Beyond Set theory in Bell inequality
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Abstract

Feynman pointed out on a logic and mathematicadea¢ in particle physics. The paradox is that
we get for the same entity only local dependence global dependence at the time. This
contradiction is coming from the dual nature of plagticle viewed as a wave. In the first capadity i
has only local dependence in the second (wave)igpahas a global dependence. The classical
logic has difficulties to resolve this paradox. abbing the classical logic to logic makes the
paradox apparent. Particle has the local properiaem dependence with other particles, media has
total dependence so is a global unique entity. Noveet theory, any element is independent from
the other so disjoint set has not element in comrdgith this condition we have that the true false
logic can be applied and set theory is the prirddipandation. Now with conditional probability
and dependence by copula the long distance depemdes effect on any individual entity that
now is not isolate but can have different type epehdence or synchronism ( constrain ) which
effect is to change the probability of any particd® particle with different degree of dependence
can be represented by a new type of set as fuzzi sehich the boundary are not completely
defined or where we cannot separate a set in its pa in the evidence theory. In conclusion the
Feynman paradox and Bell violation can be explastesl new level of complexity by many valued
logic and new type of set theory.

1. Bell inequality

Let X = {Xl’ Xo» xn} be a set of elements with joint probabilities
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Also in the classical probability theomg(AL B) = p(A) + p(B) — p(An B) and the probability of a
set is the sum of probabilities of its elements:

p(0) =0,p(x ). p (3. p{xgp{xpx )= p{x}rrp{x Do {x x b= p{x )y p{x })
o) = pxah e p(xd) p{xyxpx = p{xprp(x hrp{x b

because the intersection of elementary events jgyem
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In a graphic way it is shown in Fig. 1
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Figure 1. Set theory intersections or elements

These sets have the following Bell inequality.
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Now we introduce alependence between events. Consider an event with propergné another
event with a negated property“AThese events can be called dependent (correlafétd}
dependence takes place for particles. Considesvant with property® " C that is with both
properties A and € at the same time. We cannot measure the two fiepdoy using one
instrument at the same time, but we can use thelation to measure the second property if two
properties are correlated. We can also view antewith property AN Cas two events: evenge
with property A ance.c with the property C in the opposite state (negatddhe number of pairs of
events ¢4, e.c) is the same as the number of events with the sapitign of A andC® AN CC. In
this d’Espagnat explains the connection betweenstt theory and Bell's inequality. It is known
that the Bell's inequality that gives us the rgalkibondition is violated . Conclusion. The Bell
inequality is based on the classical set theory im@onnected with the classical logic. The set
theory assumes empty overlap (as a form of indeppere) of elementary elements which is the
basis for the Bell inequality. Thus the logic ofpdadence can differ from the logic of
independence. Thus we must use a theory beyoraassical set theory.

2. Dependence and independence in the double slit experiment as physical
image of copula and fuzzy

The goal of this section is to analyze the doulies sxperiment [Feynman, 1988] as a

demonstration of the need to build a separate yheodeal with dependent/related evens under
uncertainty. The design and results of the doslile experiment is outlined in Fig. 5a,b [Double-

slit experiment, 2015], where points in Fig 2b shparticles (elementary probability event) that

pass slits.
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Figure 2.

Fig. 5¢ shows theoretical result of the double estipreiment when only the set theory is used to
combine events: one event ®r one slid and another event fer the second slid. In this set-
theoretical approach it is assumed that evenend @ are elementary events that do not overlap
(have empty intersection, “incompatible”, complgtieldependent). In this case, the probability that
either one of these two events will occur is

p(e; Uey) = p(er) +p(ey)

In classical logic it is always true that varialdeself-dependent (that is the repeat of the psces
produces the same result). In the probability dak it is not the case. The random factors can
change the output when the situation is repea@dite often the probabilistic approach is applied
to studyfrequency of independent phenomena. In the cadepdndent variables we cannot derive
p(x1,X2) as a product of independent probabilitiep(x;)p(x2) and must use multidimensional
probability distribution with dependent valuabl@he common technique for modeling it is a
Bayesian network. In the Bayesian approach theeeciel about the true state of the world is
expressed in terms of degrees of belief in the fofmBayesian conditional probabilities. The
conditional probability is the main element to eegs the dependence or inseparability of the two
statesx; and x; in the probability theory. The joint probabili{y(x,%z,...,X,) is represented via
multiple conditional probabilities to express thepdndence between variables. Tdopula
approach introduces aingle function C(U;,U,) denoted aslensity of copula as a way to model

the dependence or inseparability of the variables with the following property inetltase of two
variables. The copula allows representing the jpmobability p(x;,X;) as a combination (product)
of single dependent part(u;,u;) and independent parts: probabilitiggx;) and p(x2).The
investigation of copulas and their applications isather recent subject of mathematics. From one
point of view, copulas are functions that join asuple' one-dimensional distribution functioms
andu, and the corresponding joint distribution function.



