensions and velocities was strikingly successful in predicting 

the documented dynamics of very small and very large objects. It is as if mere observations, unbiased 

by theoretical axioms, are most powerful tools for understanding how the physical world behaves. 

What seems to us astounding, is the fact that the simple recipe of comparing the observations, as they 

were registered by two observers who are in constant relative motion with respect to each other, 

seems to reveal not only gross phenomena, like the amount of dark energy or the radius of a black 

hole, but also Nano-scale phenomena, like quantum phase change, quantum entanglement, and even 

the Bose-Einstein condensate phenomena, resulting from many-particle quantum thermodynamic 

interactions. 
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To what extent the Nature's book could be read from looking at its cover is still to be seen in the 

future.   
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Supplementary Information 

Section I. Derivation of Information Theory's Transformations 

A. Derivation of the Time Transformation 

We consider a simple preparation in which the time duration of an event, as measured 

by an observer A who is stationary with respect to the point of occurrence of the event 

in space, is transmitted by an information carrier which has a constant and known 

velocity 𝑣𝑐, to an observer B who is moving with constant velocity 𝑣 with respect to 

observer A. We make no assumptions about nature of the information carrier, which 

can be either a wave of some form or a small or big body of mass. Aside of the 

preparation describes above and the measurements taken by each observer, 

throughout the entire analysis to follow, no further assumptions are made. This also 

means that we do not undertake any logical steps or mathematical calculations unless 

measurements of the variables involved in such steps or calculations are 

experimentally measurable. 

We ask: what is the event duration time to be concluded by each observer, based on 

his or her own measurements of time? And what could be said about the relationship 

between the two concluded durations? 

In a more formal presentation, we consider two observers in two reference frames 𝐹 

and 𝐹′. For the sake of simplicity, but without loss of generality, assume that the 

observers in 𝐹 and  𝐹′ synchronizes their clocks, just when they start distancing from 

each other with constant velocity 𝑣, such that 𝑡1 = 𝑡1
′ =0, and that at time zero in the 

two frames, origin points of were 𝐹 and  𝐹′ were coincided (i.e., 𝑥1=𝑥1
′ = 0).  

Suppose that at time zero in the two frames, an event started occurring in 𝐹′at the 

point of origin, lasting for exactly Δt′ seconds according to the clock stationed in 𝐹′, 
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and that promptly with the termination of the event, a signal is sent by the observer in 

𝐹′ to the observer in 𝐹.  

After Δt′ seconds, the point at which the event took place stays stationary with respect 

𝐹′ (i.e., 𝑥2
′ =𝑥1

′= 0), while relative to frame 𝐹 this point would have departed by 𝑥2 

equaling:  

𝑥2= 𝑣 Δ𝑡′                      ……. (1a) 

The validity of eq. 1a could be checked and verified by more than one operational, 

i.e., experimentally feasible methods: For example, if the two observers meet any time 

after the event has terminated, then the observer in 𝐹 will be able to read the time of 

the event as registered by the clock stationed in 𝐹′ and learned what the duration of 

the event in 𝐹′, for which the event was stationary. Another operational way by which 

the observer in 𝐹 can infer about the actual time of travel until the event terminated 

and the signal was sent is by mimicking the even in 𝐹 by having an identical event 

with the same duration (in its inertial frame), start promptly with the even in  𝐹′. It is 

important to note that the above two operational suggestions presume the rule stating 

that the laws of nature are the same in the two frames. In the first example, the above 

restriction leaves no possibility for the observer in 𝐹 to suspect that the reading of the 

clock stationed 𝐹′ in e time duration of the event in reading of the clock at 𝐹′ (in the 

first example), or to suspect that a time registered by a clock at his/her own frame 𝐹 

will differ by the time that will be registered for an identical event, by an identical 

clock placed in 𝐹′.        

