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Abstract: The universality of contradiction implies that the reality of a thing
is only hold on observation with level dependent on the observer standing out
or in and lead respectively to solvable equation or non-solvable equations on
that thing for human beings. Notice that all contradictions are artificial, not
the nature of things. Thus, holding on reality of things forces one extending
contradictory systems in classical mathematics to a compatible one by combi-
natorial notion, particularly, action flow on differential equations, which is in
fact an embedded oriented graph Gina topological space .7 associated with a
mapping L : (v,u) — L(v,u), 2 end-operators A}, : L(v,u) — LA (v,u) and
Af s L(u,v) — LA (u,v) on a Banach space Z with L(v,u) = —L(u,v) and
AL (—L(v,u)) = — LA (v,u) for V(v,u) € E (@) holding with conservation
laws
Z LA (v,u) =0, YoeV (@) .
uwENG (v)

The main purpose of this paper is to survey the powerful role of action flows to
mathematics such as those of extended Banach G-flow spaces, the representa-
tion theorem of Fréchet and Riesz on linear continuous functionals, geometry
on action flows or non-solvable systems of solvable differential equations with
global stability, - - - etc., and their applications to physics, ecology and other
sciences. All of these makes it clear that knowing on the reality by solvable
equations is local, only on coherent behaviors but by action flow on equations
and generally, contradictory system is universal, which is nothing else but a

mathematical combinatorics.
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81. Introduction

A thing P is usually complex, even hybrid with other things but the understanding of
human beings is bounded, brings about a unilateral knowledge on P identified with
its known characters, gradually little by little. For example, let py, o, - - -, i, be its

known and v;,7 > 1 unknown characters at time ¢t. Then, thing P is understood by

p= (Um) U (U{vk}) , (L.1)

k>1

n

i.e., a Smarandache multispacein logic with an approximation P° = |J{u;} at time
i=1

t, reveals the diversity of things such as those shown in Fig.1 for the universe,

Fig.1

and that the reality of a thing P is nothing else but the state characters (1.1)
of existed, existing or will existing things whether or not they are observable or
comprehensible by human beings from a macro observation at a time t¢.

Generally, one establishes mathematical equation

g (thlu T, x37¢t7 wr17¢$27 ) wrlrw t ) =0 (12)

to determine the behavior of a thing P, for instance the Schrodinger equation

oy R,
ihg = =5 =V U (1.3)

on particles, where h = 6.582 x 10722 M eV s is the Planck constant. Can we conclude
the mathematical equation (1.2) characterize the reality of thing P by solution 17
The answer is not certain, particularly, for the equation (1.3) on the superposition,
i.e., in two or more possible states of being of particles, but the solution ¢ of (1.3)

characterizes only its one position.



Notice that things are inherently related, not isolated in the nature, observed
characters are filtering sensory information on things. Whence these is a topological
structure on things, i.e., an inherited topological graph G in space. On the other
hand, any oriented graph G = (V, ﬁ) can be embedded into R™ if n > 3 because
if there is an intersection p between edges p(e) and ¢ (¢/) in embedding (G, ) of
G, we can always operate a surgery on curves ¢(e) and ¢ (€¢’) in a sufficient small
neighborhood N (p) of p such that there are no intersections again and this surgery

can be operated on all intersections in (G, ¢). Furthermore, if G is simple, i.e.,

without loops or multiple edges, we can choose n points vy = (t1,t2,t3), vy, =
(o, t3,13), -+, v, = (tn, t2,83) for different t;,1 < i < mn, n = |G| on curve (¢,t%t3).

Then it is clear that the straight lines v;v;, v v; have no intersections for any integers
1 <i,j,k,1 <n ([26]). Thus, there is such a mapping ¢ in this case that all edges
of (G, p) are straight segments, i.e., rectilinear embedding in R™ for G if n > 3. We

therefore conclude that
Oriented Graphs in R" <& Inherent Structure of Natural Things.

Thus, for understanding the reality, particularly, multiple behavior of a thing
P, an effective way is return P to its nature and establish a mathematical theory
on embedded graphs in R™, n > 3, which is nothing else but flows in dynamical

mechanics, such as the water flow in a river shown in Fig.2.

Fig.2

There are two commonly properties known to us on water flows. Thus, the
rate of flow is continuous on time ¢, and for its any cross section C, the in-flow is

always equal to the out-flow on C. Then, how can we describe the water flow in



Fig.2 on there properties? Certainly, we can characterize it by network flows simply.
A network is nothing else but an oriented graph G' = (V ﬁ) with a continuous
function f : E — R holding with conditions fu,v) = —f(v,u) for Y(u,v) € E

and > f(v,u) = 0. For example, the network shown in Fig.3 is the abstracted
u€Ng(v)
model for water flow in Fig.2 with conservation equation a(t) = b(t) + ¢(t), where

a(t),b(t) and c(t) are the rates of flow on time ¢ at the cross section of the river.

o aft)  aft) c(t) a(t) , aft)

Fig.3

A further generalization of network by extending flows to elements in a Banach

space with actions results in action flow following.

Definition 1.1 An action flow (@), L,A) 15 an oriented embedded graph G ina
topological space .# associated with a mapping L : (v,u) — L(v,u), 2 end-operators
Ar o L(v,u) — LA%(v,u) and AL, : L(u,v) — L% (u,v) on a Banach space B
with L(v,u) = —L(u,v) and A, (—L(v,u)) = —LA(v,u) for V(v,u) € E (ﬁ)

Al L(u,v) Al

U

<

Fig.4

holding with conservation laws

Z LA (v,u) =0 for YveV <5>)

uENgG(v)

such as those shown for vertex v in Fig.5 following

L(v,uy) L(v, uy)
Uy Uy
Al A
Us L('U’UJ?) Ag A5 l’(vau5)u5
v
L(v, u3) As Ag L(v, ug)
Uus Ue
Fig.5



with a conservation law
—LAl(v,ul) — LA (v, ug) — LA4(U,U3) + LA4(’U, uy) + LA (v,us) + LAG(v,uﬁ) =0,

where an embedding of G in .7 is a 2-tuple (G, @) with a 1 — 1 continuous mapping

v G — % such that an intersection only appears at end vertices of G in .7, i.e.,

©(p) # w(q) if p# q for Vp,q € G.

Notice that action flows is also an expression of the C'C conjecture, i.e., any
mathematical science can be reconstructed from or made by combinatorialization
([7], [20]). But they are elements for hold on the nature of things.