3. Conditional probability ,dependence in probability calculus and
copula

A joint probability distribution
POGXg, - X )= P (X)P (X2 [X1)P K3 X2 Xp)oo P Xy XX 20X g

e.g., for two variablep(X;, X,) = p(X;) p(X,|X;) A function c(u;,U,) is adensity of copula

if P(X1,%2) = (U, Up)P(Xe)P(%2) = P(X1)P(XalX1)
whereu,=|p(x1) dx; andu;=/p(Xz) dxo.

A cumulative function C with inverse functiong(u;)) as arguments:

C(x%(u)), X5(uy)) =j P(Xq, X X dX 5= [ Uy (xq), uo(X5)] P(X9 P(x Y dx fix 5= p(x ) p(x 4 x ydx gx -

du du
where p(Xl)Zd—Xi.p(Xz :d_Xj

and respectivelinverse functions U (X;) =I P(X)dX4, U (X ) =I p(x HdX .

An alternative representation otamulative function C

Cx(Up), Xo(U2)) = Cuyl ) = [o(uyu JP(x Jdx p(x Jdx =[c(u u YHu du
and

62C(u1,u2)
C(Uh,U,) =———==
(W, Uy) oudU,
Copula properties[13.14.15.16.17].

2-D case
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3-D case

P4, X0, X0) = P(X) P(X2 [ X)P (X3 [X 2 X )=C U ol Ip K Jp &K P & 3
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or p(x) = X, ax,
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and
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General n-D case
_ 0"C(uy,Uy,...u,) 1
PO 1%, X510 X021 )= oy, 0U, 0" C(U iy n)IO(Xn)
ouy,...,0U,_1
Conditional copula:
_6 C(uy,Uy,...U, ) 1
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In literature commonlyC(Uy, U, ...,u,, ) is denoted asopula and C(Uy,Us, .... U, ) is denoted as a
density of copula.

4. Examples of Copula and dependence

When u(x) is a marginal probability F(x), u(x) =xfr@nd u is uniformly distributed then the inverse
function x(u) is not uniformly distributed, but haalues concentrated in the central part as the
Gaussian distribution. The inverse process is sgprted graphically in Figures1-3.
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Figure 2. Symmetric joint probability and copula
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Figure 3 Asymmetric joint probability and symmettizpula

Consider another example where a joint probabiignsity functionp is defined in the two
dimensional interval (0,%)0,1) as follows,

X+
p(x,y) =222

3
Then the marginal function in this interval is

COxy) = [ pix )iy =[ Xy =D

Next we change the reference
p(x) :g—ill.p(xz) :‘;—Z
and use the marginal probabilities
u = [ p(x)dx,u, = [ p(y)dy
to get
6

u, :C(2,y):w yO[0,1

w () =C(x, )= , x0[0,2]

This allows us computing the inverse function tentify variables x and y as functions of the
marginal functionsl; andu,:



1+24u -1
x(ul):fl

y(u,) =y1+3u, -1

Then these values are used to compute the copualdu@ction (1),

C(Ul,Uz):
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A, -2 (2)
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5. Physical Paradox and physical meaning of Copula and fuzzy
theory

Feynman’s argument [ 25] involves the idea thassitaally we think in terms of two distinct and
incompatible concepts , particles and waves. Theseepts are incompatible because particles are
localized and waves are not. To see this, let ard sitith a point particle oelementary event. In
classical mechanics, particles are objects loadlinespace, and therefore, can only interact with
systems that local for them. If a particle thefides with another particle, say constituent of a
wall placed in the way of the original particle, aweraction will occur. However, as soon as the
particle loses contact with the wall, the interatceases to exist. In other words, particles aater
locally or havelocal not global dependence. The second basic concept is the concept of waves.
Historically, the physics describing a point pdeievas extended to include the description of
continuous media, and, more importantly to our current discusstbe, vibrations of such media in
the form of waves. Thereforeaves were consideredgibrations of a medium made out ofeveral
point particles, and the local interactions betwé&ea neighboring particles would allow for a
perturbation in one point of the medium to be pgated to another point of the medium. More
importantly, such effect depends not only on thsitmn of the particle, but also possibly alf
other particles or elementary events that make up thdiune and also on all interactions or
boundary conditions that such particles need tisfgatn other words, waves interawin-locally.

