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Abstract—In this paper, we present a method to estimate the
quality (trustfulness) of the solutions of the classical optimal
data association (DA) problem associated with a given source of
information (also called a criterion). We also present a method to
solve the multi-criteria DA problem and to estimate the quality of
its solution. Our approach is new and mixes classical algorithms
(typically Murty’s approach coupled with Auction) for the search
of the best and the second best DA solutions, and belief functions
(BF) with PCR6 (Proportional Conflict Redistribution rule #
6) combination rule drawn from DSmT (Dezert-Smarandache
Theory) to establish the quality matrix of the global optimal
DA solution. In order to take into account the importances of
criteria in the fusion process, we use weighting factors which
can be derived by different manners (ad-hoc choice, quality of
each local DA solution, or inspired by Saaty’s Analytic Hierarchy
Process (AHP)). A simple complete example is provided to show
how our method works and for helping the reader to verify by
him or herself the validity of our results.

Index Terms—Data association, Multi-criteria analysis, belief
functions, PCR6, DSmT.

I. INTRODUCTION

Efficient algorithms for modern multisensor-multitarget

tracking (MS-MTT) systems [1], [2] require to estimate and

predict the states (position, velocity, etc) of the targets evolving

in the surveillance area covered by a set of sensors. These

estimation and prediction are based on sensors measurements

and dynamical models assumptions. In the monosensor con-

text, MTT requires classicallyto solve the data association

(DA) problem to associate the available measurements at a

given time with the predicted states of the targets to update

their tracks using filtering techniques (Kalman filter, Particle

filter, etc). In the multisensor MTT context, we need to solve

more difficult multi-dimensional assignment problems under

constraints. Fortunately, efficient algorithms have been devel-

oped in the operational research and tracking communities for

formalizing and solving these optimal assignments problems

(see the related references detailed in the sequel).

Before going further, it is necessary to recall briefly the basis

of DA problem and the methods to solve it. This problem

can be formulated as follows: We have m > 1 targets Ti

(i = 1, . . . ,m), and n > 1 measurements1 zj (j = 1, . . . , n)
at a given time k, and a m× n rewards (gain/payoff) matrix
Ω = [ω(i, j)] whose elements ω(i, j) ≥ 0 represent the

payoff (usually homogeneous to the likelihood) of the asso-

ciation of target Ti with measurement zj , denoted (Ti, zj).
The data association problem consists in finding the global

optimal assignment of the targets with some measurements by

maximizing2 the overall gain in such a way that no more than

one target is assigned to a measurement, and reciprocally.

Without loss of generality, we can assume ω(i, j) ≥ 0
because if some elements ω(i, j) of Ω were negative, we

can always add the constant value3 to all elements of Ω to

work with a new payoff matrix Ω′ = [ω′(i, j)] having all
elements ω′(i, j) ≥ 0, and we get same optimal assignment
solution with Ω and with Ω′. Moreover, we can also assume

without loss of generality m ≤ n because otherwise we can
always swap the roles of targets and measurements in the

mathematical problem definition by working directly with Ωt

instead, where the superscript t denotes the transposition of the
matrix. The optimal assignment problem consists of finding

the m × n binary association matrix A = [a(i, j)] which
Maximize the global rewards

R(Ω,A) !

m
∑

i=1

n
∑

j=1

ω(i, j)a(i, j) (1)

Subject to











∑n

j=1 a(i, j) = 1 (i = 1, . . . ,m)
∑m

i=1 a(i, j) ≤ 1 (j = 1, . . . , n)

a(i, j) ∈ {0, 1}

(2)

The association indicator value a(i, j) = 1 means that

the corresponding target Ti and measurement zj are asso-
ciated, and a(i, j) = 0 means that they are not associated
(i = 1, . . . ,m and j = 1, . . . , n).

1In a multi-sensor context targets can be replaced by tracks provided by
a given tracker associated with a type of sensor, and measurements can be
replaced by another tracks set. In different contexts, possible equivalents are
assigning personnel to jobs or assigning delivery trucks to locations.
2In some problems, the matrix Ω = [ω(i, j)] represents a cost matrix

whose elements are the negative log-likelihood of association hypotheses. In
this case, the data association problems consists in finding the best assignment
that minimizes the overall cost.
3equals to the absolute value of the minimum of Ω.
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The solution of the optimal assignment problem stated in

(1)–(2) is well reported in the literature and several efficient

methods have been developed in the operational research

and tracking communities to solve it. The most well-known

algorithms are Kuhn-Munkres (or Hungarian) algorithm [3],

[4] and its extension to rectangular matrices proposed by

Bourgeois and Lassalle in [5], Jonker-Volgenant method[6],

and Auction [7]. More sophisticated methods using Murty’s

method [8], and some variants [9], [10], [11], [12], [13], [14],

[15], are also able to provide not only the best assignment, but

also the m-best assignments. We will not present in details all
these classical methods because they have been already well

reported in the literature [16], [17].