The main purpose of this paper is to survey the powerful role of action flows in
mathematics and other sciences such as those of extended Banach G -flow spaces,
the representation theorem of Fréchet and Riesz on linear continuous functionals, ,
geometry on action flows and geometry on non-solvable systems of solvable differ-
ential equations, combinatorial manifolds, global stability of action flows, - - -, etc.

on two cases following with applications to physics and other sciences:

Case 1. @—ﬂows, i.e., action flows (@7 L, 1@), which enable one extending

Banach space to Banach G -flow space and find new interpretations on physical

phenomenons. Notices that an action flow with A = Al for V(v,u) € E (5)) is
itself a G-flow if replacing L(u,v) by L4 (v, u) on (v, ).

Case 2. Differential flows, i.e., action flows (@7 L,A) with ordinary differ-
ential or partial differential operators A on some edges (v,u) € E (@), which

includes classical geometrical flow as the particular in cases of ’@‘ = 1. Usually, if

@‘ > 2, such a flow characterizes non-solvable system of physical equations.

For example, let the L : (v,u) — L(v,u) € R® x R* with action operators

Al = Gou and a,, € R" for any edge (v,u) € £ (@) in Fig.6 following.
u v
) 4
w
Fig.6



Then the conservation laws are partial differential equations

( . OL(t,u)* . OL(t,u)? _ auv@L(u,v)
1 2
auvaLa(:,v) s 8L(z;,w) s 8L(1;, w) a 81)8(;,15)
IL(v,w)* OL(v,w)? OL(w,t)
Qpwl—Ff, avuﬂf = ath
. t@L(w,t) . t@L(v,t) ., 1aL(t,u)l fa 20L(t,u)2
ot oot voot “oot

For terminologies and notations not mentioned here, we follow references [1] for
mechanics, [2] for functional analysis, [11] for graphs and combinatorial geometry,
[4] and [27] for differential equations, [22] for elementary particles, and [23] for

Smarandache multispaces.

82. G-Flows

The divisibility of matter initiates human beings to search elementary constitut-
ing cells of matter and interpretation on the superposition of microcosmic particles
such as those of quarks, leptons with those of their antiparticles, and unmatters
between a matter and its antimatter([24-25]). For example, baryon and meson are
predominantly formed respectively by three or two quarks in the model of Sakata,
or Gell-Mann and Ne’eman, and H.Everett’s multiverse ([5]) presented an interpre-

tation for the cat in Schrodinger’s paradox in 1957, such as those shown in Fig.7.

| e 714
« jh:’:nf » gl s R EEr: 3,
g  LTER
quark up quark down -%
Quark Model Multiverse on Schrodinger’s Cat

Fig.7

Notice that we only hold coherent behaviors by an equation on a natural thing, not
the individual because that equation is established by viewing abstractly a particle

to be a geometrical point or an independent field from a macroscopic point, which



leads physicists always assuming the internal structures mechanically for hold on the
behaviors of matters, likewise Sakata, Gell-Mann, Ne’eman or H.Everett. However,
such an assumption is a little ambiguous in mathematics, i.e., we can not even
conclude which is the point or the independent field, the matter or its submatter.

But G-flows verify the rightness of physicists ([17]).

2.1 Algebra on Graphs

Let G be an oriented graph embedded in R",n > 3 and let (47;0) be an algebraic
system in classical mathematics, i.e., for Va,b € o/, ao b € o&/. Denoted by @Z all
of those labeled graphs @L with labeling L : X (@) — /. We extend operation

L
o on elements in G - by a ruler following:

— L1 — L2

R: ForvVG ,G ~ € @;, define
Li(e) o Ly(e) forVe € E (Zi)

— L — Lo —L10Lo
G

oG =G , where Lyo Ly 1 e —

. = . -
For example, such an extension on graph C'4 is shown in Fig.8, where, a=a;oca,,

b3 :blobg, C3=C10C9, d3 :dlon.

v v v v v v

L g 2 1 a, 2 14 2
o— SL o 3

[ ] [ J oe—»——— O

d, by e d } (bz _ 4 } ’b3

O— «—©0 @Q—<—© @——————<+—©0
C1 Co C3

(7 V3 (7 V3 (7 V3

Fig.8

L L L L
Notice that G  Is also an algebraic system under ruler R, i.e., G oG ed o

L
by definition. Furthermore, a  1s a group if (&7, 0) is a group because of

(1) (—)Ll —)Lz) — L3 — L1 (—)Lz —)Lg) — L1 — Ly —L3 — L
(] (]

G odG G =G G oG for VG ,G .G € G
because (Li(e) o Ly(e)) o Ly(e) = Ly(e) o (La(e) o Ls(e)) for e € E <E¥)>

(2) there is an identify @)ng’ in E');, where L; , : e — 1, for Ve € E <Z¥)>7

— L —

1 -1
(3) there is an uniquely element ar holding with G oG =3" for
—L —L
vG e G.
Thus, an algebraic system can be naturally extended on an embedded graph,

and this fact holds also with those of algebraic systems of multi-operations. For



example, let Z = (R;+,+) be aring and (¥/; +, ) a vector space over field F. Then

o . —L =L . . .

it is easily know that G ,, G, are respectively a ring or a vector space with zero
L L

vector O = G ° where Lg: e — 0 for Ve € E (5), such as those shown for @V

on 64 in Fig.8 with a, b, ¢, d, a;, b;, ¢;, d; € ¥ fori = 1,2, 3, x3=x;+x5 for x=a,

b, cord and a € F.

Ui a Uf U1 a, (%) U1 as Vs
[ ] [ ] [ ] [ ]
d, b, + d, } (bz = dj ) ’bg
[ JEEEED—— ) o————<——o o———~——eo
(7 €1 V3 (7 C2 V3 (7 C3 Vs
(%1 a (% U1 o a V2
® [ ] o———0
« ° -
d b = ad }owb
° ° ° °
Uy C Vg vy Q-C (%}

2.2 Action Flow Spaces

Notice that the algebra on graphs only is a formally operation system provided
without the characteristics of flows, particularly, conservation, which can not be a
portrayal of a natural thing because a measurable property of a physical system is
usually conserved with connections. The notion wishing those of algebra on graphs

with conservation naturally leads to that @)—ﬂows, i.e., action flows <E> L, 11/>

come into being. Thus, a G-flow is a subfamily of ij limited by conservation laws.
For example, if G = ﬁ4, there must be a=b=c=d and a,=b;,=c;=d, for: = 1,2, 3
in Fig.9. Clearly, all G -flows <§>7 L, 11/> on G for a vector space V over field .%#

»
form a vector space by ruler R, denoted by a .
Generally, a conservative action family is a pair {{v}, {A(v)}} with vectors

{v} C 7 and operators A on ¥ such that ZVA(V) = 0. Clearly, action flow

veV
consists of conservation action families. The result following establishes its inverse.