Thus, a media and theave give an example ofotal (global) dependence in contrast with the
particle. The paradox is that an element (a paiticas a property (global dependence) of the whole
media. This is impossible in the classical logite global dependence (non-local interaction of the
whole system) is a property of the structure ofrtiedlia. An element cannot have such a property
of the whole system because an element has nawgucTo explain why the paradox is only
apparent we start from Kolmogorov's probability @ that is defined at the level of
propositional classical logic and set theory.



5.1 Probability Space

Let Q be a finite set, F be an algebra ogemand p be a real-valued function, .-~ R . Then
(Q,F, p) is aprobability space [Kolmogorov, 1950], and p probability measure, if and only if:

K1. 0< p{y})<10¢ 0Q
K2. p(Q) =1

K3. p({q,wj})= p{ e} + p({wj})

The elementsq of Q are called elementary probability events or symg@émentary events. The

elementary events are disjoint sets. Given two seementary probability events A and B the
intersection of the two events is given by the egpion

p(An B) = p(A B) =P(A)P(B|A)
When the two sets of events are independent we have
p(An B) = p(A B) =P(A)P(B)
with a trivial density of copula, c(A,B) = 1.
p(e; Uey)) =p(Aor B) = p(el)+p(e2) + p(el and e2)
Now when the events ar dijoint one with the otherhave
p(e; U ez)) =p(Aor B) = p(el) + p(e2)
Thereal joint probability for double dlit experiment by quantum mechancisis
p(al,az) = k cod @fl—az)

for which copula is
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This copula is tabulated as follows:

1 0.846 0.7 0.561 0.43 0.3070.1920.088 O
0.846 1 0.9690.8990.8050.692 0.56 0.4010.125
0.7 0969 1 0.9790.9230.8390.7250.572 0.25
0.5610.8990.979 1 0.982 0.93 0.8430.708 0.375
M1=| 0.43 0.8050.9230.982 1 0.9820.927 0.82 0.5
0.307 0.6920.839 0.93 0.982 1 0.98 0.909 0.625
0.192 0.56 0.7250.8430.927 0.98 1 0.973 0.75
0.088 0.401 0.5720.708 0.82 0.9090.973 1 0.875

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

Y=X=X= (17)

o R P
~ O O

Now for the dependence element as copula we hava¢htheory is not sufficient because two
disjoint sets can have a probability ( evidenc#fgibnt from the traditional formula

In a graphic way we see the traditional set theatly dependences by arrows



Figure 4. Set theory intersections or elements dépendence
Extension of the set theory by evidence theoryuangum mechanics can be found in the paper of

Germano Resconi and others International Journal of Modern Physics C. Vol. 10 No 1 (1999)
29-62

Conclusion

Feynman pointed out on a logic and mathematicadmac in particle physics [1]. The paradox is
that we get for the same entity only local deperdeand global dependence at the time.

This contradiction is coming from the dual natufetlee particle viewed as a wave. In the first
capacity it has only local dependence in the se¢magte) capacity it has a global dependence. The
classical logic has difficulties to resolve thigg@dox. Changing the classical logic to logic makes
the paradox apparent. Particle has the local prpperzero dependence with other particles, media
has total dependence so is a global unique eMiyv, in set theory, any element is independent
from the other so disjoint set has not elemenbimmon. With this condition we have that the true
false logic can be applied and set theory is theacyal foundation. Now with conditional
probability and dependence by copula the long dtgtadependence has effect on any individual
entity that now is not isolate but can have differiype of dependence or synchronism ( constrain )
which effect is to change the probability of anytjgée. So particle with different degree of
dependence can be represented by a new type akdekzzy set in which the boundary are not
completely defined or where we cannot separatet ansiés parts as in the evidence theory. In
conclusion the Feynman paradox and Bell violatian be explained at a new level of complexity
by many valued logic and new type of set theory.
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