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30 Abstract

32 In this paper, we propose new vector similarity measures of single valued and interval neutrosophic
sets by hybridizing the concepts of Dice and cosine similarity measures. We present their applications in
35 multi attribute decision making under neutrosophic environment. We use these similarity measures to
37 find out the best alternative by determining the similarity measure values between the ideal alternative
38 and each alternative. The results of the proposed similarity measures have been validated by comparing
40 with other existing similarity measures reported in the literature for multi attribute decision making.
The main thrust of the proposed similarity measures will be in the field of practical decision making,

43 medical diagnosis, pattern recognition, data mining, clustering analysis, etc.
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Introduction

53 Multi attribute decision making (MADM) has received much attention to the researchers as it has caught
55 great acceptance in the areas of operations research, social economics, and management science, etc. We
57 encounter MADM problems under various situations, where the number of feasible alternatives and actions

need to be selected based on a set of predefined attributes. Lots of research work have been done on
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MADM problems, where the ratings of alternatives and/or attribute values are expressed in terms of crisp
numbers [1], interval numbers [2], fuzzy numbers [3], interval-valued fuzzy numbers [4], intuitionistic fuzzy
numbers [5], interval-valued intuitionistic fuzzy numbers [6], grey numbers [7, 8], etc. However, in realistic
situations, due to time pressure, complexity of the problem, lack of information processing capabilities,
poor knowledge of the public domain and information, decision makers cannot provide exact evaluation of
decision-parameters involved in MADM problems. In such situation, preference information of alternatives
with respect to the attributes provided by the decision makers may be imprecise or incomplete in nature.

Imprecise or incomplete type of information can be dealt with neutrosophic sets (NSs), originally de-
veloped by Smarandache [9, 10]. NSs are characterized by truth, indeterminacy, and falsity membership
functions which are independent in nature. In MADM context, the ratings of the alternatives provided
by the decision maker can be expressed with NSs. These NSs can handle indeterminate and inconsistent
information quite well, whereas, intuitionistic fuzzy sets and fuzzy sets can only handle incomplete or par-
tial information. The application of neutrosophic set in MADM problems is recently an attractive and
interesting topic to the researchers [11, 12, 13, 14]. From scientific and engineering point of view, Wang
et al. [15] proposed single-valued neutrosophic set (SVNS) and offered some basic definitions regarding to
the set theoretic operators. However, in reality sometimes the truth, the indeterminacy, and the falsity
degree of a certain statement can be easily defined by interval numbers instead of crisp values. Wang et
al. [16] proposed interval neutrosophic set (INS) and provided some definitions relating to set theoretic
operators. As an important part of the modern decision science, some methods have been developed for
MADM problems in single-valued neutrosophic set or interval neutrosophic set environment, for example,
weighted aggregation operators [17, 18, 19, 20, 21, 22], TOPSIS method [23, 24], outranking method [25, 26],
grey relational analysis method [27, 28, 29], inclusion measures [30], subset-hood measure [31], maximizing
deviation method [32], etc.

However, as an effective method and a wide range of applications in various fields, similarity measure [33,
34, 35, 36, 37] can be used as a fruitful tool to deal with MADM problems, in which largest weighted similarity
measure value between positive ideal alternative and alternatives determines the best alternative. Majumdar
and Samanta [38] defined some similarity measures between two SVNSs with the help of distance measure,
matching function, and membership grades of neutrosophic sets. Ye [39] proposed improved correlation
coefficient of SVNS and studied some of its properties, and then extended it to a correlation coefficient
between INSs. Broumi and Smarandache [40] defined Hausdorff distance measure between two neutrosophic
sets and provided some similarity measures based on these distances. They also proposed the similarity
measure between two neutrosophic sets by using set theoretic approach, and matching function in the same
discussion. Ye [41] developed some similarity measures of INSs and applied them to multi-criteria decision

making problems. Furthermore, Ye [42] proposed another similarity measure called vector similarity measure
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of SVNSs and INSs by considering the SVNSs as a three dimensional vector elements. Similarly, Broumi and
Smarandache [43], extended the concept of cosine similarity measure of SVNSs into INSs and applied it to
pattern recognition. Ye [44] developed the improved cosine similarity measure by using the vector concept
and used it to medical diagnosis.

In the paper, we propose hybrid vector similarity measures for both SVNSs and INSs by extending the
concept of variation coefficient similarity method [45] to neutrosophic environment and establish some of
their basic properties. We also present the application of these proposed similarity measures to MADM
under SVNSs and INSs. In order to do so, the rest of the paper is organized as follows: Section 2 presents
the preliminaries of neutrosophic sets, SVNSs, and INSs. Section 3 represents vector similarity measure
of SVNSs and INSs. Section 4 is devoted to develop the hybrid vector similarity measures for SVNSs and
INSs. Hybrid vector similarity measure based MADM problems under SVNSs and INSs environment are
described in Section 5. Finally in Section 6, two examples are provided to illustrate the MADM problems
under SVNSs and INSs environment, and compared the results with other existing methods to demonstrate

the effectiveness of the proposed similarity measures.

2 Preliminaries

In this section, we provide a brief overview of the concepts of neutrosophic sets, single-valued neutrosophic

sets, interval neutrosophic sets, some vector similarity measures and their some properties.

2.1 Single valued neutrosophic set

Definition 1. [9, 10] Let X be a space of points (objects) with generic element in X denoted by x.
Then a neutrosophic set A in X is characterized by a truth membership function T4 (z), an indeterminacy
membership function I4(z), and a falsity membership function Fy4(z). The functions Ta(z), Ia(z), and

F4(z) in X are real standard and non-standard subsets of |70, 11| and satisfy the relation
~0 < supTa(z) + supla(z) + supFa(z) < 3%,

However, Smarandache [9] introduced the neutrosophic set from philosophical point of view. To deal with
science and engineering applications, Wang et al. [15] introduced the concept of SVNS, which is a subclass

of the neutrosophic set and provided the following definitions.

Definition 2. [15] Let X be a universal space of points (objects), with a generic element in X denoted
by z. A single-valued neutrosophic set A C X is characterized by a truth membership function 7'4(x), an
indeterminacy membership function I4(x), and a falsity membership function F4(z). Then a SVNS A can

be denoted by the following form: A = {<x,TA(x), ITa(x), FA(x)>|x € X} where, Ta(x), La(x),and Fa(z)
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belong to the unit interval [0,1] for all z € X. Therefore, the sum of T4(x), I4(z), and Fa(x) satisfies the

condition 0 < Th(z) + Ia(x) + Fa(x) < 3.
For convenience, we assume that A = (Ta(z), 14 (), Fa(z)) is the single valued neutrosophic set in X.

