
2005 7th International Conference on Information Fusion (FUSION)

Performance Evaluation of Fusion Rules
For Multitarget Tracking in Clutter

Based on Generalized Data Association*
Jean Dezert A

ONERA/DTIM/IED
29 Av. de la Division Leclerc

92320 Chatillon
France

Jean.Dezert@onera. fr

Abstract - In this paper, we present and compare different fu-
sion rules which can be used for Generalized Data Association
(GDA)for multitarget tracking (MIT) in clutter. Most of tracking
methods including Target Identification (ID) or attribute informa-
tion are based on classical tracking algorithms as PDAF, JPDAF,
MHT, IMM, etc and either on the Bayesian estimation and predic-
tion of target ID, or on fusion of target class belief assignments
through the Demspter-Shafer Theory (DST) and Dempster's rule
ofcombination. In this paper we pursue ourprevious works on the
development of a new GDA-M7T based on Dezert-Smarandache
Theory (DSmT) but compare also it with standard fusion rules
(Demspter's, Dubois & Prade's, Yager's) and with a new fusion
Proportional Conflict Redistribution (PCR) rule in order to as-
sess the efficiency of all these differentfusion rules for this GDA-
MTT in highly conflicting situation. This evaluation is based on a
Monte Carlo simulation for a difficult maneuvering MI1 problem
in clutter similar to the example recently proposed by Bar-Shalom,
Kirubarajan and Gokberk.

Keywords: Multitarget Tracking, Generalized Data Association,
Dezert-Smarandache Theory (DSmT), Attribute and Kinematics
fusion, Data fusion, Combination rules, Conflict management.

1 Introduction

The idea of incorporating Target Identification (ID) in-
formation or target attribute measurements to improve
MTT systems is not new and many approaches have
been proposed in the literature over the last fifteen years.
For example, in [14, 15, 20] an improved PDAF (Proba-
bilistic Data Association Filter) had been developed for
autonomous navigation systems based on Target Class ID
and ID Confusion matrix, and also on another version
based on imprecise attribute measurements combined
within Demspter's rule. At the same time Lerro in [19]
developed the AI-PDAF (Amplitude Information PDAF).
Since the nineties many improved versions of classical
tracking algorithms like IMM, JPDAF, IMM-PDAF, MHT,
etc including attribute information have been proposed (see
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[12] and [6] for a recent overview). Recent contributions
have been done by Blasch and al. in [7, 8, 9, 10, 28]
for Group Target Tracking and classification. In last two
years efforts have been done also by Hwang and al. in
[16, 17, 18]. We recently discovered that the Hwang's
MTIM (Multiple-target Tracking and Identity Manage-
ment) algorithm is very close to our GDA-MTT. The
difference between MTIM and GDA-MTT lies fundamen-
tally in the Attribute Data Association procedure. MTIM is
based on MAJPDA (Modified Approximated JPDA) cou-
pled with RMIMM (Residual-mean Interacting Multiple
Model) algorithm while the GDA-MTT is based on GNN
(Global Nearest Neighbour) approach for data association
incorporating both kinematics and attribute measurements
(with more sophisticated fusion rules dealing with fuzzy,
imprecise and potentially highly conflicting target attribute
measurements), coupled with standard IMM-EKF [1]. The
last recent attempt for solving the GDA-MTT problem was
proposed by Bar-Shalom and al. in [6] and expressed as
a multiframe assignment problem where the multiframe
association likelihood was developed to include the target
classification results based on the confusion matrix that
specifies the prior accuracy of the target classifier. Such
multiframe s-D assignment algorithm should theoretically
provide performances close to the optimality for MTT
systems but remains computationally greedy. The purpose
of this paper is to compare the performances of several
fusion rules usable into our new GDA-MTT algorithm
based on a MTT scenario similar to the one given in
[6] but actually more difficult since seven closed spaced
maneuvering targets are considered belonging only to
two classes within clutter and with only 2D kinematic
measurements and attribute measurement.