The purpose of this paper is to propose a solution for

two important problems related with the aforementioned Data

Association issue:

• Problem 1 (mono-criterion): Suppose that the DA reward

Ω1 has been established based on a unique criterion C1 then

we want to evaluate the quality4 of each association (pairing)

provided in the optimal solution by one of the aforementioned

algorithms. The choice of the algorithm does not matter as

soon as they are able to provide the optimal DA solution

represented by a binary matrix A1 (assumed to be unique

here for convenience). So based on Ω1 and A1, we want to

estimate the quality matrix Q1 of the optimal pairing solutions

given in A1. This quality matrix will be useful to select

optimal association pairings that have sufficient quality to be

used to update the tracking filters, and not to use the optimal

data associations that have a poor quality, which will save

computational time and avoid to potentially degrade tracking

performances.

• Problem 2 (multi-criteria): We assume that we have

different Rewards matrices Ω1, . . . ,ΩK (K > 1), established
from different criteria from which we can draw optimal DA

solutions A1, . . . ,AK with their corresponding quality ma-

trices Q1, . . . ,QK (obtained by the method used for solving

Problem 1). We assume that each criterion Ck, k = 1, . . . ,K
has its own importance with respect to the others which is

expressed either by a given relative importance K×K matrix

M, or directly by a weighting M × 1 vector w. The problem
2 consists in finding the optimal (i.e. the one generating the

best global quality) DA solution based on all information

drawn from the independent multiple criteria we have, that

is from Q1, . . . , QK and M (or w) in a well-justified and

comprehensive manner.

This paper is organized as follows: in section 2 we present

a method for solving problem 1 which uses both 1st-best and

2nd-best DA solutions provided by Murty’s algorithm. Our

method is based on Belief Functions (BF), the Proportional

Conflict Redistribution fusion rule #6 (PCR6) developed in

Dezert-Smarandache Theory (DSmT) framework [19], and the

pignistic probability transform. Section 3, proposes a solution

for Problem 2 exploiting Saaty’s AHP method, BF and also

4In this paper, the quality of a pairing of the optimal DA solution refers to
a confidence score which corresponds to a degree of trustfulness one grants
to this pairing for taking the decision to use it, or not.

Murty’s algorithm. Section 4 presents a full simple detailed

example to show how the method works for readers who want

to check by themselves our results. Section 5 will conclude

this paper with perspectives.

II. SOLUTION OF PROBLEM 1 (MONO-CRITERION)

This solution has already been addressed in details in [21]

and we will just briefly present here the main ideas for making

this paper self containing. In problem 1, we want to establish

a confidence level (i.e. a quality indicator) of the pairings of

the optimal data association solution. More precisely, we are

searching for an answer to the question: how to measure the

quality of the pairings a(i, j) = 1 provided in the optimal
assignment solution A? The necessity to establish a quality

indicator is motivated by the following three main practical

reasons:

1) In some practical tracking environment with the

presence of clutter, some association decisions

(a(i, j) = 1) are doubtful. For these unreliable

associations, it is better to wait for new information

(measurements) instead of applying the hard data

association decision, and making potentially serious

association mistakes.

2) In some multisensor systems, it can be also important

to save energy consumption for preserving a high

autonomy of the system. For this goal, only the most

trustful specific associations provided in the optimal

assignment have to be used instead of all of them.

3) The best optimal assignment solution is not necessarily

unique. In such situation, the establishment of quality

indicators may help in selecting one particular optimal

assignment solution among multiple possible choices.

It is worth noting that the 1st-best, as well as the 2nd-best,

optimal assignment solutions are unfortunately not necessarily

unique. Therefore, we need to take into account the possible

multiplicity of assignments in the analysis of the problem. The

multiplicity index of the best optimal assignment solution is

denoted β1 ≥ 1, and the multiplicity index of the 2nd-best
optimal assignment solution is denoted β2 ≥ 1, and we will
denote the sets of corresponding assignment matrices by A1 =

{A
(k1)
1 , k1 = 1 . . . , β1} and by A2 = {A

(k2)
2 , k2 = 1 . . . , β2}.