If the information carrier sent from the observer in 𝐹′ to the observer in 𝐹 travel with 

constant velocity 𝑉𝐹 relative to 𝐹, then it will be received by the observer in 𝐹 after a 

delay of: 
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𝑡𝑑 = 
𝑥2

𝑉𝐹
=  

𝑣 Δt′  

𝑉𝐹
  =  

𝑣 

𝑉𝐹
  𝛥𝑡′                       ……. (2a) 

Since 𝐹′ is distancing from 𝐹 with velocity v, we can write: 

𝑉𝐹 = 𝑉0 – 𝑣                                            …… (3a) 

Where 𝑉0 denotes the information carrier's velocity with respect to the event's inertial 

frame 𝐹′. Substituting the value of 𝑉𝐹 from eq. 3a in eq. 2a, we obtain: 

𝑡𝑑   = 
𝑣 Δt′  

𝑉0 – 𝑣   
  =  

 1

 
𝑉0
𝑣

– 1   
 𝛥𝑡′               …… (4a) 

Due to the information time delay, the event's time duration Δt that will be registered 

by the observer in 𝐹 is given by: 

Δt = Δ𝑡′ + 𝑡𝑑=Δ𝑡′ + 
 1

 
𝑉0
𝑣

– 1   
 Δt′=(1 + 

 1

 
𝑉0
𝑣

– 1    
) Δt′=(

 
𝑉0
𝑣

 
𝑉0
𝑣 – 1  

) = ( 
1

 1– 
𝑣

𝑉0
   

) Δt′  

…(5a) 

Or: 

Δ𝑡 

  Δ𝑡′  
 =  

1

 1– 
𝑣

𝑉0
   

                                                   … 

(6a) 

For 𝑣 << 𝑉0 eq. 6 reduces to the classical Newtonian equation Δ𝑡 = Δ𝑡′,  while for 𝑣 

→ 𝑉0, Δ𝑡 → ∞ for all positive Δ𝑡′. 
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For a communication medium to be fit for transmitting information between frames in 

relative motion, a justifiable condition is to require that the velocity of the carrier be 

larger than the velocity of the relative motion, i. e., 𝑣 < 𝑉0.        

Quite interestingly, eq. (6a), derived for the time travel of moving bodies with 

constant velocity is quite similar to the Doppler's Formula derived for the frequency 

modulation of waves emitted from traveling bodies. Importantly, in both cases the 

direction of motion matters. In the Doppler Effect a wave emitted from a distancing 

body will be red-shifted (longer wavelength), whereas a wave emitted from an 

approaching body with be blues-shifted (shorter wavelength). In both cases the degree 

of red or blue shift will be positively correlated with the body's velocity. 

The same applies to the time duration of an event occurring at a stationary point of a 

moving frame. If the frame is distancing from the observer, time will be dilated, 

whereas if the frame is approaching the observer will contract.  

It is especially important to note further that the above derived transformation applies 

to all carriers of information, including the commonly employed acoustic and optical 

communication media. For the case in which information is carried by light or by 

electromagnetic waves with equal velocity, equation (6a) becomes: 

Δ𝑡 

  Δ𝑡′  
 =  

1

 1– 
𝑣

𝑐
   

                             ….. (7a)  

Since an objection might be raised for the cases of information translation by means 

of light or other waves with equal velocity, such objection could be avoided by 

restricting the theoretical model derived above to wave propagation in mediums that 

are not a vacuum, which in fact the case in almost all physical situations of interest.  
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B. Derivation of the Distance Transformation  

To derive the distance transformation, consider the two frames of reference F and 

𝐹′shown in Figure 1b. Assume the two frames are moving away from each other at a 

constant velocity v. Assume further that at time 𝑡1 in F (and 𝑡1 
′ in 𝐹′), a body starts 

moving in the +x direction from point 𝑥1 (𝑥1
′  in 𝐹′) to point x2 (𝑥2

′  in 𝐹′), and that its 

arrival is signaled by a light pulse that emits exactly when the body arrives at its 

destination.  Denote the internal framework of the emitted light by 𝐹0. Without loss of 

generality, assume 𝑡1 = 𝑡1
′  = 0, 𝑥1 = 𝑥1

′  = 0. Also denote 𝑡2 = 𝑡,   𝑡2
′ = 𝑡′, 𝑥2 = 

𝑥, and   𝑥2
′ = 𝑥′. 

 

Figure 1b: Two observers in two reference frames, moving with velocity v with 

respect to each other. 