Theorem 2.1([17]) An action flow <@7 L, A) exists on G if and only if there are

conservation action families L(v) in a Banach space ¥ associated an indezx set V



with
L(v) = {LAj“(v,u) eV for someueV}

such that Af,(—L(v,u)) = —LA (v, u) and

L(v) () (~L(w)) = L(v,u) or 0.

2.3 Banach G-Flow Space

Let (#';+,-) be a Banach or Hilbert space with inner product (-, -). We can further-

v
more introduce the norm and inner product on G by

IZ= X ol
(u,v)EE(@)

and

(EF) = X (L), L)
(u,v)EE(ﬁ)

—L —L1 —Lso

forvG .G ,G " € @’V, where ||L(u,v)]|| is the norm of L(u,v) in #. Then, it
can be easily verified that ([17]):

(1) ﬁLH >0 and H@LH = 0 if and only if Gt = O;
(2) @gLH =¢ ‘ @LH for any scalar &;
@) [[d" +3d"| < H@Ll - H@LZ :
(4) <@L, ar > 0 and <@L, @L> = 0 if and only if G = O;
) (3 T@) = (37,07} tor vT", G ¢ T
L =L =Ly  —

G ed andrpuerF
<AZ¥)L1 e 5L> =\ <5L1, 5L> o <Z¥)L2, ZJ’L> .

4
Thus, G is also a normed space by (1)-(3) or inner space by (4)-(6). By show-
v
ing that any Cauchy sequence in G s converged also holding with conservation

laws in [17], we know the result following.



¥
Theorem 2.2 For any oriented graph G embedded in topological space .7, el
v
a Banach space, and furthermore, if ¥ is a Hilbert space, so is a

—L —L

A @L—ﬂow is orthogonal to @ if <G G > = 0. We know the orthogonal
decomposition of Hilbert space @W following.
Theorem 2.3([17]) Let ¥ be a Hilbert space with an orthogonal decomposition
VvV =V &Vt for a closed subspace V. C V. Then there is also an orthogonal

decomposition
—7

G =VaoV:
where, V. = {@Ll € el ‘Ll X (@) — V} and V+ = {@M € 64/‘[/2 X (@)
— V*}, de., for VG e @V, there is a uniquely decomposition ar=ad"yan

— —

with Ly : X (G) —V oand Ly : X (G) ~ VL
2.4 Actions on G-Flow Spaces

Let ¥ be a Hilbert space consisting of measurable functions f(x,xs,- -, x,) on the

functional space L?*[A] with inner product

o / T)gx)dx for f(x),g(x) € L2[A]

and

n a -
D= a;— and / , /
; Oz; A A

are respectively differential operators and integral operators linearly defined by
—DL(u?)

D@L =G and

/ 5}[1 _ / K %L[y]d _ @fA K(x,y)L(u,v)[y]dyj
A

for V(u,v) € C(A) for integers 1 < i,j < n and K(x,y) :

AxA—Ce

) where a;,

8x

/ §>L _ /méw[y]dy _ EQIAK(x,y)L(u,v)[y]dy
A
L*(A x A, C) with

K(x,y)dxdy < oo.
AXA

10



For example, let let f(t) =t, g(t) = €', K(t,7) = t* + 72 for A = [0, 1] and let
@L be the G-flow shown on the left in Fig.10,

e ¢!
t 1
t
T Ve PR 1] €5
t. 1
et et
! b(t)
T e T )
o A, o T ) aft)
b(t )
t a(t)
¢t Fig.10 b(t)
1 5 :
where a(t) = 5 + 1 and b(t) = (e — 1)t* + e — 2. We know the result following.

— —V v — Y

Theorem 2.4([17])) D: G — G cmd/: G -G
A

- . . — 7
Thus, operators D, / and / are linear operators action on G .
A A

—7

Generally, let 7" be Banach space ¥ over a field .%. An operator T : Z?W — G
is linear if
T (A@Ll + ;@Lz) AT (ﬁ”) 4 uT <8L)

—)L1 —)LQ —_—

for VG |G T~ € G,V and A\, 4 € #, and is continuous at a G-flow @LO if there
always exist such a number d(¢) for Ve > 0 that

[r(@)-r (@)

The following result extends the Fréchet and Riesz representation theorem on

. . . . . =7
linear continuous functionals to linear functionals T : G

— Lo

<ec if ||d"=3@
| |

< d(e).

— C on G-flow space

@V, where C is the complex field.

Theorem 2.5([17]) Let T : G = C be a linear continuous functional, where V" is
a Hilbert space. Then there is a unique E’)L € 57)7/ such that T (EY)L> = <§>L, @)L>

—v

forvG e d’.

11



2.5 G-Flows on Equations

Let G be an oriented graph embedded in space R",n > 3 and let

f(xlax%'“?xn) =0

be a solvable equation in a field .. We are naturally consider its .%-extension
equation
f(X17X27"'7Xn) =0

in G~ by viewing an element b € .F as b = at it L(u’) = b for (u,v) € X <§>>

—Lg —)Lb

and 0 # a € .Z. For example, the extension of equation ax =bis G X = G  in
F a 1L
G with a G-flow solution = G , such as those shown in Fig.11 for G = 64,

a =3 and b = 5. Thus we can entrust a combinatorial structure @ on its solution.
5

3

5 5
3 3
5
3
Fig.11
Generally, for a solvable system of linear equations, let [L;] .~ be a matrix
with entries L;; : u¥ — #. Denoted by [L;;| (u,v) the matrix [L;; (u,v)] . . A
result on G-flow solutions of linear systems was known in [17] following.
Theorem 2.6 A linear system (LES)) of equations
r L
anXi +apXe+ -+ apX, =G
— Lo
X Xo+ - nXn =G
(21 X1 + AgaXo + -+ -+ a2 (LES™)

\

Li % , , . .
with a;; € C and el € el for antegers 1 < i < n and 1 < 57 < m is solvable for
%
XZ-EEY> , 1 <4 <mif and only if

= rank [a;;] " u,v)

rank [a;;] mx(ni1)

mxn

12



forV(u,v) € G, where

aiy  aip v ay, Iy
+ | @21 G222 - G2p Ly
[aij]mx(n-‘rl) o
Am1 Am2 " Qmn Lm
—L — 7
For G € G | let
L —L

oG o oG oL ,

7 _G7%" and :a)a””i,lgzgn.

—7

We consider the Cauchy problem on heat equation in G | i.e.,

0X o~ 0PX
Ea

with initial values X|;—;, and constant ¢ # 0.