This paper is organized as follows. In section 2 we
present our approach for GDA-MTT algorithm emphasiz-
ing only on the new developments in comparison with our
previous GDA-MTT algorithm, developed in [27, 241. In
our previous works, we proved the efficiency of GDA-
MTT (in term of Track Purity Performance) based on DSm
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Hybrid rule of combination over the GDA-MTT based on
Dempster's rule but also over the KDA-MTT (Kinematics-
only-based Data Association) trackers on simple two tar-
gets scenarios (with and without clutter). In section 3 we
remind the main fusion rules we investigate for our new
GDA-MTT algorithm. Most of these rules are well-known
in the literature [24, 22], but the PCR5 rule presented here
is really a new one recently proposed in [25, 26]. Due to
space limitations, we assume the reader familiar with ba-
sics on Target Tracking [2, 3, 4, 5, 11, 12], on DST [23]
and on DSmT [24] for fusion of uncertain, imprecise and
possibly highly conflicting information. Section 4 presents
and compares several Monte Carlo results for different ver-
sions of our GDA-MTT algorithm based on the fusion rules
proposed in section 3 for a MTT scenario similar to the one
in [6]. Conclusion is given in section 5.

2 General principle of GDA-MTT
Classical target tracking algorithms consist mainly in
two basic steps: data association to associate proper
measurements (usually kinematics measurement z(k)
representing either position, distance, angle, velocity,
acceleration, etc) with correct targets and track filter-
ing to estimate and predict state of targets once data
association has been performed. The first step is very
important for the quality of tracking performances since
its goal is to associate correctly (or at least as best as
possible) observations to existing tracks (or eventually
new born targets). The data association problem is
very difficult to solve in dense multitarget and cluttered
environment. To eliminate unlikely (kinematics-based)
observation-to-track pairing, the classical validation
test is carried on the Mahalanobis distance d2 (i, j) -
(zj (k) - ii(kIk - 1))'S-1 (k)(zj (k) - ii(kIk - 1)) < ^y
computed from the measurement zj (k) and its prediction
z (k k - 1) computed by the tracker of target i (see [2] for
details). Once all the validated measurements have been
defined for the surveillance region, a clustering procedure
defines the clusters of the tracks with shared observations.
Further the decision about observation-to-track associa-
tions within the given cluster is considered. The Extended
Kalman Filter coupled with a classical IMM (Interacting
Multiple Model) for maneuvering target tracking is used to
update the targets state vectors.

This new GDA-MTT improves data association process
by adding attribute measurements (like amplitude infor-
mation or RCS (radar cross section), or eventually as in
[6] Target ID decision coupled with confusion matrix, to
classical kinematic measurements to increase the perfor-
mances of the MTT system. When attribute data are avail-
able, the generalized (kinematics and attribute) likelihood
ratios are used to improve the assignment. The GNN ap-
proach is used in order to make a decision for data as-
sociation. Our new GDA approach consists in choosing
a set of assignments {Xij}, for i 1l,...n and j
1, . .. m, that assures maximum of the total generalized
likelihood ratio sum by solving the classical assignment
problem minm j> j aijXij using extended Munkres

algorithm [13] and where a3j - log(LRgen (i, j)) with
LRgen(i, j) = LRk(i,j)LRa(i, j), where LRk(i,j) and
LRa(i, j) are kinematics and attribute likelihood ratios re-
spectively, and

{ 1 if measurement j is assigned to track i
Xij 0 otherwise

where the elements aij of the assignment matrix A = [aij]
take the following values [21]:

j- -log(LRk(i, j)LRa(i, j))
if dA > -y
if d?. < -y

The solution of the assignment matrix is the one that min-
imizes the sum of the chosen elements. We solve the as-
signment problem by realizing the extension of Munkres
algorithm, given in [13]. As a result one obtains the op-
timal measurements to tracks association. Once the opti-
mal assignment is found, i.e. the (what we feel) correct as-
sociation is available, then standard tracking filter is used
depending on the dynamics of the target under tracking.
We will not recall classical tracking filtering methods here
which can be found in many standard textbooks [5, 12].