From eq. 7a, the time duration in F  that takes the light signal to reach an observer in 

𝐹′ equals: 

𝛥𝑡𝑝 = (1 − (−
𝑣

𝑐 
)  ) 𝛥𝑡′                                        ..… (1b) 
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Where 𝛥𝑡′ is the corresponding time duration in 𝐹′, and c is the velocity of light in 

frame F.  Because 𝐹′ is moving away from F with velocity v, the time that takes the 

light signal to reach and observer in F is equal to: 

𝛥t = 𝛥𝑡𝑝 + 
𝑣𝛥𝑡

𝑐
 = 𝛥𝑡𝑝 + 

𝑣

𝑐
  𝛥𝑡                …… (2b) 

Substituting 𝛥𝑡𝑝 from eq. 1b in eq. 2b yields: 

𝛥𝑡 = (1 +
𝑣

𝑐 
) 𝛥𝑡′ + 

𝑣

𝑐 
 𝛥𝑡,         ….. (3b) 

or: 

𝛥𝑡

𝛥𝑡′ = 
(1+ 

𝑣

𝑐 
) 

(1− 
𝑣

𝑐 
) 
 .                     …… (4b) 

But 𝛥 x = c.Δt and  𝛥𝑥′ = c.𝛥𝑡′. Thus, we can write: 

𝛥𝑥

𝛥𝑥′
 = 

(1+ 
𝑣

𝑐 
) 

(1− 
𝑣

𝑐 
) 
                        ……. (5b) 
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C. Derivation of the Mass and Energy Transformations 

Consider the two frames of reference F and 𝑭′shown in Figure 3a. Suppose that the 

two frames are moving relative to each other at a constant velocity v. Consider a 

uniform cylindrical body of mass  𝒎𝟎 and length of 𝒍𝟎  placed in 𝑭′ along its travel 

direction. Suppose that at time 𝒕𝟏 the body leaves point 𝒙𝟏 (𝒙𝟏
′ in 𝑭′) and moves with 

constant velocity v in the +x direction, until it reaches point 𝒙𝟐 (𝒙𝟐
′ in 𝑭′) in time 𝒕𝟏 

(𝒙𝟐
′ in 𝑭′). The body’s density in the internal frame 𝑭′ is given by: 𝝆′ = 

𝒎𝟎

𝑨 𝒍𝟎 
 , where 

A is the area of the body’s cross section, perpendicular to the direction of movement. 

In F the density is given by: ρ = 
𝒎𝟎

𝑨𝒍 
 , where l is the object’s length in F. Using the 

distance transformation (eq. 8a) l could be written as: 

l =  
1+ 𝛽

1− 𝛽
  𝑙0                   …… (1c) 

Thus, we can write: ρ = 
𝑚0

𝐴𝑙 
 = 

𝑚0

𝐴  𝑙0 (
1+ 𝛽

1− 𝛽
) 

 = ρ0 (
1− 𝛽

1+ 𝛽
)                  …. (2c) 

Or, 

𝜌

𝜌0
 = 

1+ 𝛽

1− 𝛽
                            …. (3c) 

The kinetic energy of a unit of volume is: given by: 

𝑒𝑘 = 
1 

2
 ρ 𝑣2= 

1 

2
 ρ0 𝑐2  

(1− 𝛽) 

(1+ 𝛽)
 𝛽2 = e0 

(1− 𝛽) 

(1+ 𝛽)
 𝛽

2
                        …. (4c) 

Where e0 = 
1 

2
 ρ0 c2. 
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For β →0 (or v << c) eq. 3c reduces 𝜌 = 𝜌0 , and the kinetic energy expression (eq. 4c) 

reduces to Newton's expression e =
1 

2
𝜌0 𝑣

2. Figures 1c depict the relativistic energy as 

functions of β.  