Definition 3. [15, 19] Let A and B be two SVNSs defined by A = (Ta(z), Ia(x), Fa(x)) and
B = (Tp(z),I5(z), Fz(z)) in a universe of discourse X. Then some operational rules are presented as

follows:
1. Complement: A° = (Fa(z),1 — Ia(z), Ta(z))
2. Containment: A C B if and only if Ty (x) < Tp(x), Ia(z) > Ip(z), Fa(x) > Fp(x) for all z in X;
3. Equality: A= B ifandonlyif AC Band AD B
4. Union: AU B= (2, Ta(z)V Tp(z),Ia(z) A Ip(z), Fa(z) A Fp(z)) for all z in X;
5. Intersection: AN B= (x,Ta(x) ATp(x),Ia(z)V Ip(z), Fa(z)V Fp(z)) for all  in X;
6. Addition: A& B= {(2,Ta(z) + Tp(z) — Ta(z).Tp(z),Ia(z).I5(x), Fa(z).Fp(z))|lz € X };

7. Multiplication: A ® B= < ©Ta@)To(@), Lalo) +I5t2) = Lal2) I (), > zeX
)

Fy(z)+ Fp(x) — Fa(x).Fp(z
2.2 Interval neutrosophic set

Definition 4. [16] Let D[0,1] be the set of all closed sub-intervals of the interval [0,1] and let X be an

ordinary finite non-empty set. An interval neutrosophic set (INS) A in X is an object of the form

SN
I
—=
T~
8
N~
=
8
e
B
—~
8
e
B

(2)) v € X},
where, T;(x) € D[0,1], I ;(z) € D[0,1], and F;(z) € D[0,1] with the relation
0 < supT'z(x) + supl () + supF;(z) < 3, for allz € X,

Here intervals T (z)= [Tj(x), TV (x)] c [0,1], I;(z)= [Jg(g;), 1Y (x)] C (0,1, Fi(e)=[Fk(z), FY(x)] c
[0, 1] denote, respectively the degree of truth, indeterminacy, and falsity membership of € X in A; moreover
Th(x)= infT;(x), TY(x)= supT;(x), I5(x)= inflz(x), 1Y (x)= suplz(z), F%(x)= infFj(z), FY{(x)=
supF ';(z) for every x € X. Thus, the interval neutrosophic set A can be expressed in the following interval

format:

A={{z,[T(2), T ()] [I5(2), I{(2)] [F¥(2), F{ ()]} |z € X}

where, 0 < supTg(x) + suplg(x) + sung(x) <3, Tj(x) >0, Iﬁ(x) >0 and Fg(x) >0 for all z € X.
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For convenience of computation, we assume that A = (T5(x), [ ;(z), 'i(z)) is the interval neutrosophic

set in X.

Definition 5. [16] Let A :<TA(33), I;(z), FA($)> and B :<Tg(m), 5(2), F5(z)) be two INSs in a universe

of discourse X, then the following operations are defined as follows:

—_

. Complement: Ac= {<x, [Fj(x),FAg(x)] , {1 - Ig(x),l - Ig(x)} , [T@(x),Tg(x)}> |z € X} ;

2. Inclusion: A C B if and only if Tg(x) < Tg(x), Tg(x) < Tg(x), Iﬁ(x) > IE(x), Ig(x) > IY(2),

L L U U :
Fi(x) > Fz(z), F;(z) > Fg(z) for all z € X;

3. Equality: A= Bifand only if AC Band AD B for all z € X;

4. Union: AUB = {<x [Tg(x) VTE(2), 7Y (x) v TY (a:)] : [IAé(a;) ATE(2), 1Y (x) A 1Y (x)] :
[FE(@) A Fh(@), FY (2) A FY(@)] Yo € X };

5. Intersection: AN B = {<x, [Tﬁ(x) A Té(x), Tg(x) A Tg(x)] , [Iﬁ(x) v Ié(x), Ig(x) Y% Ig(x)} ,
[Fg(x) V FL(z), FY(z) v Fg(x)} > lz € X}.

2.3 Vector similarity measures

The vector similarity measure is one of the important tools for the degree of similarity between objects.
However, the Jaccard, Dice, and cosine similarity measures are often used for this purpose. In the following
discussions, we recall some definitions of the Jaccard [46], Dice [47], and cosine [48] similarity measures
between two vectors. Let X =(x1,x2,...,2,) and Y =(y1,¥2,...,Yn) be two n-dimensional vectors with

positive co-ordinates.

Definition 6. [46] The Jaccard similarity measure between two vectors X =(z1,22,...,z,) and

Y =(y1,%2,-..,Yn) is defined as follows:

- XY _ Z;Z:l TiY;
IXIPHIYIP = XY 30 af + 20, vF — 2oy wavs

J(X,Y) (1)

where, || X|| = /> i, 27 and ||Y|| = /> y? are the Euclidean norms of X and Y, X.Y = >""" | z;y; is
the inner product of the vectors X and Y. Then, this similarity measure satisfies the following properties:
JIO0<J(X,Y) <1
J2 J(X,Y) = J(Y,X);

J3 JX,)Y)=1for X =Y ie. z;=y;(i=1,2,...,n) for every x; € X and y; € Y.
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Definition 7. [47] The Dice similarity measure between two vectors X =(z1,2,...,2,) and

Y =(y1,%2,...,Yn) is defined as follows:

2X.Y Zn, 21’iyi
E(Xa Y) = = 0 =1 D . (2)
IXI2HIYIR X af + 2 v

It satisfies the following properties:
El 0<E(X,Y) <1,
E2 E(X,Y) = E(Y, X);
E3 E(X,)Y)=1for X =Y ie. x;=y;(: =1,2,...,n) for every z; € X and y; € Y.

Definition 8. [48] The cosine similarity measure between two vectors X =(z1,22,...,%,) and
Y =(y1,92,--.,Yn) is the inner product of these two vectors divided by the product of their lengths and is

defined as follows:
XY o E?:l TiY;
XY /Y e v

C(X.Y) = (3)

It satisfies the following properties:
Cl0<CX,Y) <1,
C2 C(X,Y)=C(,X);
C3CX,)Y)=1for X =Y ie x;=y;(1=1,2,...,n) forevery x; € X and y; € Y.

These three formulas are similar in the sense that they assume values in the interval [0, 1]. Jaccard and
Dice similarity measure are undefined when x; = 0 and y; = 0 and cosine similarity measure is undefined

when z; =0ory; =0fort=1,2,...,n.

Definition 9. [45] The variation co-efficient similarity measure between two vectors X =(z1,a,...,Ty)

and Y =(y1,¥2,-..,yn) is defined as follows:

2XY XY
p W S § R A - S
[ X112+ [[Y][? X[ 1Y
20y LT
= n212:1 xgi 2+(1_)‘) nzl_glxyn P
Doim1 T D Vi Vo Y v

V(X,Y)=

It satisfies the following properties:
Vi0<V(X,Y)<1;
V2 V(X,Y)=V(Y,X);

V3V(X,)Y)=1for X =Y ie z;=y(1=1,2,...,n) forevery x; € X and y; € Y.
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3 Vector similarity measures of SVNSs and INSs

3.1 Vector similarity measures of SVNSs

We assume that the triples (Ta(z;), La(x;), Fa(z;)) and (T's(z;), Ip(x;), Fp(x;)) represent respectively the
coordinates of two SVNSs A={(T'a(x;),1a(z;), Fa(x;)) | z; € X} and B = {{Ts(x:), Ip(z;), Fp(z;)) | x; € X}

in a three dimensional space. Then the vector similarity measures between SVNSs can be defined as follows.