Theorem 2.7([17]) For V3" € G and a non-zero constant ¢ in R, the Cauchy

problems on differential equations

0X "L 92X
5=

r % %
with initial value X|i—y, = G~ € G s solvable in G if L' (u,v) is continuous

and bounded in R* for ¥(u,v) € X (ﬁ)
For an integral kernel K (x,y), A4, #* C L2[A] are defined respectively by
w/z{wmeﬁwyAK@wwwwzwm}
e = ot e 2l [ Kielotiy = o0 |
Then

Theorem 2.8([17]) For VG € EW, if dimA” = 0 the integral equation
@Xi/@X:GL
A

13



is solvable in G with ¥ = L2 [A] if and only if

<—>L — L

relie. >:o, va© e

In fact, if G is circuit decomposable, we can generally extend solutions of an

equation to G-flows following.

Theorem 2.9([17]) If the topological graph G s strong-connected with circuit de-
!
composition G = U C. such that L(e) = L; (x) for Ve € E (ﬁ,), 1 <1<l and

=1
the Cauchy problem
{ y@ (X,U,Uzl,' Cry Uy Ugyzgy * ) =0
Ulxy = Li(x)

is solvable in a Hilbert space ¥ on domain A C R™ for integers 1 < i <[, then the

Cauchy problem
Fi (%, X, X, Xy Xayggs ) =0
Xl=0G

such that L (e) = L;(x) for Ve € E (60 is solvable for X € a’.

83. Geometry on Action Flows

In physics, a thing P, particularly, a particle such as those of water molecule HyO

and its hydrogen or oxygen atom shown in Fig.12

Fig.12

is characterized by differential equation established on observed characters of jq, o,

-+ py, for its state function (¢, z) by the principle of stationary action S = 0 in

14



R* with

to
S = /dtL (q(t),q(t)) or S:/ d'zL(¢,0,1), (3.1)
t1 2
i.e., the Fuler-Lagrange equations
oL d oL oL oL
i — 0, — = 2
dq  dt 9q and 55 " e = (32)

where ¢(t), §(t), 1 are the generalized coordinates, the velocities, the state function,
and L (q(t),q(t)), £ are the Lagrange function or density on P, respectively by
viewing P as an independent system or a field. For examples, let
ih (O— O 1 [/ k? ) )
ts=5 (50~ 50) — 5 (5 IV0P + VIeP).
Then we get the Schrodinger equation by (1.3) and similarly, the Dirac equation

(iv”f)’u - %) bt x) =0 (3.3)

for a free fermion (¢, z), the Klein-Gordon equation
1 9? 5 mey 2
(—87 -V ) vt + (5) vt =0 (3.4)

for a free boson ¥ (t, ) on particle with masses m hold in relativistic forms, where
h = 6.582 x 1072 MeV s is the Planck constant.

Notice that the equation (1.3) is dependent on observed characters i1, o, - - -, fin,
and different position maybe results in different observations. For example, if an
observer receives information stands out of HoO by viewing it as a geometrical point
then he only receives coherent information on atoms H and O with H,O ([18]), but
if he enters the interior of the molecule, he will view a different sceneries for atom H

and atom O with a non-solvable system of 3 dynamical equations following ([19]).

(0 B2
-0 = gy, Vi
mo
_ipQm R Vi, — V(z)y
8t 2m2H1 H H
. asz o h 2
\ —ih ot - Qmsz sz - V(x)sz

Thus, an in-observation on a physical thing P results in a non-solvable system of
solvable equations, which is also in accordance with individual difference in episte-

mology. However, the atoms H and O are compatible in the water molecule HoO

15



without contradiction. Thus, accompanying with the establishment of compatible
systems, we are also needed those of contradictory systems, particularly, non-solvable

equations for holding on the reality of things ([15]).

3.1 Geometry on Equations

Physicist characterizes a natural thing usually by solutions of differential equations.
However, if they are non-solvable such as those of equations for atoms H and O
on in-observation, how to determine their behavior in the water molecule H,O?
Holding on the reality of things motivates one to leave behind the solvability of
equation, extend old notion to a new one by machinery. The knowledge of human
beings concludes the social existence determine the consciousness. However, if we
can not characterize a thing until today, we can never conclude that it is nothingness,
particularly on those of non-solvable system consisting of solvable equations. For

example, consider the two systems of linear equations following:

(LEsy) { Y (LEsg) Y
r—y = —1 r=1
r—y = 1 y=1
Clearly, (LESY) is non-solvable because = +y = —1 is contradictious to z +y = 1,

andsox —y=—1tox—y=1. But (LES]) is solvable with z = 1 and y = 1.
What is the geometrical essence of a system of linear equations? In fact, each
linear equation ax + by = ¢ with ab # 0 is in fact a point set Loy ipy—c = {(x, y)|az +

by = c} in R?, such as those shown in Fig.13 for the linear systems (LESY) and
(LESS).

Y Y
r=1 z=y
D 0 T y=1
C
TTY= r+y=-1 0O z
(LESY) (LESY)
Fig.13

16



Clearly,

Lyry=1 m Layty— ﬂ Ly—y=1 m Lyy= = 0
L:c:y ﬂ Lx+y:2 m y - m Lyzl = (17 1)

in the Euclidean plane R2.

but

Generally, a solution manifold of an equation f(xy,zo, -, x,,y) = 0,n > 11is

defined to be an n-manifold
Sy = (21,22, T, y(@1, 22, -, 1)) C R™!

if it is solvable, otherwise () in topology. Clearly, a system

fi(zy, 29, 2,) =0
(ES,) fo(wy, 29, -, 2,) =0
fm(xl>$2>"'axn) =

of algebraic equations with initial values f;(0), 1 < i < m in Euclidean space R"!
is solvable or not dependent on (] Sy, # 0 or =0 in geometry.
i=1
Particularly, let (PDES,,) be a system of partial differential equations with

Fl(xl,QUQ, te '7xmu7ux17 t '7uxn7um1m27 t '7ux1mn7 t ) - 0

FQ(xlv'ZUQ?”'7xn7u7u:v17"'7uwn7um1m27'"7ux1mn7"') - 0

Fm(Ilax2>"'>$n>u>ux1a"'>uxn>ux1x2>'">u1‘11‘n>"') =0
on a function w(zy, -+, x,,t). Its symbol is determined by

Fl(ib’l,xg,"',SL’n,U,pl,'",pn,p1p2,"',p1pn,"') =0
FZ(xl>$2a"'axnauvpla'"apnappoa"'7p1p7w”') =0

Fm(xlux% oy T, Uy Py Py P1P2s 0 5 P1Pns ) = 07

Le., substitute p{*p3® - --pi» into (PDES,,) for the term w, o1 02, jon, Where a; > 0

for integers 1 < i <n.