Here are three simple examples with different multiplicities in

solutions:

Example 1: If we take Ω =

[

8 1 2
5 3 3

]

, then β1 = 2 and

β2 = 1 because the 1st best and 2nd best DA solutions are

Ak1=1
1 =

[

1 0 0
0 1 0

]

,Ak1=2
1 =

[

1 0 0
0 0 1

]

,A2 =

[

0 0 1
1 0 0

]

.

Example 2: If we take Ω =

[

6 3 9
1 4 1

]

, then β1 = 1 and

β2 = 2 because the 1st best and 2nd best DA solutions are

A1 =

[

0 0 1
0 1 0

]

,Ak2=1
2 =

[

1 0 0
0 1 0

]

,Ak2=2
2 =

[

0 0 1
1 0 0

]

.
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Example 3: If we take Ω =

[

1 2 3
4 5 6

]

, then β1 = 2 and

β2 = 2 because the 1st best and 2nd best DA solutions are

Ak1=1
1 =

[

0 1 0
0 0 1

]

, Ak1=2
1 =

[

0 0 1
0 1 0

]

,

Ak2=1
2 =

[

1 0 0
0 0 1

]

, Ak2=2
2 =

[

0 0 1
1 0 0

]

.

To establish the quality of the specific associations (pairings)

(i, j) satisfying a1(i, j) = 1 belonging to the optimal as-
signment matrix A1, we propose to use both A1 and 2nd-

best assignment solution A2. The basic idea is to use the

values a1(i, j) = 1 in the best, and a2(i, j) in the 2nd-best
assignments to identify the change (if any) of the optimal

pairing (i, j). In fact, we assume5 that higher quality of an
entry in a quality matrix suggests that its association in an

optimal solution is more stable across those good solutions.

The connection between the stability of an association across

the good solutions and the stability over an error in measure-

ment is done through the components of the reward matrices

(the inputs of our method) which must take into account

the measurement uncertainties. Based on this assumption, our

quality indicator will be defined using both the stability of

the pairing and its relative impact in the global reward. This

proposed method works also when the 2nd-best assignment

solution A2 is not unique (as shown in examples 2 and 3).

Our method helps to select the best (most trustful) optimal

assignment in case of multiplicity of A1 matrices. We do

not claim that the definition of the quality matrix proposed

in this work is the best proposal. However, we propose a new

comprehensive way of solving this problem from a practical

standpoint.

To take into account efficiently the reward values of each

specific association given in the best assignment A1 and in

the 2nd-best assignment Ak2

2 for estimating the quality of

DA solutions, we propose to use the following construction

of quality indicators depending on the type of matching:

• When a1(i, j) = ak2

2 (i, j) = 0, one has full agreement
on “non-association” (Ti, zj) in A1 and in Ak2

2 and this

non-association (Ti, zj) has no impact on the global rewards
R1(Ω,A1) and R2(Ω,A

k2

2 ), and it will be useless. Therefore,
we can set its quality arbitrarily to any arbitrary value, typi-

cally we take qk2(i, j) = 0 because these values are not useful
at all for the application (i.e. tracking) standpoint.

• When a1(i, j) = ak2

2 (i, j) = 1, one has a full agreement
on the association (Ti, zj) in A1 and in Ak2

2 . his association

(Ti, zj) has however different impacts in the global rewards
values R1(Ω,A1) and R2(Ω,A

k2

2 ). To qualify the quality
of this association (Ti, zj), we define the two basic belief
assignments (BBA’s) on X ! (Ti, zj) and X ∪ ¬X (the

ignorance), for s = 1, 2 as follows:
{

ms(X) = as(i, j) · ω(i, j)/Rs(Ω,As)

ms(X ∪ ¬X) = 1−ms(X)
(3)

5This assumption has however not been proven formally yet and its validity
is a challenging open-question left for future research works.

Applying the conjunctive fusion rule (here one has no con-

flicting mass), we get











m(X) = m1(X)m2(X) +m1(X)m2(X ∪ ¬X)

+m1(X ∪ ¬X)m2(X)

m(X ∪ ¬X) = m1(X ∪ ¬X)m2(X ∪ ¬X)

(4)

Applying the pignistic transformation6 [20], we get finally

BetP (X) = m(X) + 1
2 · m(X ∪ ¬X) and BetP (¬X) =

1
2 · m(X ∪ ¬X). Therefore, we choose as quality indicator

for the association (Ti, zj) the value q
k2(i, j) ! BetP (X) =

m(X) + 1
2 ·m(X ∪ ¬X).