2.1 Kinematics Likelihood Ratios for GDA

The kinematics likelihood ratios LRk(i, j) involved into aij
are quite easy to obtain because they are based on classi-
cal statistical models for spatial distribution of false alarms
and for correct measurements [5]. LRk(i, j) is evaluated
as LRk(i,j) - LFtrue(i,j)/LFfaise where LFtue is the
likelihood function that the measurement j originated from
target (track) i and LFfalse the likelihood function that the
measurement j originated from false alarm. At any given
time k, LFtue is defined' as LFtnj,e =- ii,ut(k)LF,(k)
where r is the number of the models (in our case of two
nested models r = 2 is used for EKF-IMM), [, (k) is the
probability (weight) of the model I for the scan k, LF, (k)
is the likelihood function that the measurement j is orig-
inated from target (track) i according to the model 1, i.e.
LF1(k) - 2i - ed1(i,J)/2. LFfalse is defined as

2Ir7S_li(k) I
LFfalse Pf a/!VC, where Pfa is the false alarm probabil-
ity and Vl is the resolution cell volume chosen as in [6] as
K = Inli R In our case, ri 2 is the measure-
ment vector size and Rij are sensor error standard devia-
tions for azimuth:3 and distance D measurements.

2.2 Attribute Likelihood Ratios for GDA

The major difficulty to implement GDA-MTT depends on
the correct derivation of coefficients aij, and more specifi-
cally the attribute likelihood ratios LRa(i, j) for correct as-
sociation between measurement j and target i based only
on attribute information. When attribute data are available
and their quality is sufficient, the attribute likelihood ratio
helps a lot to improve MTT performances. In our case, the

Iwhere indexes i and j have been omitted here for LF notation
convenience.
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target type information is utilized from RCS attribute mea-
surement through fuzzification interface proposed in [27].
A particular confusion matrix is constructed to model the
sensor's classification capability. This work presents differ-
ent possible issues to evaluate LRa(i, j) depending on the
nature of the attribute information and the fusion rules used
to predict and to update each of them. The specific attribute
likelihood ratios are derived within both DSmT and DST
frameworks.

2.2.1 Modeling the Classifier

The way of constructing the confusion matrix is based on
some underlying decision-making process based on specific
attribute features measurements. In this particular case, it is
based on the fuzzification interface, described in our pre-
vious work [27, 24]. Through Monte Carlo simulations,
the confusion matrix for two different average values of
RCS is obtained, in terms of the first frame of hypotheses
01 ={(S)mall, (B)ig}. Based on the fuzzy rules, described
in [27], defining the correspondence between RCS values
and the respective targets' types, the final confusion ma-
trix T = [tij] in terms of the second frame of hypotheses
02 = {(F)ighter, (C)argo} is constructed. Their elements
tij represent the probability to declare that the target type
is i when its real type is j. Thus the targets type probability
mass vector for classifier output is the j-th column of the
confusion matrix T. When false alarms arise, their mass
vector consists in an equal distribution of masses among
the two classes of target.

2.2.2 Attribute Likelihood Ratio within DSmT

The approach for deriving LRa(i, j) within DSmT is based
on relative variations of pignistic probabilities [24] for the
target type hypotheses, Hj (j -1 for Fighter, j = 2 for
Cargo) included in the frame 02 conditioned by the correct
assignment. These pignistic probabilities are derived af-
ter the fusion between the generalized basic belief assign-
ments of the tracks old attribute state history and the new
attribute/ID observation, obtained within the particular fu-
sion rule. It is proven [24] that this approach outperforms
most of the well-known ones for attribute data association.
It is defined as:

'A P - 'Ai (P*JZZ T()

where

\(*|Z) ,2 IPiZ(H -PT j

AI (P* E2- ~ z)Hj_ 2 PiZ (Hj) PI (J)I Z- -=l P=((Hj)
2 IPT Z=T (Hj -PT,(Hj)IAi(P*ZT Ej=1 P;(Hj)

i.e. Ai(P*lZz Tj) is obtained by forcing the attribute
observation mass vector to be the same as the attribute mass
vector of the considered real target, i.e. mz(.) = mTi (.).
The decision for the right association relies on the minimum
of expression (1). Because the generalized likelihood ratio
LRgeri is looking for the maximum value, we define the

final form of the attribute likelihood ratio to be inversely
proportional to the 6i(P*) with i defining the number of
the track, i.e. LRa(i, j) = 116i(P*).
2.2.3 Attribute Likelihood Ratio within DST

LRa(i, j) within DST is defined from the derived attribute
likelihood function proposed in [3, 12]. If one considers the
observation-to-track fusion process using Dempster's rule,
the degree of conflict kij is computed as the assignment of
mass committed to the conflict, i.e. m(0). The larger this
assignment is, the less likely is the correctness of observa-
tion j to track i assignment. Then, the reasonable choice
for the attribute likelihood function is LHF,j= 1 - kij.
The attribute likelihood function for the possibility that a
given observation j originated from the false alann is com-
puted as LHFf a,j =1 - kfa,j. Finally the attribute like-
lihood ratio to be used in GDA is obtained as LRa(i, j) =
LHFi,j/LHFf ,j.

3 Fusion rules proposed for GDA-MTT
Imprecise, uncertain and even contradicting information or
data are characteristics of the real world situations and must
be incorporated into modem MTT systems to provide a
complete and accurate model of the monitored problem.
On the other hand, the conflict and paradoxes management
in collected knowledge is a major problem especially dur-
ing the fusion of many information sources. Indeed the
conflict increases with the number of sources or with the
number of processed scans in MTT. Hence a reliable is-
sue for processing and/or reassigning the conflicting prob-
ability masses is required. Such a situation involves also
some decision-making procedures based on specific data
bases to achieve proper knowledge extraction for a better
understanding of the overall monitored problem. It is im-
portant and valuable to achieve hierarchical extraction of
relevant information and to improve the decision accuracy
such that highly accurate decisions can be made progres-
sively. There are many valuable fusion rules in the litera-
ture to deal with imperfect information based on different
mathematical models and on different methods for transfer-
ring the conflicting mass onto admissible hypotheses of the
frame of the problem. DST [23, 22] was the first theory for
combining uncertain information expressed as basic belief
assignments with Dempster's rule. Recently, DSmT [24]
was developed to overcome the limitations of DST (mainly
due to the well-known inconsistency of Dempster's rule for
highly conflicting fusion problem and the limitations of the
Shafer's model itself) and for combining uncertain, impre-
cise and possibly highly conflicting sources of information
for static or dynamic fusion applications. DSmT is actually
a natural extension of DST. The major differences between
these two theories is on the nature of the hypotheses of the
frame 0 on which are defined the basic belief assignments
(bba) m(.), i.e. either on the power set 28 for DST or on the
hyper-power set (Dedekind's lattice., i.e. the lattice closed
by n and U set operators) De for DSmT. Let's consider
a frame )- {O,, . ., an } of finite number of hypotheses
assumed for simplicity to be exhaustive. Let's denote C
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the classical power set of 0 (if we assume Shafer's model
with all exclusivity constraints between elements of 8) or
denote G the hyper-power set De (if we adopt DSmT and
we know that some elements can't be refined because of
their intrinsic fuzzy and continuous nature). A basic belief
assignment m(.) is then defined as m G -- [0, 1] with
m(0) 0O and ZXcGm(X) = 1. The differences be-
tween DST and DSmT lie in the model of the frame E8 one
wants to deal with but also in the rules of combination to
apply. Here are the main fusion rules we investigate in this
work:

* Dempster's rule: (Shafer's model)

The Dempster's rule of combination of ml (.) and
m2(.) is obtained as follows: mDS(0) OandV(X +
0) C 2e by

1
X, ml(Xlr)m2(X2)

X1 ,X2E2
X1nx2=x

mDS (.) is a proper basic belief assignment if and only
if the denominator 1 - k12 is non-zero, i.e. the degree
of conflict kl 2 5 mMl (Xl)m2M(X2) < 1.