Definition 3.1 A non-solvable (PDES,,) is algebraically contradictory if its symbol

is non-solvable. Otherwise, differentially contradictory.
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For example, the system of partial differential equations following

Uy + 2uy + 3u, = 2+ y? + 22
YU, + x2uy, + ayu, = 2 —y? — 2

(yz + Dug + (22 + 2)uy + (zy + 3)u, =22 + 1

2

is algebraically contradictory because its symbol

p1+2py + 3py =2+ y* + 22
yzp1 + xzps + xypy = 2 — y* — 22
(yz+ Dpy + (2 + 2)pa + (zy + 3)ps = 22 + 1

is non-solvable. A mnecessary and sufficient condition on the solvability of Cauchy
problem on (PDES,,) was found in [16] following.

Theorem 3.2 A Cauchy problem on systems

Fl(xlux% oy T, Uy P1y, P2y 7pn) =0
0

Fo(1, oy - -+, Ty Uy P1y P2y s Pp) = (PDES,,)

of partial differential equations of first order is non-solvable with initial values

— 0
€ Z‘HZSC% - xi (Sla S92, 0, Sn—l)
Ulzp=a0 = u0(817827 o '7STL—1>
— 0 ;o
pi|mn:x% =D; (817527 o '7Sn—1)7 L= 1727 N

if and only if the system
Fk($lax2a oy Ty Uy P1y, P2y 7pn) = 07 1 S k S m

1s algebraically contradictory, in this case, there must be an integer ko, 1 < kg < m
such that

0o .0 0 0 0 .0 0
Fko(xlvx% oy Tpy_1y Ty, U0y Py Pyttt 7pn) # 0

or it is differentially contradictory itself, i.e., there is an integer jo, 1 < jo < n —1

such that

uy s 02"
5 =)
Sjo asjo

1=0

18



Particularly, we immediately get a conclusions on quasilinear partial differential

equations following.

Corollary 3.3 A Cauchy problem (PDESS ) of quasilinear partial differential equa-
tions with initial values ul,,—,0 = wug is non-solvable if and only if the system

(PDES,,) of partial differential equations is algebraically contradictory.

Geometrically, the behavior of (E£S,,) is completely characterized by a union

s

Sy, i.e., a Smarandache multispace with an inherited graph G*[ES,,] following:
i=1

V(G [ES,]) = {S, 1 <i<m},
E(G"[ES,]) ={ (S5,,S5) | Sp. NSy, #0,1 <i,j <m}
with a vertex and edge labeling
L: Sy, — Sy, and L: (Sy,,Sp,) — S ()9, it

for integers 1 < i < m and (S, Sy,) € E (G*[ES,)).

For example, it is clear that L,iy—1 () Lysy=—1 = 0 = Ly—ye1 [\ Loy =
0, Loty=1 N Lo—y=—1 = {A}, Losy=1() Lo—y=1 = {B}, Loyy—1)Lo—y=1 = {C},
Lyvy——1(Ls—y=—1 = {D} for the system (LES}) with an inherited graph CF
shown in Fig.14.

Lm—i—y:l A Lm—y:—l
B D
Lx—y:l C L:l:+y=—1
Fig.14

Generally, we can determine the graph G [g] In fact, let €'(f;) be a maximal
contradictory class including equation f; = 0in (£S,,) for an integer 1 < i < m and
let classes €1, 62, --,%" be a partition of equations in (ES,,). Then we are easily
know that G [g] ~ K (‘51,‘52, = ~,<5l). Particularly, a result on Cauchy problem

of partial differential equations following. .
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Theorem 3.4([16]) A Cauchy problem on system (PDES,,) of partial differential
equations of first order with initial values xl[-k(] ug],pgk ], 1 <@ < n for the kth
equation in (PDES,,), 1 <k < m such that

8ugﬂ ") 8x
770 —0
0s,; Zp’ 8sj

1=0

is uniquely G-solvable, i.e., G{PDESS] is uniquely determined.

3.2 Geometry on Action Flows

Let (ﬁ, L, A) be an action flow on Banach space %. By the closed graph theorem
in functional analysis, i.e., if X and Y are Banach spaces with a linear operator
p: X =Y, then @ is continuous if and only if its graph
X, Y] ={(z,y) € X xY[TT =7}
is closed in X x Y, if L(v,u) : R* — R" is C" differentiable for ¥(v,u) € E (Zﬁ)
then
Lo, u] = {((@1, -+ @), L(v,w)) [(21, - -, 20) € R"}
is a C™ differentiable n-dimensional manifold, where r,, > 0 is an integer. Whence,

the geometry of action flow <§>7 L,A) is nothing else but a combination of C™

differentiable manifolds for r,, > 0,(v,u) € E (ﬁ), such as those combinatorial

manifolds (a) and (b) shown in Fig.15 for r = 0.

(b)
Fig.15

Definition 3.5 For a given integer sequence 0 < ny < ng < -+ < Ny, m > 1,
a combinatorial manifold M is a Hausdorff space such that for any point p € M,
there is a local chart (Uy, p,) of p, i.e., an open neighborhood U, of p in M and a
homoeomorphism ¢, : U, — R(ni(p), -, Ns(p) (D)) with

{nl(p)>' ) "n8(p)(p)} C {nl’ ) ">nm}’ U {nl(p)a ) "’n8(p)(p)} = {n1>' ) '>nm}’

peM
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denoted by M(nl,ng, Ce M) OT M on the context and

A= {(Up,cpp) pE ]\7(%1,712,"‘,”771))}

its an atlas. Particularly, a combinatorial manifold M is finite if it is just combined

by finite manifolds without one manifold contained in the union of others.

Similarly, an inherent structure G* []TJ/ } on combinatorial manifolds M = U M;
i=1

is defined by

V(GEM]) = {My,My,---, My},
E(GMM) = { (M, My) | My(\M; #0,1<4,j <n}

with a labeling mapping L determined by
L: M;— M;, L: (M, M;)— M;[| M

for integers 1 < 4,5 < m. The result following enables one to construct C" differen-

tiable combinatorial manifolds.

Theorem 3.6([8]) Let M be a finitely combinatorial manifold. IfVM € V (GL [M])
is C"-differential for integer r > 0 and ¥(My, M) € E (G []TJ/D there exist atlas

A1 ={(Va; ) Vo € My} Ay = {(Wy; ) [Vy € My}

such that @.lv, qaw, = Yylv.nw, for Yo € My, y € M, then there is a differential

structures

A={ Uy ) Ivp € M}
such that <M7 ./T) s a combinatorial C"-differential manifold.