• When a1(i, j) = 1 and ak2

2 (i, j) = 0, one has a dis-
agreement (conflict) on the association (Ti, zj) in A1 and in

(Ti, zj2) in A
k2

2 , where j2 is the measurement index such that
a2(i, j2) = 1. To qualify the quality of this non-matching
association (Ti, zj), we define the two following basic belief
assignments (BBA’s) of the propositions X ! (Ti, zj) and
Y ! (Ti, zj2)

{

m1(X) = a1(i, j) ·
ω(i,j)

R1(Ω,A1)

m1(X ∪ Y ) = 1−m1(X)
(5)

and
{

m2(Y ) = a2(i, j2) ·
ω(i,j2)

R2(Ω,A
k2

2
)

m2(X ∪ Y ) = 1−m2(Y )
(6)

Applying the conjunctive fusion rule, we getm(X∩Y = ∅) =
m1(X)m2(Y ) and











m(X) = m1(X)m2(X ∪ Y )

m(Y ) = m1(X ∪ Y )m2(Y )

m(X ∪ Y ) = m1(X ∪ Y )m2(X ∪ Y )

(7)

Because we need to work with a normalized combined BBA,

we can choose different rules of combination (say either

Dempster-Shafer’s rule, Dubois-Prade’s rule, Yager’s rule [19],

etc). In this work, we propose to use the Proportional Conflict

Redistribution rule no. 6 (PCR6) proposed originally in DSmT

framework [19] because it has been proved very efficient in

practice [28], [29]. Hence with PCR6, we get:











m(X) = m1(X)m2(X ∪ Y ) +m1(X) · m1(X)m2(Y )
m1(X)+m2(Y )

m(Y ) = m1(X ∪ Y )m2(Y ) +m2(X) · m1(X)m2(Y )
m1(X)+m2(Y )

m(X ∪ Y ) = m1(X ∪ Y )m2(X ∪ Y )
(8)

Applying the pignistic probability transformation, we get

finally BetP (X) = m(X) + 1
2 ·m(X ∪ Y ) and BetP (Y ) =

m(Y ) + 1
2 · m(X ∪ Y ). Therefore, we choose the quality

indicators as follows: qk2(i, j) = BetP (X), and qk2(i, j2) =
BetP (Y ).

6We have chosen here BetP for its simplicity and because it is widely
known, but DSmP could be used instead for expecting better performances
[19].
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The absolute quality factor Qabs(A1) of the optimal as-
signment given in A1 conditioned by Ak2

2 , for any k2 ∈
{1, 2, . . . , β2} is defined as

Qabs(A1,A
k2

2 ) !

m
∑

i=1

n
∑

j=1

a1(i, j)q
k2(i, j) (9)

The absolute average quality factor Qaver(A1) per associ-
ation of the optimal assignment given in A1 conditioned by

Ak2

2 , for any k2 ∈ {1, 2, . . . , β2} is defined by

Qaver(A1,A
k2

2 ) =
1

m
Qabs(A1,A

k2

2 ) (10)

where m is the number of ”1” in the optimal DA matrix A1

(i.e. the number of targets).

To take into account the eventual multiplicities (when

β2 > 1) of the 2nd-best assignment solutions Ak2

2 , k2 =
1, 2, . . . , β2, we need to combine the QI(A1,A

k2

2 ) values.
Several methods can be used for this, in particular we can use

either:

– A weighted averaging approach: The quality indicator

components q(i, j) of the quality matrix Q are then obtained

by averaging the qualities obtained from each comparison of

A1 with Ak2

2 . More precisely, one will take

q(i, j) !

β2
∑

k2=1

w(Ak2

2 )qk2(i, j) (11)

where w(Ak2

2 ) is a weighting factor in [0, 1], such that
∑β2

k2=1 w(A
k2

2 ) = 1. Since all assignmentsAk2

2 have the same

global reward value R2, then we suggest to take w(Ak2

2 ) =
1/β2. A more elaborate method would consist of using the

quality indicator of Ak2

2 based on the 3rd-best solution, which

can be itself computed from the quality of the 3rd assignment

solution based on the 4th-best solution, and so on by a similar

mechanism.