Definition 10. [39] Let A=(Ta(z;),Ia(z;i), Fa(z;)) and B = (Tp(z;), Ip(x;), Fp(z;)) be two SVNSs in a
universe of discourse X ={z1,x2,...,2Zn}. Then the Jaccard similarity measure between SVNSs A and B

in the vector space is defined as follows:

n

1y Ta(z:)T(xi) + Ia(x;)Ip(x;) + Fa(z;) Fp(x;)
i=1 | (T3(w) + 13 (2s) + FA(%:)) + (Th(x:) + Ip () + Fa(xs))

— (Ta(s)Tp(x;) + Ta(xi)Ip(2:) + Fa(zi)Fp(x;))

Jac(A, B)

3|’—‘

and if w; € [0, 1] be the weight of each element x; for i = 1,2,...,n such that Y 7 ., w; = 1, then the weighted

Jaccard similarity measure between SVNSs A and B is defined as follows:

Jacy,(A, B) Zw% Ta(z:)Tp(xi) + La(z:) 5 (7;) + Fa(x;) Fp(x;)
= | (TR + L) + Fi() + (TR + () + Fj(x))

— (Ta(z:)Tp(xi) + La(xi)Ip(x;) + Fa(z:) Fp(w:))

Definition 11. [39] Let A=(Ta(2;),la(x;), Fa(z;)) and B = (Ts(x;),Ig(x;), Fp(x;)) be two SVNSs in a
universe of discourse X ={x1,22,...,2,}. Then the Dice similarity measure between SVNSs A and B in

the vector space is defined as follows:

n

1 2 (Ta(@:)To(@i) + La(2:) [p (i) + Fa(w:)Fp(w:))
DiclAB) = 20 Ty + B + F3e0) + (T3] T (o) + R "

and if w; € [0, 1] be the weight of each element z; for i = 1,2, ..., n such that Z@ L w; = 1, then the weighted

Dice similarity measure between SVNSs A and B is defined as follows:

2(Ta(xi)Tr(x;) + Ta(xi)Ip(x;) + Fa(x;)Fp(x;))
Dicu (4, B) sz (T20z:) + (@) + Fo@)) + (T2 () + I (ws) + F2(e)]| ®)

Definition 12. [39] Let A=(Ta(z;),Ia(z:), Fa(z;)) and B = (Tp(z;), Ip(x;), Fp(z;)) be two SVNSs in a

universe of discourse X ={z1,x2,...,2,}. Then the cosine similarity measure between SVNSs A and B in
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the vector space is defined as follows:

n

Cos(A, B) = 1 3 (Ta(@i)Tp(xi) + La(wi)Ip(2) + Fa(@i) Fp(x:))
i=1 [\/(fo(xz‘) + I3 () + F3(22) /(T3 (i) + T3 () + Fé(xz‘))}

9)

n

and if w; € [0, 1] be the weight of each element x; for i = 1,2,...,n such that > | w; = 1, then the weighted

cosine similarity measure between SVNSs A and B is defined as follows:

n

Cosw(A, B) = sz (Ta(x:)Te(xi) + La(xi)Ip(x:) + Fa(z:) Fp(zi)) .
i=1 [\/(Tﬁ(%) + I3 (i) + F3 () /(T (i) + T3 (2:) + F3 (1))

Eq. (6), Eq.(8), and Eq.(10) satisfy the following properties:
Pl. 0 < Jacy(A,B) <1; 0 < Dicy(A,B) <1;0 < Cosy(A,B) < 1;
P2. Jacy(A, B) = Jacy (B, A); Dicy(A, B) = Dicy,(B, A); and Cosy, (A, B) = Cos, (B, A);

P3. Jacy(A, B) = 1; Dicy,(A,B) = 1; Cosy(A,B) = 1if B=Aie Ta(z;) = Tp(zi), La(zi) = Ip(x;),

and Fa(z;) = Fp(x;) for every x;(i =1,2,...,n) in X.

Jaccard and Dice similarity measures between two SVNSs A=(T's(x;), Ta(x;), Fa(x;)) and

B = (Tp(x;),Ip(x;), Fp(x;)) are undefined for A=(0,0,0) and B=(0,0,0) that is when T4 =4 = F4 =0
and Tp = Ip = Fp = 0 for all © = 1,2,...,n. Similarly, the cosine similarity measure is undefined for
A=(0,0,0) or B=(0,0,0) that is when Ty =14 = Fa =0orTg=Ig=Fg =0foralli=1,2,...,n. In
this case, the similarity measure values Jac, (A, B), Dic,(A, B) and Cos, (A, B) of SVNSs A and B are

assumed to be zero.

3.2 Vector similarity measure of INSs

Let A=(Tj(w:), I3(:), F4(w1) ) and B=(Tp(:),

[5(;), Fg(m¢)> be two INSs in a universe of discourse X.
We consider the triples <ATA (i), AT 5 (), AFA(m¢)> and <ATB(3}¢), Alg(x:), Al (xz)> as the representa-

tions of A and B in a three dimensional vector space, where for all z; € X(i =1,2,...,n):

h T
D>1h

el
IS

2ATE($i) = [Tg'(fti) + Tg(xz)] 5 2AI~B§(CQ) = [IB(CCi) + Ig(ftl)} s QAFB(CE) = [F (CEZ) + Fg(xl)] .

s}

Then the vector similarity measures between INSs can be defined as follows.

Definition 13. [43] Let A=<TA($¢),IA($1),FA(%')> and B=<TB(JJ¢),I~B(3}¢),FB($Z')> be two INSs in a

universe of discourse X ={x1,xa,...,2,}. Then the cosine similarity measure between A and B in the
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vector space is defined as follows:

zn: AT j () AT (x;) + ALy (i) Al g(:) + AF 4 () AFg ()

=1 \/(ATA(%-))2 + (Al () + (A A(xi))Q.\/(ATB(xi))2 + (AT5()° + (Aﬁg(xi))’
(11)

If w; € [0,1] be the weight of each element z; for i = 1,2,...,n such that >.7" ; w; = 1, then the weighted

C'OSAB

3I>—‘

cosine similarity measure between A and B is defined as follows:

7)) ATy (2;) + Ay (2) Al (2:) + AF;(2) AF5()
m 1(@)” + (ALi() + (AFs ()’

< (AT () + (Al p(2)* + (A ()’

Cosy( fl B :sz

Eq.(12) satisfies the following properties:
Cl. 0 < Cosy(A,B) <
C2. Cosy(A, B) = Cos,(B, A);

C3. Cosy(A,B) = 1if A = B ie. when Tk (x;)= Tk(x:), I%(xi)= Ik(x;), FE(ai)= FL(z;), TY ()=

Ulr) TU (7= TU (7 Ul N U (s, L
T (i), 15 (zi)= I5(z;) and F (z;)= Fg(x;) fori=1,2,...,n
Definition 14. Let A= < i (20), I (20), Fz (x1)> and B:<TB (2:), [5(x:), Fé(mi)> be two INSs in a universe

of discourse X ={x1,z2,...,2,}. Then the Dice similarity measure between INSs A and B in the vector

space is defined as follows:
2(AT~A(@)ATB(@)  Ala(z)Alp(as) + AF, (xi)AFB(a:i))
1 ((ATa()" + (ALg()" + (AF3(@0)?)