For the basis of tangent and cotangent vectors on combinatorial manifold M ,

we know results following in [8].

Theorem 3.7 For any point p € M(nl, Na, -+, Ny) with a local chart (Uy; [py)), the

dimension of TPJ\/Z(nl, Mo,y Ny 1S
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XTs(p)
[ e . 0 0 e 0 0 ]
s(p) Ox11 s(p) Oz15(P) 9z1G/P)+1) dxIn1
1o ... 1_3 0 L0 . 0
s(p) Ox21 s(p) ox25(p) 022((P)+1) Ox2n2
. _9 ... L _ 20 9 cee 9 9
s(p) Hzs(P)L s(p) OzsP)3(P)  PasP)G(P)+1) 9" @ sy~ g5 (p)

where ' = 29" for 1 < 0,5 < s(p),1 < 1 < 3(p), namely there is a smoothly
functional matriz [vij]s@)xn,,, such that for any tangent vector v at a point p of

M(nl,ng, e 7nm);
0
< UZJ D) XN (p) [%]S(Z’)X"s(p)> ’

Z a;;bij, the inner product on matrizes.

IIMw

where ([aijlexi, [bislkxi) =

Theorem 3.8 For Vp € (M(nl,ng,---,nm);ﬂ) with a local chart (Uy; [pp]), the

dimension of T;M(nl, Mo,y Ny 1S

— s(p)
dim Ty M (ny, na, - -, 1) = 3(p) + 2 (ni — 3(p))
i=1
with a basis matriz  [dz],, Yty =
dfll e dat5(r) dxl(/s\(p)'l'l) - dxlnl e 0
s(p) S(E)
da?t AW g 26 ) L gg2ne 0
s(p) s(p)
Wl 0N s)EE) L L gl s eneg)
s(p) s(p)

where 1 = 29" for 1 < i,j < s(p), 1 <1 < 3(p), namely for any co-tangent vector d
at a point p of M(nl, No, -+, Nyy), there is a smoothly functional matriz [t;)sq)xsp)
such that,

4= { )y [Ty ) -

Then, we can establish tensor theory with connections on smoothly combina-
torial manifolds ([8]) and [11]. For example, we can get the curvature R formula

following.
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Theorem 3.9([8]) Let M be a finite combinatorial manifold, R : %(]\7) X %(M) X
%(M) X %(M) — Cm(ﬂ) a curvature on M. Then for Wp € M with a local chart

(Up; [wp]),

R = R(JC)(ne)(uu)(nA) dz” ® dl’ne ® dz"’ ® d![’ﬁ)\,

where
I _ 1(‘9290@(«) Pgonwe) P 829(m><o<>)
(@)@ )= = QN GmA Gz QprPxos  JrrrAdxos O dx
P o o
+ Tineol tanme 9wy = Limymal () oo 9oy
0 0
and g(ﬂ’/)(“)\) = Q(W’ W)

All these results on differentiable combinatorial manifolds enable one to char-
acterize the combination of classical fields, such as the Einstein’s gravitational fields
and other fields on combinatorial spacetimes and hold their behaviors (see [10] for
details).

3.3 Classification

Definition 3.10 Let (@1;L1,A1> and (@g;Lg,Ag) be 2 action flows on Banach

space B with @1 ~ @2. Then they are said to be combinatorially homeomorphic if

there is a homeomorphism h on A and a 1—1 mapping ¢ : V' (@1> -V (@2> such
that h(Ly(v,u)) = La(p(v,u)) and Ay, = Agu) for Y(v,u) € V (@1), denoted by
(@1; Ly, Al) S (@2; Lo, A2). Particularly, if = R™ for an integern > 3, h is an

h

isometry, they are said to be combinatorially isometric, denoted by (@1; Ll,Al) ~

(52; Lg,Ag), and identical if h = 1gn, denoted by (@)1; Ll,A1> = (@2; LZ,A2>.

(%1 L12 V2 (%1 L21 ) U2 L12 v1
Ly Ly o3 L3 Ly Ly Lo3 Lo Ly
V4 L3y U3 U3 Ly V4 U3 Ly V4

— —
(G1; L1, 1) (Ga; Lo, 1) (Gs;Ls, 1)
Fig.16

Notice that the mapping ¢ in Definition 3.10 maybe not a graph isomorphism.
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For example, the action flows <Z¥>1; Ly, 1R7L> = <Z¥>2; Lo, 1R7L> because there is a 1-1
mapping ¢ = (v1v2)(v3)(vy) : V (@1> — (ﬁg) holding with L(u,v) = L(p(u,v))
for V(u,v) € E (@), which is not a graph isomorphism between Zfl and ng but
(E')l;Ll, 1Rn> #+ (@3;[/3, 1Rn> for Zfl ol 5)3 in Fig.16. Thus if we denote by
Aut (@, L, A) all such 1-1 mappings ¢ : V (@) —V (@)) holding with L(u,v) =

L(p(u,v)) and Ay, = Ay for V(u,v) € E (@), then it is clearly a group itself
holding with the following result.

Theorem 3.11 IfV (@) = {vy,v9,---,0,}, then Aut <ﬁ, L,A) = Aut@@ (Sp)@,

particularly, Aut (@;L,A) - Auté), where (Sp)ag is the stabilizer of symmetric

group S, on A ={1,2,--- p}.
. — h — 1 .
For an isometry h on R"”, let (G; L, A) = (G; hLh ,A) be an action flow,
i.e., replacing xy, T, - -+, z, by h(xy), h(zs), - -, h(z,). The result following is clearly

known by definition.

Theorem 3.12 (Zfl;Ll,Al) 9 (@Q;LQ,AQ) if and only if (Zil;Ll,Al)h _
(5}2;L2,A2)-

Certainly, we can also classify action flows geometrically. For example, two
finitely combinatorial manifolds Ml, ]\% are said to be homotopically equivalent
if there exist continuous mappings f : ]\//v[l — ]\72 and g : Mg — Ml such that
gf ~identity: ]\72 — ]\72 and fg ~identity: ]\71 — Ml. Then we know

Theorem 3.13([7]) Let M, and My be finitely combinatorial manifolds with an
equivalence w : GL[]\/Zl — GL[]\/ZQ]. If for YMy, M, € V(GL[Ml]), M; is homo-
topic to w(M;) with homotopic mappings far, : M; — w(M;), gun, : w(M;) — M;
such that far, a0y, = forg sy 9 |as vy = 9| as e, providing (Mg, M;) €
E(GE[M,]) for 1 <'i,j < m, then M, is homotopic to Ms.