Xl,X2E2e
x1nX2 =0

* Yager's rule: (Shafer's model)
The Yager's rule of combination [24] admits that in
case of conflict the result is not reliable, so that k12
plays the role of an absolute discounting term added
to the weight of ignorance. This commutative but not
associative rule, denoted here by index Y is given2 by
my(0)- 0 andVX E 20,X :L 0,X E8 by

m-Y(X) = L Ml(XI)M2(X2)
Xl,X2 C2e
x1nx2=x

and when X 8E) by

my(() = ml(89)m2(8)+ E ml(Xl)m2(X2)
Xi,X2C-2e
X1nX2 =0

* Dubois & Prade's rule: (Shafer's model)
Dubois & Prade's rule of combination [24] admits that
the two sources are reliable when they are not in con-
flict, but one of them is right when a conflict occurs.
Then if one observes a value in set X1 while the other
observes this value in a set X2, the truth lies in X1 fx2
as long Xi n X2 / 0. If X1 nX2 = 0, then
the truth lies in X1 U X2. According to this princi-
ple, the commutative (but not associative) Dubois &
Prade hybrid rule of combination, denoted here by in-
dex DP, which is a reasonable trade-off between pre-
cision and reliability, is defined by mDp(0) 0O and

2E8 represents here the full ignorance 01 U 02 U ... U 0o on the
frame of discernment according the notation used in [23].

VX C 20,X # 0by

mDP(X)- E ml (X1)m2 (X2)
X1,X2E2ex1nx2=X
X1nX2740

+ E mI(Xl)m2(X2)
Xi,X2G2e
X1UX2=X
x1nX2=0

* Hybrid DSm fusion rule: (any model)
The hybrid DSm rule of combination is the first gen-
eral rule of combination developed in DSmT frame-
work [24] which can work on any models (including
Shafer's model) and for any level of conflicting infor-
mation. It can deal with the potential dynamicity of
the frame and its model as well. DSmT deals prop-
erly with the granularity of information and intrinsic
vague/fuzzy nature of elements of the frame 8 to ma-
nipulate. The basic idea of DSmT is to define be-
lief assignments on the hyper-power set De (i.e. free
Dedekind's lattice) and to integrate all integrity con-
straints (exclusivity and/or non-existential constraints)
of the model, say M(8), fitting with the problem into
the rule of combination. This rule for s > 2 indepen-
dent sources is defined as (see chap. 4 in [24]) for all
X c De

mM(8)(X) -` q(X) Sl(x) + S2(X) + S3(X)

where O(X) is the characteristic non-emptiness func-
tion of a set X, i.e. O(X) 1 if X g 0 and
4(X) - 0 otherwise, where 0 {OM, 0}. OM is the
set of all elements of DE) which have been forced to
be empty through the constraints of the modelM and
0 is the classical/universal empty set. S1(X), S2(X)
and S3(X) are defined by

S1(X).

S2(X) ±

S3(A) -

$A~~~~~~~
A E fJmi(Xi)

X1l,X2 ,. .,X.DDi3 =l
(xi nX2n...nx, )=x

s

E Hmi(Xi)
X1 7X2,.---,Xs G i-l

[U=X]V[(UEO)A(X=It)]
k

E flmi(X2)
Xi ,X21 ... Xk EDe i=l

u(c(xlnX2nA...nXk))=A
(xlnX2n...nXk)E0

with U Uu(Xl) U u(X2) U ... U u(Xk) where
u(X) is the union of all Oi that compose X, It ^
01 U 02 U ... U On is the total ignorance, and c(X)
is the conjunctive normal form3 of X, i.e. its simplest
form (for example if X = (A n B) n (A U B U C),

3In Boolean algebra the conjunctive normal form is a conjunc-
tion of disjunctions, in its simplest form, which is unique; in this
paper we consider each disjunction formed by a singleton or by
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c(X) = A n B). The hybrid DSm rule (which dif-
fers from Dempster's rule) can be seen actually as an
improved version of Dubois & Prade's rule which mix
the conjunctive and disjunctive consensus applied in
DSmT framework to take into account the possibility
for any dynamical integrity constraint in the model.