+ ((ATp(0)" + (Alp()” + (AFp(x:)*)

and if w; € [0, 1] be the weight of each element z; for i = 1,2,...,nsuch that ., w; = 1, then the weighted
Dice similarity measure between A and B is defined as follows:

Dicw(A’ B) _ anwi 2(ATA(xi)ATB(xi) + AiA(CCl)AjBS(Cm) + AFA(CCl)AFB(xl)) (14)

i=1 ((ATA(@))2 + (Afg(xi)f + (AFA(%))g)

+ (AT (w0)* + (M) + (AFp()?)

Proposition 3.1. The Dice similarity measure Dicy, (fl, B) between A and B satisfies the following proper-

ties

D1. 0 < Dic,(A,B) <1
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S
[\S}
S
g.

£
=

Ez
I

Dicy(B, A);

D3. Dicy(A,B) =1 if A = B ie. when T(z;)= Tk(w), I%(x;)= I5(x:), FE(x))= Fk(w), TY (x:)=

TY(xz;), 1Y(x;)= Ig(azi) and Fg(xi): Fg(xz) fori=1,2,... n.

Proof. D1. It is obvious that Dic, (A, B) > 0 for all real values of AT (x;), Al ;(x:), AF;(x;), ATg(x;),

Alz(z;), and AFg(x;) for i = 1,2,...,n. Now consider the expression

It is obviously greater than zero for any real value of ATA (x4), AfA (x4), AFA (x4), ATB (z;), A Né(a:i),
and AF‘A(@') for i = 1,2,...,n. Therefore the first property i.e the inequality 0 < Dic,(A, B) < 1

holds good for all values of x;(i = 1,2,...,n).

D2. Symmetry of Eq. (14) validates the property D2.

D3. We see that if Tj(xi): Té(xi), Ig(xi): Ig(xi), Fj(xi): Fg(xi), TAU(xi): Tg(xi), Ig(xi): Ig(xi)
1.

and FAU(xi): Fg(ajl) for i =1,2,...,n then from Eq. (14), we have Dic, (A, B) =
O
However, Dice similarity measure between two INSs fl:<1~’ i (20), I 5(2), F A(m¢)>
and B:<TB($1)’INB($1)’FB(xZ)> is undefined for ATAZ AINA: AFAZO and ATBZ Afgz AFB:(). Simi-
larly, the cosine similarity is undefined for AT ;= A NA: AFA:() or ATB: AfB: AFB:(). In this case, the

similarity measure values Dic, (A, B) and Cos, (A, B) of IVNSs A and B are also assumed to be zero.

4 Hybrid vector similarity measures of neutrosophic sets

In the following two subsections, we propose two co-efficient parameter depended vector similarity measures

for both SVNSs and INSs.

4.1 Hybrid vector similarity measure of SVINSs

Definition 15. Let A=(T4(x;), la(x;), Fa(x;)) and B = (Tg(x;), Ig(x;), Fg(x;)) be two SVNSs in a uni-
verse of discourse X ={x1,x2,...,2,}, and w; € [0,1] be the weight of each element z; for i = 1,2,...,n

such that >°"" ; w; = 1. Then, the hybrid vector similarity measure (HVSM) of SVNSs in the vector space

10
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is defined as follows:

n

\ Z 2(Ta(zi)T(xi) + La(xi)Ip(x;) + Fa(x;)Fp(x;))
(T3(2i) + I3 () + F3(20) + (T3 (i) + 15(20) + F3(24))]

1 _ zn: TA ajl)TB(ﬂii) + IA(xZ)IB(xZ) + FA(xl)FB(xl
= [ VT3 + Bl + FR@0)) /T3 + T30 + Fp(@)]

i=1

Hyb(A,B) = = (16)

and if w; € [0, 1] be the weight of each element x; for i = 1,2,...,n such that Y 7 ., w; = 1, then the weighted

hybrid vector similarity measure of SVNSs is defined as follows:

)‘Zw 2 (Ta(xi)Tp(:) + La(wi)Ip(xi) + Falxi) F(x:))
' T2 (z:) + I3 alm) + F3 a(@i) + (Té(x%) + I%(xz) + Fé(xZ))]

Hybw(A,B) = B /\)iwz [ TA(%)TB(%) +IA(x1)IB(xZ) —|—FA($1)F (331)

(T3 (i) + I3 (i) + FA () /(TR (i) + I (i) + Fj (1))

Proposition 4.1. The weighted hybrid vector similarity measure (WHVSM) of SVNSs A and B is denoted

by Hyb.,(A, B), satisfies the following properties:
H1l. 0 < Hyb,(A,B) <1
H2. Hyby(A, B) = Hyby (B, A);

H3. Hyb,(A,B) =1 if A = B i.e. when Ta(x;)=Tp(x;), Ia(x;)=Ip(x;), and Fa(z;)=Fp(x;), for i =
1,2,....n

Proof. HI1. From Dice and cosine similarity measures of SVNSs defined in Eq. (8) and Eq. (10), we have
0 < Dicy(A,B) <1 and 0 < Cos,y(A,B) <1 foralli=1,2,...,n. Now from Eq. (17), the HVSM

can be written as follows:

Hyb,,(A, B) = ADicy, (A, B) + (1 — X\)Cosy (A, B) (18)

<A+(1-XN=1.

Because Dicy, (A, B) > 0 and Cos,, (A, B) > 0, the HVSM Hyb,, (A, B) > 0 for any values of A € [0, 1].

This proves the first property of Hyb, (A, B) i.e. 0 < Hyb,, (A, B) <1
H2. Symmetry of Eq. (17) validates the property H2.

H3. IfTa(x;)=Tp(xi), [a(zx;)=Ip(x;), and Fu(x;)=Fp(x;), fori = 1,2, ..., n, then the value of Dic,, (A, B)
1 and Cosy (A, B) = 1. Therefore from Eq. (18), the value of Hyb,,(A, B) =1

This completes the proof. O

11



O©CO~NOOOTA~AWNPE

Hybrid vector similarity measure value between two SVNSs A=(T's(x;), [a(z;), Fa(z;)) and
B = (Tp(x;),Ip(x;), Fp(z;)) is assumed to be zero for A=(0,0,0) and B=(0, 0, 0).