84. Stable Action Flows

The importance of stability for a model on natural things P results in determining

the prediction and controlling of its behaviors. The same also happens to those of
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action flows for the perturbation of things such as those shown in Fiig.17 on operating

of the universe.

Fig.17

As we shown in Theorem 3.4, the Cauchy problem on partial differential equa-
tions of first order is uniquely G-solvable. Thus it is significant to consider the

stability of action flows. Let (@, L(t), A) be an action flow on Banach space %
with initial values (E'), L(to), A) and let w : (@, L, A) — R be an index function.

It is said to be w-stable if there exists a number J§(¢) for any number € > 0 such that
Hw (G La(t) = La(t), A) H <
or furthermore, asymptotically w-stable if
lim Hw (@;Ll(t) - Lg(t),A> H —0

if initial values holding with
[ L1(to) (v, u) — La(to) (v, u)|| < d(e)

for V(v,u) € E (@), for instance the norm-stable or sum-stable by letting

w (5), L,A) = Z HLAL(U’WH )
(v,u)EE(@)

Particularly, ;et

w(TiLis) = 3 IL@w

or



The following result on the stability of G-flow solution was obtained in [17],

which is a commonly norm-stability on G-flows.

Theorem 4.1 Let ¥V be the Hilbert space L?[A]. Then, the G -flow solution X of

equation

—L

F (%, X, Xo, X, Xgrags ) =0
Xy, = G

4
in G is norm-stable if and only if the solution u(x) of equation

{ ﬁ(x,u,uxl, oy Ugy, Ugyggy ) =0
Ulx, = ¢(x)

on (v,u) is stable for V(v,u) € E (@)

In fact, we only need to consider the stability of (5), O, A) after letting flows
0= L(t)(v,u) — L(t)(v,u) on ¥Y(v,u) € E (@) without loss of generality.

Similarly, if there is a Liapunov w-function L(w(t)) : ¢ — R,n > 1 on G with
0 C R" open such that L(w(t)) > 0 with equality hold only if (z1, 29, -+, 2,) =

(0,0,---,0) and if t > to, L(w(t)) < 0, then it can be likewise Theorem 3.8 of [12]

. dL
to know the next result, where L(w) = Cg:})

Theorem 4.2 If there is a Liapunov sum-function L(w(t)) : € — R on G, then
(@; O,A) is w-stable, and furthermore, if L(w(t)) < 0 for (@7 L(t),A) #+ O, then

(@; O, A) 15 asymptotically w-stable.

— ) ) d
For example, let <G; L,A) be the action flow with operators A, .. = o
_ + _ + — + — :
for z = v,u,---,wand A, = Ay Ap = Aai ooy A, = Aw for integer
i = (modn), such as those shown in Fig.18.
U1 L1 V2 U L2 U2 wy Tn Wa
x x x 1
bl T b2 To pin Tn,
T T i) . i) Tn T
Un, 3 Un . Us Wn ' w3
Fig.18



Then its conservation equations are respectively

T1 = ATy T = A1 T2 Ty, = A1y
T1 = A\221 To = AoaTs Ty, = Ap2y,

) ) Y )
€T = Alnxl To = )\2nIZ Ty = Annxn

where all \;;, 1 <1i,7 <n arereal and \;j, # \;j, if 71 # jo for integers 1 <7 < n.
Let L = 22 + a2+ ---+22. Then L = \122 + M\ipa22 + -+ 4+ A n2? for integers
1 <i < n, where 1 < 7; < n for integers 1 < j < n. Whence, it is a Liapunov
w-function for action flow (C’), L, A) if A;j; <0 for integers 1 <4,7 <n.

85. Applications

As a powerful theory, action flow extends classical mathematics on embedded graph,
which can be used as a model nearly for moving things in the nature, particularly,

applying to physics and mathematical ecology.

5.1 Physics

For diversity of things, two typical examples are respectively the superposition be-
havior of microcosmic particle and the quarks model of Sakata, or Gell-Mann and
Ne’eman by assuming internal structures of hadrons and gluons, which can not be

commonly understanding.

W39 € V3
P31 € A 3%/)33 % /é € Vs
Y11 € " V12 € Vo
Y €N

Fig.19

Certainly, H.Everett’s multiverse interpretation in Fig.6 presented the superposition
of particles but with a little machinery, i.e., viewed different worlds in different

quantum mechanics and explained the superposition of a particle to be 2 branch
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tree such as those shown in Fig.19, where the multiverse is |J #; with ¥}, = ¥ for
i>1
integers k > 1, 1 <1 < 2* but in different positions.

Similarly, the quark model assumes internal structures Ky, K3 respectively on
hadrons and gluons mechanically for hold the behaviors of particles. However, such
an assumption is a little ambiguous in logic, i.e., we can not even conclude which
is the point, the hadron and gluon or its subparticle, the quark. However, the
action flows imply the rightness of H.Everett’s multiverse interpretation, also the
assumption of physicists on the internal structures for hold the behaviors of particles

because there are infinite many such graphs G satisfying conditions of Theorem 2.9.

Particle Antiparticle

Fig.20

— -1 . .
For example, let G = f?)n or D7ganp, i-€., a bouquet or a dipole. Then we can

respectively establish a G-flow model for fermions, leptons, quark P with an an-
tiparticle P, and the mediate interaction particles quanta presented in Banach space

v —
N Or DLOQM07 such as those shown in Figs.20 and 21,

Fig.21

where, the vertex P, P’ denotes particles, and arcs or loops with state functions

Y1, 1y, - -+, by are its states with inverse functions ;' 15!, -+ 5" Notice that
L

B n and D79y o both are a union of N circuits. We know the following result.
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—L
Theorem 5.1([18]) For any integer N > 1, there are indeed DLO;N,O—ﬂow solution

on Klein-Gordon equation (3.5), and ?Zw -flow solution on Dirac equation (3.6).