– A belief-based approach: (see [18] for basics on belief

functions): A second method would express the quality by

a belief interval [qmin(i, j), qmax(i, j)] in [0, 1] instead of
single real number q(i, j) in [0, 1]. More precisely, one can
compute the belief and plausibility bounds of the quality

by taking qmin(i, j) ≡ Bel(a1(i, j)) = mink2
qk2(i, j) and

qmax(i, j) ≡ Pl(a1(i, j)) = maxk2
qk2(i, j). Hence for each

possible pair (i, j), one can define a basic belief assignment
(BBA) mij(.) on the frame of discernment Θ ! {T =
trustful,¬T = not trustful}, which characterizes the quality
of the pairing (i, j) in the optimal assignment solution A1, as

follows










mij(T ) = qmin(i, j)

mij(¬T ) = 1− qmax(i, j)

mij(T ∪ ¬T ) = qmax(i, j)− qmin(i, j)

(12)

Because only the optimal associations7 (i, j) such that

a1(i, j) = 1 are useful in tracking algorithms to update the

7given in the optimal solution found using Murty’s algorithm.

tracks, we do not need to pay attention (compute and store)

the qualities of components (i, j) such that a1(i, j) = 0. In
fact all components (i, j) such that a1(i, j) = 0 should be set
to zero by default in Q matrix.

Example 4: Let’s consider the rewards matrix

Ω =





1 11 45 30
17 8 38 27
10 14 35 20





We get one 1st best (β1 = 1) and four 2nd best (β2 = 4)
DA solutions with their respective qualities as follows:

A1 =

[

0 0 1 0

0 0 0 1

0 1 0 0

]

⇒ R1(Ω,A1) = 86

A
k2=1
2 =

[

0 0 0 1

0 0 1 0

0 1 0 0

]

⇒ R2(Ω,Ak2=1
2 ) = 82

Q(A1,A
k2=1
2 ) ≈

[

0 0 0.59 0

0 0 0 0.41

0 0.65 0 0

]

Ak2=2
2 =

[

0 0 1 0

1 0 0 0

0 0 0 1

]

⇒ R2(Ω,Ak2=3
2 ) = 82

Q(A1,A
k2=2
2 ) ≈

[

0 0 0.89 0

0 0 0 0.56

0 0.45 0 0

]

Ak2=3
2 =

[

0 0 1 0

0 0 0 1

1 0 0 0

]

⇒ R2(Ω,Ak2=3
2 ) = 82

Q(A1,A
k2=3
2 ) ≈

[

0 0 0.89 0

0 0 0 0.76

0 0.52 0 0

]

Ak2=4
2 =

[

0 0 0 1

1 0 0 0

0 0 1 0

]

⇒ R2(Ω,Ak2=4
2 ) = 82

Q(A1,A
k2=4
2 ) ≈

[

0 0 0.59 0

0 0 0 0.56

0 0.35 0 0

]

Note that the absolute quality factors are :

Qabs(A1,A
k2=1
2 ) ≈ 1.66, Qabs(A1,A

k2=2
2 ) ≈ 1.91

Qabs(A1,A
k2=3
2 ) ≈ 2.19, Qabs(A1,A

k2=4
2 ) ≈ 1.51

Therefore, we can see that

Qabs(A1,A
k2=3
2 ) > Qabs(A1,A

k2=2
2 )

> Qabs(A1,A
k2=1
2 ) > Qabs(A1,A

k2=4
2 )

which makes perfectly sense because A1 has more matching

pairings with Ak2=3
2 than with others 2nd-best assignments

Ak2

2 (k2 ,= 3). These pairings have also the strongest impact
in the global reward value. Therefore, the quality matrix Q
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differentiates the quality of each pairing in the optimal assign-

ment A1 as expected. This method provides an effective and

comprehensive solution to estimate the quality of each specific

association provided in the optimal assignment solution A1.

The averaged qualities per association are:

Qaver(A1,A
k2=1
2 ) ≈ 0.55, Qaver(A1,A

k2=2
2 ) ≈ 0.63

Qaver(A1,A
k2=3
2 ) ≈ 0.73, Qaver(A1,A

k2=4
2 ) ≈ 0.50

The global quality matrix is then given by (using the

averaging approach)

Q(A1,A2) =
1

β2

β2
∑

k2=1

Q(A1,A
k2

2 )

≈





0 0 0.74 0
0 0 0 0.57
0 0.49 0 0





The global quality indexes Qabs(A1,A2) and

Qaver(A1,A2) are then approximately equal to 1.8 and

0.6 respectively.

One can also improve the estimation of the quality matrix by

using the absolute quality factor of each solution Q(A1,A
k2

2 ),
for k2 = 1, . . . β2 to define the normalized weighting factors
as follows:

w = [wk2
, k2 = 1, . . . β2]

′

with wk2
!