4.2 Hybrid vector similarity measure of INSs

Definition 16. Let A:<Tj(xi), I;(xs), FA(%)> and B:<Té(xi), I5(z), Fé(xi)> be two INSs in a universe
of discourse X ={x1,x2,...,2,}. Then the hybrid vector similarity measure between A and B in the vector

space is defined as follows:

n 2( T (1) ATy (x;) + AT (w:) A (x1)+AFA(xi)AF~(a:i)) |

AZ

((A i

(2))* + (Al3(@:)" + (AF3(2:))?)

+ ((aTg@) + (AfBe(xi))? + (A%(xi))g)
i=1 \/(ATA(%))2 + (Ai,&(%’))z +

< (AT () +

2AFA(IE1‘) = [Fg(xz) + FAg(xl)] ’

2AF5(x) = [FE(z:) + FY ()]

If w; € [0,1] be the weight of the element x; for i = 1,2,...,n such that > ; w; = 1, then, the weighted

hybrid vector similarity measure(WHVSM) between A and B in the vector space is defined as follows:
w9 (ATA(@)A [a(x:) + AL;(2) AT 5 () + AF 5 (2:)AF; (xi)) ]

2 + (AfA(xi))z + (AFA(xl))g)

4 (Alg(e) + (AFp()?)

) AT >+AIA<xz>AI< 2) + AF (2 AFp ;)

)

I
be

+ (AT () + (AF; ()

X \/(ATB(J%))Q + (Afé(ml))z + (Aﬁé(ajl))z

(20)

Proposition 4.2. The weighted hybrid vector similarity measure of two INSs A and B is denoted by

Hw(fi, B), satisfies the following properties:
Hl. 0< H,(A,B)<1

H2. H,(A,B) = H, (B, A);

12
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H3. Hy(A,B) = 1 if A = B ie. when T(z;)= Th(x;), I5(2i)= I5(x:), F(x:)= F&(z:), TY (x:)=

U Ule)= TY (2 N — . =
Ty (), 15 (zi)=Igz(z;) and FA (x5)= FB (x;) fori=1,2,...,n

Proof. H1. Dice and cosine similarity measure of two INSs A and B lie in the unit interval i.e.
0 < Dicy(A,B) <1; 0< Cos,(A B)<1

for all values of z;(i = 1,2,...,n). Now, according to Eqs. (14) and (12), the WHVSM of A and B

can be written as follows:

H, (A, B) = ADicy,(A, B) + (1 — \)Cos, (A, B) (21)

<A+(1-A)=1

On the other hand, for all real values of Tj(x;), I;(x:), Fj(x;), Tg(x:), I5(z;) and Fg(x;), the

WHVSM H, (A, B) > 0. Therefore, 0 < H,,(A, B) < 1.
H2. Symmetry of Eq. (20) validates the property H2.

H3. I T%(z;)= TE(w:), 15 (zi)= Tk(2:), F¥(zi)= FE(x:), TY (wi)= T§ (2:), I§ (ws)= T4 (2;) and FY ()=

Fg(ml) for i = 1,2,...,n, then the value of Dic,(A, B) = 1 and Cos, (A, B) = 1. Therefore from
Eq. (20), the value of H,(A, B) =

This completes the proof. [l

However, for ATA: AfA: AFA:(N) and ATB: Afé: AFE:() the hybrid vector similarity measure

between two INSs A:<Tj(xi), (i), ~A(aci)> and B:< [ (), ~§(xi)7F§(xi)> is undefined and then its

value assumed to be zero.

5 Hybrid vector similarity measure based multi-attribute decision
making under neutrosophic environment

In the following subsection, we apply the weighted hybrid vector similarity measure to multi attribute decision

making under neutrosophic environment.
5.1 Multi-attribute decision making with single valued neutrosophic informa-
tion

Consider a MADM problem of m alternatives and n attributes, where all the attribute values are charac-

terized by single valued neutrosophic sets. Let A = {A;, Aa,..., A} be a finite set of alternatives, C' =

13
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{C1,Cy,...,C,} be the set of attributes and W= (w1, ws, ..., w,)T be the weight vector of the attributes
C;(j =1,2,...,n) such that w; > 0 and Z?Zl wj = 1. Let D = (d;j)mxn be the decision matrix in which
the rating values of the alternatives A;(i = 1,2,...,m) over the attributes C;(j = 1,2,...,n) are presented
with the single valued neutrosophic element of the form d;; = (Tj;, I;;, Fi;). In this decision matrix, Tj;
indicates the degree of membership that the alternative A; satisfies the attribute Cj, I;; indicates the de-
gree of indeterminacy for the alternative A; with respect to attribute C; and Fj; indicates the degree of

non-membership for the alternative A; with respect to the attribute C; such that
T;; € [0, 1],[1']' e [o, 1],Fij €10,1,0 < Tij+ Iij + Fiy <3

fori=1,2,...,mand j =1,2,...,n. Assume that the characteristic of the alternative 4;(i = 1,2,...,m)

are represented by SVNSs that are shown in the following pattern:

Ay = (din,dio, - -+ ,din), fori=1,2,...,m;

= {(Ti1, Iin, Fin) , (Ti2, Lio, Fi2) , -+ s (Tim Lin, Fin) } - (22)

Step 1. Determination of the SVINS based relative positive ideal solution

In multi-attribute decision-making environment, the concept of ideal point is used to identify the best

alternative properly in the decision set.

Definition 17. Let H be the collection of two types of attribute namely benefit type attribute (P) and cost

type attribute (L) in the MADM problems. The relative positive ideal neutrosophic solution (RPINS) A* =

(dy,ds,--- ,dY) is the solution of decision matrix D = (d;;)mxn Where, every component of has the following
form:
L di= <TJ*,IJ*,F*> = <max{Tij},min{Iij},mjn{Fij}> for benefit type attribute(P) and (23)
2. dj= <TJ*,IJ*,F*> = <min{Tij},max{Iij},max{Fij}> for cost type attribute(L). (24)

Step 2. Calculation of WHVSM between the ideal alternative and each alternative

According to the Eq.(17), the WHVSM between the ideal alternative A* and the alternative A;(i =
1,2,...,m) is
Aiwj * * (T;Tiz + I7IL; + Fi Fyy)
: (T2 + ()2 + (F7)?) + ((Tiy)? + (1) + (Fij)?)]
| (T; Ty + I:1;; + F; Fy) ’
g=1 [\/((Tf)g + (I5)2 + (FF)?) /(T3)? + (1)) + (Fi)?)

(25)

14
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where, RPINS A* is determined according to the nature of benefit type and cost type attributes defined in
Egs. (23) and (24).

Step 3. Ranking of the alternatives

According to the values obtained from Eq.(25), the ranking order of all the alternatives can be easily

determined. Ranking of alternatives is done according to the decreasing order WHVSM.