 

 

Figure 1c. Kinetic energy as a function of velocity 

As shown by the figure the relativistic kinetic energy of distancing bodies relative to 

an observer in F is predicted to decrease with β, approaching zero as β → 1, while the 

density in F for approaching bodies is predicted to increase with β, up to extremely 

high values as β → -1. Strikingly, for distancing bodies the kinetic energy displays a 

non-monotonic behavior. It increases with β up to a maximum at velocity β = 𝛽𝑐𝑟 , and 

then decreases to zero at β = 1.  Calculating 𝛽𝑐𝑟 is obtained by deriving eq. 4c with 

respect to β and equating the result to zero, yielding: 
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𝑑

𝑑𝛽
 (β

2 (1− 𝛽) 

(1+ 𝛽)
)  = 2 β 

(1− 𝛽) 

(1+ 𝛽)
 + β

2[(1+ 𝛽)(−1)− (1−𝛽)(1)]

(1+ 𝛽)2
 = 2 β

(1−𝛽2 − 𝛽)

(1+ 𝛽)2
  = 0   … 

(5c) 

 

For β ≠ 0 and we get: 

 

β
2
 + β – 1 = 0                    … 

(6c) 

Which solves for: 

𝛽𝑐𝑟 = 
√5−1

2
 = Φ ≈ 0.618                     … 

(7c) 

Where Φ is the Golden Ratio. Substituting 𝛽𝑐𝑟 in the energy expression (eq. 4c) yields: 

 (𝑒
𝑘

)𝑚𝑎𝑥 =  𝑒0   𝛷2 1−Φ 

1+ Φ
                    …. 

(8c) 

From eq. 6c we can write: Φ2 + Φ – 1 = 0, which implies  1 −  Φ =  Φ2 and 1+ Φ = 
1

Φ
.  

Substitution in eq. 8c gives: 

 (𝑒𝑘)𝑚𝑎𝑥 =  Φ5 e0   ≈ 0.09016994  e0                          …. 

(9c) 

       

Section II. Derivation of the term 
𝒗−𝒄

𝒄
  for a typical neutrino velocity experiments 

For a typical neutrino-velocity experiment, consider a neutrino that travels a distance 

d from a source (e.g., at CERN) and arrives at a detector (e.g., at Gran Sasso). 
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According to IR, such an experiment includes three frames: the neutrino frame F, the 

source frame 𝐹′, and the detector frame 𝐹′′.  F is departing from 𝐹′ with velocity v 

and approaching 𝐹′′ with velocity – v.  𝐹′ and 𝐹′′are at rest relative to each other. To 

derive the term 
𝑣−𝑐

𝑐
  for a typical neutrino velocity experiments we use eq. 4 to write:  

∆𝑡𝑆 =  
𝛥𝑡

1−
𝑣

𝑐

 ,                               …… (14) 

and 

∆𝑡𝐷 =  
𝛥𝑡

1−
−𝑣

𝑐

  =  
𝛥𝑡

1+
𝑣

𝑐

                                 …… (15) 

Where v is the neutrino velocity, c is the velocity of light. 𝛥𝑡, ∆𝑡𝑆, and ∆𝑡𝐷 are the 

times, as measured in frames F (neutrino rest-frame), 𝐹′ (source), and 𝐹′′ (detector), 

respectively. 

 The neutrino time of flight 𝑡𝑜𝑓𝑣 is equal to difference between the times as 

measured in the detector and the source, or: 

 

𝑡𝑜𝑓𝑣 =  
𝑑

𝑣
  = 

𝛥𝑡

1+ 
𝑣

𝑐

 - 
𝛥𝑡

1−
𝑣

𝑐

 = - 
 2 

𝑣

𝑐

1−(
𝑣

𝑐
)2

.                                                               ….  (16) 

 

Where d is the travel distance. For an early neutrino arrival time, δt, with respect to 

the velocity of light, we can write: 

𝑑

𝑐
 - δt = 𝑡𝑜𝑓𝑣   =  -  

2 
𝑣

𝑐

1−(
𝑣

𝑐
)2

 
𝑑

𝑣
 .                                                                     ….. (17) 

Solving for 
𝑣

𝑐
  yields 
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𝑣

c
 = (

2 

 1−
c 𝛿𝑡

𝑑

− 1) 
1

2,                                                                                             …. (18) 

 

Or:  

𝑣−c

𝑐
=  √

2 

 1− 
c  𝛿𝑡

𝑑

− 12  - 1 

 

    

  

 