Qabs(A1,A
k2

2
)

K
, and where the normalization factor

K is given by K =
∑β2

k2=1 Qabs(A1,A
k2

2 ). In this example,
we get the weights

w = [w1 w2 w3 w4]
′ ≈ [

1.66

7.27

1.91

7.27

2.19

7.27

1.51

7.27
]′

= [0.2283 0.2627 0.3012 0.2077]′

The global quality matrix is then given by (using the

averaging approach)

Q(A1,A2) =

β2
∑

k2=1

wk2
Q(A1,A

k2

2 )

≈





0 0 0.76 0
0 0 0 0.58
0 0.49 0 0





If we prefer to use the Belief Interval Measure (BIM)

instead of the previous averaging approach, we will get in

this example the following imprecise qualities values:

Optimal. assignments BIM

(1, 3) ≈ [0.59, 0.89]
(2, 4) ≈ [0.41, 0.76]
(3, 2) ≈ [0.35, 0.65]

Based on the comparisons of (pessimistic) lower bounds,

or (optimistic) upper bounds of BIM, we observe that we get

a consistent ordering of the qualities of the optimal solutions

(same ordering as with the averaging method).

III. SOLUTION OF THE 2ND PROBLEM (MULTI-CRITERIA)

In this section, we evaluate the global DA association

solution, with estimation of its quality, based on the

knowledge of the qualities of multiple optimal DA solutions

established separately based on distinct association criteria

Ck, k = 1, . . . ,K . More precisely, given the set of quality
matrices Qk (k = 1, . . . ,K) defined by the components
qk(i, j) according to Eq.(11), how to establish the global

optimal DA solution with its overall quality matrix Q?

Moreover, we want to take into account the importance

of each criteria (when defined) in the establishment of the

solution.

In fact this 2nd problem is linked to the previous one and

the method developed for solving our first problem will also

help to solve this second problem as it will be shown in the

following. Our solution is based on four distinct steps:

• Step 1: Estimation of the normalized weighting vector w of

the criteria: Two simple approaches are proposed to establish

the normalized criteria ranking (weighting) vector.

1) Direct method: The weightings factors can be directly

established either by an external source of information,

or by the system designer. If these weightings factors

are not available, we propose to compute them from

the qualities indicators derived by the method used to

solve the 1st problem (see the previous section). For

example, if we consider K criteria providing quality

factors Qk
abs(A1(Ck),A2(Ck)), k = 1, 2, . . . ,K , then

we compute the normalized K × 1 weighting vector
w = [w1w2...wK ]′ with the k-th component given by

wk !
Qk

abs(A1(Ck),A2(Ck))
∑K

j=1 Q
j
abs(A1(Cj),A2(Cj))

(13)

where Qk
abs(A1(Ck),A2(Ck)) is the absolute quality

factor obtained from the quality matrix Qk(A1,A2) of
the optimal DA for the criteria Ck.

2) Saaty’s method: This method is part of Saaty’s AHP

method widely used for multi-criteria decision analysis

in operational research [22], [23], [24], and it has been

connected with information fusion and belief functions

in [25], [26], [27]. The relative importance of one

criterion over another must be expressed by the system

designer using a pairwise K × K comparison matrix

(also called knowledge matrix) M = [mpq] where
the element mpq of the matrix defines the importance

of criteria Cp with respect to the criteria Cq , with

p, q ∈ {1, 2, . . . ,K}. For example, see [25] for details,
let’s consider only K = 3 criteria, if the comparison
matrix is given by

M =





(1/1) (1/3) (4/1)
(3/1) (1/1) (5/1)
(1/4) (1/5) (1/1)





it means that the element m13 = 4/1 indicates that the
criteria C1 is four times as important as the criteria C3
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for the system designer (or decision-maker), etc. From

this pairwise matrix, Saaty demonstrated that the ranking

of the priorities of the criteria can be obtained from the

normalized eigenvector, denoted w, associated with the

principal/max eigenvalue of the matrix M, denoted λ.
In our example, one gets λ = 3.0857 and and w =
[0.2797 0.6267 0.0936]′ which shows that C2 criterion is

the most important criterion with the weight 0.6267, then

the criterion C1 is the second most important criterion

with weight 0.2797, and finally C3 criterion is the least

important criterion with weight 0.0936.

• Step 2: Combined estimation of the qualities of each target
association

Once the normalized weighting vector w of the criteria

has been obtained, we need at first to compute the com-

bined/weighted estimation of the qualities of each target

association with the n available measurements. This is done
by building the following n×K matrix

Qi ! [qi(C1) . . .qi(CK)] (14)

where each column qi(Ck) of the matrix Qi corresponds to

the transpose of the i-th row of the quality matrixQk(A1,A2).
Then following AHP approach, we multiply this n × K

matrix Qi by the normalized criteria ranking K × 1 vector
w (obtained either from the direct method of Saaty’s one) to

get the combined estimation of the qualities of each target

association. More precisely, for the i-th target, we obtain the
following n× 1 vector

qi ! Qiw (15)

• Step 3: Search for the optimal global assignment based on
combined qualities derived from the criteria.