5.2 Multi-attribute decision making with interval neutrosophic information

Similar to SVNSs, consider D = (d;;)mxn be an interval neutrosophic decision matrix, where all the attribute

values are represented by INSs Jij :<Tij, L;;, Fij> fori=1,2,...,mand j =1,2,...,n. Assume that the
membership degree Tij indicates that the alternative A; satisfies the attribute Cj, I~ij indicates the degree of

indeterminacy for the alternative A; with respect to attribute C;, and the membership degree ﬁ'ij indicates

that the alternative A; does not satisfy the attribute C;. Let Tij: [Ti?, Tg] , fij: [Ii?, Ifﬂ , and Fij: [F@?a Fg]

be the representation of INSs such that

fori=1,2,...,mand j =1,2,...,n. Similar to SVNSs, Assume that the characteristic of the alternative

A;(i=1,2,...,m) are presented by INSs shown as:

A = (di,dig, -+ ,din), fori=1,2,...,m;

= {<T¢1,I~11,E1> ; <T¢2Ji2,F12> 3t <ﬁn7jinaﬁin>} . (26)

Step 1. Determination of the INS based relative positive ideal solution

Definition 18. Let H be the collection of two types of attributes namely benefit type attribute (P) and

cost type attribute (L) in the INS based MADM problems. The relative positive ideal interval valued

neutrosophic solution (RPTINS) A*=(d},ds5,--- ,d%) is the solution of decision matrix D=(d;;)mxn where,

n

every component has the following form:

77737

1. The RPIINS of the benefit type attribute C; is defined by Jj = <T* I* ]:";> where,

(T5,17, 7 ) = (max{T}, max{TY}), [min{15}, min{15}], min{ B}, min{F{}]) for j € P, (27)

) J )

2. The RPIINS of the cost type attribute C; is defined by J; = <Tj?*, Iz, Fj*> where,

<TJ* I FJ> = ((min{T5}, min{T7}], [max{ I}, max{15}], fmasx{ F£}, max{FY}) for j € L. (28)

3 J 3
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Step 2. Calculation of WHVSM between the ideal alternative and each alternative

According to the Eq. (20), the WHVSM between ideal alternative A* and alternative 4;(i =1,2,...,m) is

2 (AT; ATy + AL AL + AF; AF)

% (T2 + AT+ (AF2) + ((ATy)? + (L) + (AF,)?)
(AT; ATy, + AT;AL; + AF; AR )

VT AT+ (AF (6T + (AT + (AR, 2|

Hy, (ATA;)=

)\)éwg{

where RPIINS A* is determined according to benefit type and cost type attributes defined in Egs. (27) and
(28).

Step 3. Ranking the alternatives

According to the values obtained from Eq. (29), the ranking order of all the alternatives can be easily

determined based on the decreasing order of WHVSM.

6 Illustrative examples

In this section, two MADM related examples in neutrosophic environment are provided to demonstrate the

applicability and effectiveness of the proposed approach.

6.1 Example 1

Consider a decision-making problem [11], in which an investment company wants to invest a sum of money
in the best option. There is a panel with four possible alternatives to invest the money: (1) A; is a car
company; (2) As is a food company; (3) As is a computer company; and (4) A4 is an arms company. The
investment company must take a decision based on the following three criteria: (1) Cp is the risk analysis;
(2) Cy is the growth analysis; and (3) Cs is the environmental impact analysis. The four possible alternatives
are to be evaluated under the criteria/attributes by the SVNS assessments provided by the decision maker.
These assessment values are provided by the following SVNSs based decision matrix D=(d;;)4x3 shown in

Table 1.

Table 1: Single valued neutrosophic set based decision matrix

Cy Cs Cs
A, (04,0.2,0.3) (0.4,0.2,0.3) (0.2,0.2,0.5)
A, (0.6,0.1,0.2) (0.6,0.1,0.2) (0.5,0.2,0.2)
As  (0.3,0.2,0.3) (0.5,0.2,0.3) (0.5,0.3,0.2)
A, (0.7,0.0,0.1) (0.6,0.1,0.2) (0.4,0.3,0.2)
16
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The known weight information is given as

3

W = {wy, we, ws}" = {0.35,0.25,0.40}" such that » w; = 1. (30)
j=1

Step 1. Determination of the Type of attribute

The first two attributes i.e. C; and Cs are here considered as the benefit type attribute and Cgs is considered

as the cost type attribute.

Step 2. Determination of the relative neutrosophic positive ideal solution

From Eq. (27)and Eq. (28), the relative positive ideal neutrosophic solution for the given matrix D=(d;;)4x3

shown in Table 1 can be obtained as
A* =[(0.7,0.0,0.1),(0.6,0.1,0.2),(0.2,0.3,0.5)] . (31)

Step 3. Determination of the weighted hybrid vector similarity measure
The weighted hybrid vector similarity measure is determined by using Eq. (25), Eq. (30) and Eq. (31) and

the results obtained for different values of A are shown in the Table 2.

Table 2: Results of SVNS based WHVSM for different values of A
Similarity measure  Values Measure Value Ranking order

Hyby(A*, A1) = 0.9036

_— _ Hyb,,(A*, A3) = 0.9019
Hybw(A 7A1) A=0.1 Hybw(A*,A:;) — 0.7912 A4 b Al — A2 — AB

Hyb,(A*, Ay) = 0.9433

Hyb,, (A*, A1) = 0.9014

_y _ Hyb,,(A*, A3) = 0.9015
Hyb,(A*, A;) A=0.25 Hybo(A* As) = 0.7942 Ay = Ay = Ay = As

Hyb,,(A*, Ay) = 0.9429

Hyb,(A*, A1) = 0.8978

_— _ Hyb,,(A*, A2) = 0.9010
Hyb,(A*, A;) A =0.50 Huybo( A" As) — 0.7892 Ay = Ay = Ay = A

Huyb,(A*, Ay) = 0.9421

Hyb, (A*, A1) = 0.8941

_ _ Hyb,,(A*, A2) = 0.9003
Hyb,(A*, A;) A=0.75 Hybo (A" Ag) — 0.7841 Ay = Ay = Ay = As

Hyb,(A*, Ay) = 0.9413

Hyb,(A*, Ay) = 0.8919

_— _ Hyb,,(A*, A2) = 0.8999
Hyb,(A*, A;) A =0.90 Hybo (A" Ag) — 0.7811 Ay = Ay = Ay = A

( ) =

Hybw A*, A4

Step 4. Ranking the alternatives
According to the different values of A\ , the results presented in the Table 2, reflect that A4 is the best

alternative.

17
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6.2 Example 2

Consider the same decision making problem described in Example 1. Here, we consider that the evaluations
of the alternatives A;(i = 1,2, 3,4) over the attributes C;(j = 1,2,3) are expressed in terms of the interval

neutrosophic sets. These evaluations are provided in the decision matrix D = (dij)4xg shown in Table 3.