For a particle P consisted of [ elementary particles Py, Py, ---, P, underlying a
graph G [ﬁ}, its G-flow is obtained by replace vertices v by ?fvd:” and arcs e by
—L e ~ :

DLO;N&O in G [P], denoted by @Ld’ [?U, ﬁe} Then we know that

Theorem 5.2([18]) ]fﬁ is a particle consisted of elementary particles Py, Py, - - -, P,
L

then G [?U, l_))e} s a EY)-ﬂow solution on the Schridinger equation (1.1) whenever

its size index \g 1is finite or infinite, where

de= Y. No+ Y N
m(ﬁ) eev@’)

5.2 Mathematical Ecology

Action flows can applied to be a model of ecological systems. For example, let u and
v denote respectively the density of two species that compete for a common food

supply. Then the equations of growth of the two populations may be characterized
by ([6])

U= M(u,v)u (5.1)
0 = N(u,v)v
particularly, the Lotaka-Volterra competition model is given by
ﬂ:a,lu(l—U/Kl—Oélg’U/Kl) (5 2)
@:&Qv(l—v/Kg—Oéglu/Kg) .
in ordinary differentials ([21]), or
Uy = dlAu + alu(l — Klu — Oé12’U/K1) (5 3)
Vy = dgA’U + CLQ’U(l — KQU — O{QlU/KQ) .

in partial differentials on a boundary domain €2 C R" for an integer n > 1 with initial
" ou  Ov )
conditions — = W 0 on unit normal out vector v, u(x,0) = ug(x), v(z,0) =
v v
vo(z) ([28]), where u(x,t),v(z,t) are respectively the density of 2 competitive species
at (x,t) € Q x (0,00), M, N and positive parameters a, ay are the growth rates,

Ky, Ky are the carrying capacities, a;; denotes the interaction between the two

29



species, i.e., the effect of species ¢ on species j for 7,57 = 1 or 2, and d;, dy are the
diffusion rate of species 1 and 2, respectively. This system is nothing else but an

action flow on loop B; on a boundary domain €2 C R” for an integer n > 1

d/ot
(u,v) O
A
Fig.22
. .. ou ov )
with initial conditions — = — = 0 on unit normal out vector v and u(z,0) =

uo(x), v(z,0) = vo(x) fory(x,t)alé 2 x (0,00) such as those shown in Fig.22, where
A(u,v) = (uM (u,v),vN(u,v)). For example, M (u,v) = a; (1 —u/K; — a0/ Ky),
N(u,v) = as (1 —v/Ks — agiu/K») in equations (5.2) or M(u,v) = dyAu/u+a;(1—
Kiu — aqav/Ky), N(u,v) = doAv/v+ as(1 — Kou — ag1v/K3) in equations (5.3) for
V(x,t) € Q x (0,00).

Similarly, assume there are four kind groups in persons at time t, i.e., susceptible
S(t), infected but in the incubation period E(t), infected with infectious I(¢) and
recovered R(t) and new recognition A with removal rates k, o, contact rate § and

natural mortality rate u, such as the action flow shown in Fig.23.

kE

S —uR+ N

Fig.23

Then, we are easily to get the SEIR model on infectious by conservative laws re-
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spectively at vertices vy, v, v3 and vy following:

S=A—uS—pSI
E=p8SI—(u+r)E
I=rE—(u+a)l

R=al —uR

(5.4)

where, N =S+ R+ FE+1—u(S+ R+ E+ 1) and all end-operators are 1 if it is not
labeled in Fig.23. Notice that the systems (5.1)-(5.4) of differential equations are
solvable. Whence, the behavior of action flows in Figs.22 and 23 can be characterized
respectively by solution of system (5.1)-(5.4).

Generally, an ecological system is such an action flow (Zi L, A) on an oriented
graph with a loop on its each vertex, where flows on loops and other edges denote
respectively the density of species or interactions of one species action on another. If
the conservation laws of an action flow are not solvable, then holding on the reality

of competitive species by solution of equations will be not suitable again.

@) o 9/0t amtO
) 1 m o 4 2 (u, v)

Fig.24

For example, the action flow shown in Fig.24 is such an ecological system with

conservation laws

{m:mw@+wwo {m:@w@—Umo

under initial conditions Ou = ov =0, u(z,0) = up(z),v(x,0) = vo(x) for (z,t) €

v Ov
Q2 x (0,00), where

Al(u,v) = (dlAu+a1u(1 — Klu—Oélg’lJ/K1>,d2AU+a2U(1 — KQU—OQl’U/KQ))
As(u,v) = (dsAu+ azu(l — Ksu — asgv/K3), dyAv + aqv(1l — Kyu — ay3v/ Ky))
for V(x,t) € Q2 x (0,00) and U,V are known functions. They are non-solvable in

general but we can characterize its behaviors, for instance, the global stability by

application of Theorem 4.2.
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In fact, all ecological systems are interaction fields in physics. Let €1, %2, -+, Gm

be m interaction fields with respective Hamiltonians HN, HZ ... HI™ where

H[k} : (q17"'7qn7p27"'7pn7t) - H[k]((hv'”vqnvplv'"7pn7t)

for integers 1 < k < m, i.e.,

SRl dp; . 1<k<m.
=—— 1<i<n
8qi dt

Such a system is equivalent to the Cauchy problem on the system of partial differ-

ential equations

N _ oy (t )

- = x PR xn_ , sty P

ot k k, 15 ) 1,P1 Pn—1 1<k<m. (PDESm)
u|t=t0 :U([)](.Tl,xQ,"',xn_l)

. . . . é .
and is in fact an action flows on m dipoles Dg 4. For example, a system of inter-

action field is shown in Fig.25 in m =4 with A= A" = % and A} = A; = 1.

Uu Uu u u
A rA A A A A /
A A, Al A, Al A, Al A
H,y H, Hj H,
Fig.25

By choosing Liapunov sum-function L(w(#))(X) = > H;(X) on G in Theorem
i=1
3.15, the following result was obtained in [15] on the stability of system (PDES,,).

Theorem 5.3 Let X([f] be an equilibrium point of the ith equation in (PDES,,) for

each integer 1 <i <m. If > H;(X) >0 and > 5 <0 for X # ZX(g}, then the
i=1 i=1 i=1
m OH;
system (PDES,,) is sum-stability, i.e., G[t] ~ GI0]. Furthermore, if > T <0
i=1

for X # ij(Eﬂ, then G[t] = G[0].

i=1
86. Conclusion

The main function of mathematics is provide quantitative analysis tools or ways

for holding on the reality of things by observing from a macro or micro view. In
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fact, the out or macro observation is basic but the in-observation is cardinal, and an
in-observation characterizes the individual behavior of things but with non-solvable
equations in mathematics. However, the trend of mathematical developing in 20th
century shows that a mathematical system is more concise, its conclusion is more
extended, but farther to the true face of the natural things. Is a mathematical
true inevitable lead to the natural reality of a thing? Certainly not because more
characters of thing P have been abandoned in its mathematical model. Then, is
there a mathematical envelope theory on classical mathematics reflecting the nature
of things? Answer this question motivates the mathematical combinatorics, i.e.,
extending mathematical systems on topological graphs G because the reality of
things is nothing else but a multiverse on a topological structure under action, i.e.,
action flows, which is an appropriated way for understanding the nature because

things are in connection, also with contradiction.
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