From the set of m vectors qi (i=1,2,. . . ,m) we need to solve

now a new optimal DA association problem with the (global)

m× n rewards matrix defined by

ΩG ! [q1 q2 . . .qm]′ (16)

Murty’s algorithm is then used again here to get the optimal

DA solution(s) providing the best global reward, and to

generate also all the 2nd-best solutions that are necessary to

estimate its quality in Step 4.

• Step 4: Estimation of the quality of the optimal DA solution.
We use the method described in Section 2 for solving the

problem 1 to estimate the quality of the optimal DA solution.

If several 1st-best DA solutions occur, we choose the solution

generating the highest Qabs quality index.

IV. A SIMPLE ILLUSTRATIVE EXAMPLE

For the sake of simplicity, let’s consider the following

example with m = 3 targets, n = 5 measurements, and 3
criteria C1, C2 and C3 associated with the (randomly chosen)

rewards matrices:

Ω(C1) =





100 20 33 5 27
11 80 25 37 62
38 2 24 78 46





Ω(C2) =





87 35 43 20 95
28 83 25 10 29
10 7 72 41 29





Ω(C3) =





25 78 49 60 9
30 26 79 20 49
20 20 3 47 81





A. Qualities of optimal data associations

Applying the method described in section 1, we easily

obtain the following quality matrices of optimal DA solutions:

• For criterion C1, one gets β1 = 1 and β2 = 1, and the
following 1st best and 2nd best DA solutions

Ω(C1) ⇒







































A1 =







1 0 0 0 0

0 1 0 0 0

0 0 0 1 0







A2 =







1 0 0 0 0

0 0 0 0 1

0 0 0 1 0







providing the 1st and 2nd best global rewards

R(Ω(C1),A1) = 258 and R(Ω(C1),A2) = 240. Ap-
plying the method described in Section 2, we obtain the

following quality matrix related with the optimal DA

based on criterion C1:

Q1 ≈





0.82 0 0 0 0
0 0.52 0 0 0
0 0 0 0.76 0





• For criterion C2, one gets β1 = 1 and β2 = 1, and the
following 1st best and 2nd best DA solutions

Ω(C2) ⇒







































A1 =







0 0 0 0 1

0 1 0 0 0

0 0 1 0 0







A2 =







1 0 0 0 0

0 1 0 0 0

0 0 1 0 0







providing the 1st and 2nd best global rewards

R(Ω(C2),A1) = 250 and R(Ω(C2),A2) = 242. Ap-
plying the method described in Section 2, we obtain the

following quality matrix related with the optimal DA

based on criterion C2:

Q2 ≈





0 0 0 0 0.51
0 0.78 0 0 0
0 0 0.74 0 0





• For criterion C3, one gets β1 = 1 and β2 = 1, and the
following 1st best and 2nd best DA solutions
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Ω(C3) ⇒







































A1 =







0 1 0 0 0

0 0 1 0 0

0 0 0 0 1







A2 =







0 0 0 1 0

0 0 1 0 0

0 0 0 0 1







providing the 1st and 2nd best global rewards

R(Ω(C3),A1) = 238 and R(Ω(C3),A2) = 220. Ap-
plying the method described in Section 2, we obtain the

following quality matrix related with the optimal DA

based on criterion C3:

Q3 ≈





0 0.53 0 0 0
0 0 0.78 0 0
0 0 0 0 0.79





B. Multicriteria-based DA solution with its quality

• Case 1: If we assume that all criteria have the same

weights in the search of optimal DA solution, then

we take the normalized weighting vector as w =
[1/3 1/3 1/3]′. Therefore, the weighted average ΩG =
∑K=3

k=1 wkQ
k of the quality matrices Q1, Q2 and Q3

gives us the following rewards matrix

ΩG ≈





0.27 0.17 0 0 0.17
0 0.43 0.26 0 0
0 0 0.25 0.25 0.26





Now we solve the DA association problem to maximize

the global quality reward using Murty’s algorithm and we

get the following 1st best and 2nd best DA solutions:

ΩG ⇒















































A1 =







1 0 0 0 0

0 1 0 0 0

0 0 0 0 1







A2 =







1 0 0 0 0

0 1 0 0 0

0 0 0 1 0







with the 1st and 2nd best global rewards R(ΩG,A1) ≈
0.97 and R(ΩG,A2) ≈ 0.96. Applying the method
described in Section II to estimate the quality of this

optimal DA solution, we obtain the following quality

matrix:

Q ≈





0.74 0 0 0 0
0 0.84 0 0 0
0 0 0 0 0.50





• Case 2: If we use the prior information given by abso-

lute quality indicators to build the normalized weighting

vector, we get

Q1
abs =

m
∑

i=1

n
∑

j=1

Q1(i, j) ≈ 2.11

Q2
abs =

m
∑

i=1

n
∑

j=1

Q2(i, j) ≈ 2.04

Q3
abs =

m
∑

i=1

n
∑

j=1

Q3(i, j) ≈ 2.10

and we have Q1
abs +Q2

abs +Q3
abs = 6.2672. So that, the

normalized weights are given by

w = [w1 w2 w3]
′ = [

2.1154

6.2672

2.0426

6.2672

2.1091

6.2672
]′

≈ [0.3375 0.3260 0.3365]′

The weighted average ΩG =
∑K=3

k=1 wkQ
k of the quality

matrices Q1, Q2 and Q3 give us now the following

rewards matrix

ΩG ≈





0.27 0.17 0 0 0.16
0 0.43 0.26 0 0
0 0 0.24 0.25 0.26





Now we solve the DA association problem to maximize

the global quality reward and we get the following 1st

best and 2nd best DA solutions:

ΩG ⇒















































A1 =







1 0 0 0 0

0 1 0 0 0

0 0 0 0 1







A2 =







1 0 0 0 0

0 1 0 0 0

0 0 0 1 0







with the 1st and 2nd best global rewards R(ΩG,A1) ≈
0.97 and R(ΩG,A2) ≈ 0.96. Applying the method
described in Section 2 to estimate the quality of this

optimal DA solution, we obtain the following quality

matrix:

Q ≈





0.74 0 0 0 0
0 0.84 0 0 0
0 0 0 0 0.50





Because the normalized weights based on the absolute

quality indicators, in this example, are all close to 1/3,

we obtain the result of the multicriteria-based optimal DA

and its quality close to what we get when assuming equi-

importance of the criteria in the fusion process, which is

normal.

To qualify qualitatively the quality of the pairings in the

optimal DA solution, we split the quality range [0;1] into three

subintervals as follows8

Low quality : if q(i, j) ∈ [0; 1/3]

Medium quality : if q(i, j) ∈ [1/3; 2/3]

High quality : if q(i, j) ∈ [2/3; 1]

8Of course, other repartitions could be used instead depending on the what
would prefer the system designer.
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Based on this qualitative scale, we finally get for our

example the final multicriteria-based DA solution

A1 =





1 0 0 0 0
0 1 0 0 0
0 0 0 0 1





with the qualitative quality matrix

Qqualitative =





High − − − −
− High − − −
− − − − Medium





where the notation “−” means “that the quality evaluation
does not apply”, or is interpreted (by default) as “the worst

quality”.

Remark: It is worth to note that this approach provides in

general not the same results as if one would combine (and

weight) directly the original reward matrices of each criterion.

In this example, the weighted global reward matrix Ωdirect =
∑K

k=1 wkΩ(Ck) would be equal to

Ωdirect ≈





69.07 45.39 41.75 29.31 40.85
22.93 61.43 44.46 22.79 47.44
23.13 9.98 30.78 55.75 53.53





corresponding to the quality matrix of optimal DA solution

Qdirect ≈





0.73 0 0 0 0
0 0.84 0 0 0
0 0 0 0.47 0





One sees that these high quality solutions are fully consis-

tent with the high quality solutions of our method. However,

the medium quality solution (we get (3,4) pairing from the

direct optimal assignment versus (3,5) assignment obtained by

our method) mismatch. This reflects an ambiguity in the choice

of the assignment of target T3. Therefore, such assignment is

unreliable because of its low quality, and should not be used

to update the track of this target.

V. CONCLUSION

In this paper, we have proposed two methods based on belief

functions for establishing: 1) the quality of pairings given

by optimal data association (or assignment) solution using a

chosen algorithm (typically Murty’s algorithm coupled with

Auction algorithm) with respect to a given criterion, and 2)

the quality of the multicriteria-based optimal data association

solution. Our methods are independent of the choice of the

algorithm used in finding the optimal assignment solution, and,

in case of multiple optimal solutions, they provide also a way

to select the best optimal assignment solution (the one having

the highest absolute quality factor). The methods developed

in this paper are general in the sense that they can be applied

to different types of association problems corresponding to

different sets of constraints. This method can be extended to

SD-assignment problems as well. As perspectives, we would

like to extend our approach to the n-D assignment context,

and then evaluate its performances in a realistic multi-target

tracking scenario.
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