Table 3: Interval valued neutrosophic set based decision matrix

C; Cs Cs
A1 ([0.4,0.5],(0.2,0.3],[0.3,0.4]) ([0-4,0.6],[0.1,0.3],(0.2,0.4]) (]0.7,0.9],[0.2,0.3], 0.4, 0.5])
A, {[0.6,0.7],]0.1,0.2],[0.2,0.3]) {[0.6,0.7],]0.1,0.2],[0.2,0.3]) {[0.3,0.6],[0.3,0.5],[0.8,0.9])
As  ([0.3,0.6],]0.2,0.3],[0.3,0.4]) ([0.5,0.6],]0.2,0.3],[0.3,0.4]) ([0.4,0.5],]0.2,0.4],[0.7,0.9])
A, ([0.7,0.8],]0.0,0.1],[0.1,0.2])  ([0.6,0.7],]0.1,0.2],[0.1,0.3])  ([0.6,0.7],]0.3,0.4],[0.8,0.9])

The weight information of the attributes is considered same as defined in Example 1.
Step 1. Determination of the relative neutrosophic positive ideal solution
Considering C; and Cs as the benefit type attributes and Cs as the cost type attribute, we determine the

relative positive ideal neutrosophic solution by the Eqgs.(27) and (28) as

A* = {([0.7,0.8],]0.0,0.1],[0.1,0.2]) , {[0.6,0.7], [0.1,0.2], [0.1,0.3]), ([0.3,0.5], [0.3,0.5],[0.8,0.9])} . (32)

Step 2. Determination of the weighted hybrid vector similarity measure
By using Eqgs.(29), (30), and (32), we can determine the WHVSM H,,(A*, A;) between ideal alternative A*

and each alternative for different values of A\. Table 4 shows the result.

Table 4: Results of INS based HVSM for different values of A

Similarity measure  Values Measure Value Ranking order

H,(A*, A1) = 0.84293

. 4 _ H,(A*, As) = 0.99020
H,(A* A;) A=0.1 Hay (A", As) = 0.93000 Ay - Ag = Ag = Ay

H,(A*, Ay) = 0.99041

H,(A*, A1) = 0.84553

. 4 _ H,(A*, As) = 0.99005
H,(A* A;) A=0.25 Hay (A", Ag) = 0.92730 Ay = Ay = Ag = A

H,(A*, Ay) = 0.99013

H,(A*, A1) = 0.84985

. 4 _ H,(A*, Ag) = 0.98980
H,(A* A;) A =0.50 Hay (A", Ag) = 0.92280 Ag = Ay = Az = A

H,(A*, Ay) = 0.98965

H,(A*, A1) = 0.85417

. 4 _ H,(A*, As) = 0.98955
H,(A* A;) A=0.75 Hay (A", Ag) = 0.91830 Ao = Ay = Ag = Ay

H,(A*, Ay) = 0.98917

H,(A*, A1) = 0.85677

. 4 _ H,(A*, Ag) = 0.98940
H,(A* A;) A=0.90 Hay (A", Ag) = 0.91560 Ao = Ay = Ag = Ay

H,(A*, Ay) = 0.98889

18
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Step 3. Ranking the alternatives
According to the different values of A , the results presented in the Table 4 reflects that Ay is the best

alternative.

6.3 Comparison of hybrid vector similarity measure method with other existing

methods for MADM

In this section, we first compare the results of hybrid vector similarity measure with other existing similarity
measures for MADM problem. The comparison results according to the Example 1 are presented in Table

5. Similarly, the comparison results for the Example 2 are presented in Table 6. Table 5 shows that our

Table 5: Comparison of HVSM for SVNSs with different similarity measures

Similarity Measure Method Measure value Ranking order

Jac, (A*; A1) = 0.8975

Jace(A", A;) [42] iZZzgﬁ ﬁzg TSIy A Ay Ay A
Jacy,(A*, Ay) = 0.9281
Dic,, (A*, A 1) = 0.8975

Dicu(A*, A) [42] gii& ﬁ ; TSI Aus Ao Ay Ay
Dic,,(A*, Ay) = 0.9281
Cosy(A*, A1) = 0.8975

Cosu(A™, A) [42] ggjzgﬁ ﬁ % TONT i A= Ay - A
Cosy(A*, Ag) = 0.9281
Improved cosine WSCy(A*, A1) = 0.9691
o WSCs(A*, Ag) = 0.9761

similarity =~ measure . Ay = Ay = Ay - As
WSCo(A*, Ay) [44] WSCQ(A* , Az) = 0.9401
WSCy(A*, Ay) = 0.9804

result for the selection of best alternative agree with Ye’s vector similarity measure method [42] as well as
improved cosine similarity measure method [44] for SVNSs. We see from Table 6 that the selection for the
best alternative according to our proposed method, the result is same as [42, 43, 44] for INSs. Finally, we
compare the proposed method with other existing methods [39, 31, 41, 24] and present the results in Table
7. We also observe that the ranking order of the four alternatives for the Example 1 and Example 2 are

same as the results given in Table 7

7 Conclusions

In this paper, we have proposed hybrid vector similarity measures and weighted hybrid vector similarity
measures for both single valued and interval neutrosophic sets and proved some of their basic properties.
Then, we have compared the proposed similarity measures with the existing similarity measures for MADM

problems. Two numerical examples, one for SVNSs and another for INSs have been provided to check the
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Table 6: Comparison of HVSM for INSs with existing similarity measures

Similarity Measure Method

Measure value

Ranking order

Jace (A", A,) = 0.7579
. Jace(A*, Ay) = 0.9773
Jacw(A ,Az) [42] JCLCw(A AB) — 0.8646 A = Ay = Az = Ay
Jacy (A*, Ag) = 0.9768
Dicy (A7, A7) = 0.8504
. Dicy(A*, Ay) = 0.9884
DZCw(A ,Al) [42] Dicw(A* A3) — 0.9224 As = Ay = Az = Ay
Dicy(A*, A) = 0.9880
Dico (A7, A1) = 0.8585
Dicy(A*, A;) Dicy(A*, As) = 0.9893
Proposed Dic,,(A*, A3) = 0.9138 Az = Aum Az = Ay
Dicy(A*, Ag) = 0.9887
Cosy(A*, A1) = 0.8676
. A Cosy(A*, Ag) = 0.9894
Cosu (A", 4i) [42] Cosy(A*, Ag) — 0.9276 47 A2 4s = Ay
Cosy(A*, Ay) = 0.9896
Cosy(A*, A1) = 0.8412
. Cosy(A*, A2) = 0.9903
Cosy(A*, A;) [43] Cosu(A*, Ag) = 0.9318 Ay = Ao = A3 = Ay
Cosy(A*, Ay) = 0.9906
. . WSCs (A", A;) = 0.9252
mproved cosine WSCy(A*, As) = 0.9955
similarity ~ measure WSCz(A As) = 0.9704 Ap = Ay > A3 = Ay
WSCy(A*, A;) [44] WSCa(A*, Ag) = 0.9951

Table 7: Comparison of HVSM method with other existing methods

Different methods for MADM

Types of sets

Ranking order

Improved correlation coefficient [39] SI\{\Tl\EI;SS ﬁi i ﬁi i ﬁg : ﬁi
Subset-hood measure method [31] SVNSs Ay = Ay = Az = Ay
Hamming distance measure [41] INSs Ay = Ag = Az = Ay
Euclidean distance measure Ag = Ay = Az = A
Liu’s TOPSIS method [24] INSs Ay = Ag = Az = Ay
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validity and effectiveness of the proposed approach in MADM problem. However, we hope that the proposed

hybrid vector similarity measures for single valued as well as interval neutrosophic sets can be used in the

field of practical decision making, medical diagnosis, pattern recognition, data mining, clustering analysis,

etc.
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Table 1: Single valued neutrosophic set based decision matrix

C1 Cs Cs
A1 (04,02,0.3) (0.4,0.2,0.3) (0.2,0.2,0.5)
Ay (0.6,0.1,0.2) (0.6,0.1,0.2) (0.5,0.2,0.2)
As  (0.3,0.2,0.3) (0.5,0.2,0.3) (0.5,0.3,0.2)
As (0.7,0.0,0.1) (0.6,0.1,0.2) (0.4,0.3,0.2)
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Table 2: Results of SVNS based WHVSM for different values of A

Similarity measure = Values Measure Value Ranking order

Hyb,,(A*, A1) = 0.9036

_— _ Hyb,,(A*, A2) = 0.9019
Hybw(A ,Al) A=0.1 Hyb,, (A ,A3) —0.7912 Ag = Ay = Ay = Ag

Hyb,,(A*, Ay) = 0.9433

Hyb,,(A*, A1) = 0.9014

_—— B Hyb,,(A*, A2) = 0.9015
Hybw(A ,Az) A=0.25 Huyb, (A ,AB) — 0.7942 Ay = Ag = Ay = As

Hyb,,(A*, Ay) = 0.9429

Hyb,,(A*, A1) = 0.8978

_—— B Hyb,,(A*, A2) = 0.9010
Hybw(A ,Az) A= 0.50 Huyb, (A ,AB) — 0.7892 Ay = Ag = Ay = As

Hyb,(A*, Ay) = 0.9421

Hyb,,(A*, A1) = 0.8941

i _ Hyb,,(A*, A3) = 0.9003
Hybw(A ,Az) A=0.75 Hyb, (A ,AB) — 0.7841 Ay = Ag = Ay = As

Hyb,(A*, Ay) = 0.9413

Hyb,,(A*, A1) = 0.8919

i _ Hyb,,(A*, A3) = 0.8999
Hybw(A ,Az) A =0.90 Huyb, (A ,AB) — 07811 Ay = Ag = Ay = As

( )

Hyb,,

A*, Ay) = 0.9409

*
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Table 3: Interval neutrosophic information based decision matrix
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Table 4: Results of INS based HVSM for different values of A

Similarity measure = Values Measure Value Ranking order
H,(A* A1) = 0.84293
_— _ H,(A*, A2) = 0.99020
H,(A* A;) A=0.1 Hay (A", Ag) = 0.93000 Ay = Ay = Ag = A
H,(A*, Ay) = 0.99041
H,(A*, A1) = 0.84553
_— B H,(A*, A3) = 0.99005
Hw(A ,Az) A=0.25 Hw(A*,Ag) — 0.92730 Ay = A = Az = A
H,(A*, Ay) =0.99013
H,(A*, A1) = 0.84985
_— B H,(A*, A3) = 0.98980
Hw(A ,Az) A= 0.50 Hw(A*,Ag) — 0.92280 Ag = Ay = Ag - Ay
H,(A*, Ay) = 0.98965
H,(A* A1) = 0.85417
i _ H,(A*, Ay) = 0.98955
Hw(A ,Az) A=0.75 Hw(A*,Ag) — 0.91830 Ag = Ay = Az = A
H,(A*, Ay) = 0.98917
H,(A* A1) =0.85677
i _ H,(A*, Ay) = 0.98940
Hw(A ,Az) A =0.90 Hw(A*,Ag) — 0.91560 Ag = Ay = Az = A
Hy( )

w(A*, Ay) = 0.98889

*
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Table 5: Comparison of HVSM for SVNSs with different similarity measures

Similarity Measure Method Measure value Ranking order

Jacy, (A*, A1) = 0.8975
. 4 Jacy, (A*, As) = 0.8979

Jacy (A7, 4i) Jacy(A*, Ag) = 0.7689 A1 Az A= As
Jac, (A*; Ay) = 0.9281
Dicy (A7, A;) = 0.8975
. Dicy(A*, Ay) = 0.8979

Dicw (AT, Ai) Dicy(A*, Ag) = 0.7689 A4 Az A= As
Dicy(A*, Ag) = 0.9281
Cosy(A*, A1) = 0.8975
. Cosy(A*, Ag) = 0.8979

Cosu (47, 4;) Cosu(A*, Ag) = 0.7689 A4 Av=Ae = Ay
Cosy(A*, Ay) = 0.9281

WSCs(A*, A1) = 0.9691
WSCy(A*, Ay) = 0.9761
W SCy(A*, As) = 0.9401
W SCy(A*, Ay) = 0.9804

Improved cosine

similarity =~ measure
WSCy (A, Ay)

Ay = Ay = Ay = Ag

*
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Table 6: Comparison of HVSM for INSs different existing similarity measures

Similarity Measure Method

Measure value

Ranking order

Jacy, (A*, A1) = 0.7579
Jacy, (A*, Ag 0.9773

) =
x A ( ) =

Jacy,(A*, A;) Jace(A*, Ag) = 0.8646 Ag = Ay = A3 = Ay

Jac, (A*, Ay) = 0.9768

Dicy (A", A7) = 0.8594

. Dicy(A*, As) = 0.9884
Dic,,(A*, A;) Dicu (A", As) = 0.9224 As = Ay = Az = A

Dic,,(A*, Ay) = 0.9880

Dicy (A", A7) = 0.8585

Dicy(A*, A;) Dicy(A*, Ay) = 0.9893
Proposed Dic,,(A*, A3) = 0.9138 Az = Aa - As - A

Dic,,(A*, Ay) = 0.9887

Cosy(A*, A1) = 0.8676

. Cosy(A*, Ag) = 0.9894
COSw(A ,Az) COSU,(A*,A;;) — 0.9276 Ay = Ag = A - Ay

Cosy(A*, Ay) = 0.9896

Cosy(A*, A1) = 0.8412

. Cosy(A*, Ag) = 0.9903
COSw(A ,Az) COSU,(A*,A;;) — 0.9318 Ay = As = Az = A

Cosy(A*, Ay) = 0.9906

Improved cosine WS5Ca(A*, A,) = 0.9252
similarity — measure WSCy(A*, Ay) = 0.9955 Ay = Ay = A3z = A

WSCa(A*, A;)

) =
( )
WSCy(A*, As) = 0.9704
WSCy(A*, Ay) = 0.9951
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Table 7: Comparison of HVSM method with other existing methods

Different methods for MADM  Types of sets Ranking order
Improved correlation coefficient SI\{\%ES ﬁ; : ji : ﬁz : ﬁi
Subset-hood measure method SVNSs Ay = Ay = Az = Ay
Hamming distance measure INSs Ay = Ag = Ag = A
Euclidean distance measure Ag = Ay = Az = Ay
Liu’s TOPSIS method INSs Ay = Ay = Az = Ay
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