* PCR fusion rules: (any model)
The general principle of the recent PCR rules devel-
oped in [26] consists in the following steps:

- Step 1: compute the conjunctive rule,
- Step 2: compute the conflicting masses (partial

and/or total), The total conflicting mass drawn
from two sources, denoted k12, is defined as fol-
lows:

k12 = E ml (X1)M2 (X2 )
Xi,X2cG
xlnX2==A m(X,nfX2)

which is nothing but the sum of partial conflict-
ing masses m((xi nX2), where X1 n X2 - 0,
represents a partial conflict.

- Step 3: then proportionally redistribute the con-
flicting mass (total or partial) to non-empty sets
according to all integrity constraints using a
given strategy. We present here the most interest-
ing and sophisticated PCR rule (denoted PCR5)
among the five PCR rules proposed in [26].

PCR5 fusion rule for two sources is defined as [26]:

VX C G \ {0}, mPCR5(X) = m12(X)

+ Mlm1(X)'m2(y) + m2(X)2m(Y)]
YGG\{X} mI(X) +m2(Y) m2(X) + ml(Y)
c(YnX)=0

where c(x) represents the conjunctive normal form of
x, m12(X) corresponds to the conjunctive consensus
on X, and where all denominators are differentfrom
zero. If a denominator is zero, that fraction is dis-
carded. The general (but more complex) PCR5 for-
mula for s > 2 sources and many examples are given
in [25].

4 Simulation scenario and results
4.1 Simulation scenario

The simulation scenario consists in seven air targets with
only two classes. The stationary sensor is located at the

a union of singletons; for example: A n B n (C U D) is a con-
junctive normal form; also, X = (A U B) n C n (A U C) is
a conjunction of disjunctions, but it is not in its simplest form,
then its conjunctive normal form is c(X) = (A U B) n C since
C n (A U C) C. The conjunctive normal form is introduced
here in order to improve the original formula given in [24] for pre-
serving the neutral impact of the vacuous belief mass m(8) = 1
within complex hybrid models.

origin. The sampling period is Tsca, = 5 sec and mea-
surement standard deviations are 0.3 deg and 120 m for az-
imuth and range respectively. The targets go from North
to South with the following type order FCFCFCF from
left to right (F=Fighter, C=Cargo) with constant velocity
150m/sec.They are moving in parallel with approximately
320 m inter-distance. During scans 8- 10, 17- 19, 26-28
and 34 - 36 the maneuvers are performed with transversal
acceleration 3.5m/s2. Process noise standard deviations
for the two nested models for constant velocity IMM are
0. lm/s2 and 3m/s2 respectively. The number of false alarms
(FA) follows a Poisson distribution and FA are uniformly
distributed spacially in the surveillance region.

Simulation Scenario with seven Closely Spase

X- Position [m]

Fig. 1: Multitarget Scenario with seven targets

Monte Carlo simulations are made for the two different
average values of Radar Cross Section in order to obtain
the confusion matrix in terms of the first frame of hypothe-
ses 81 ={Small, Big}. According to the fuzzy rules in
[24, 27], defining the correspondence between Radar Cross
Section values and the respective targets' types, the con-
fusion matrix in tenns of the second frame of hypotheses
92 - {Fighter, Cargo} is constructed. The two sim-
ulation cases correspond to the following parameters for
the probability of target detection, the probability of false
alarms and the confusion matrices:

* Case 1: Pd -1, Pfa = 0,T=-L0.995 0.0051fa - 1
- 0.005 0.995]

* Case 2: Pd-0.9, Pfa01. i0-5T2 0.9 0.11. Case 2: ~~~0.1 0.9j

4.2 Simulation results

In this section we present and discuss simulation results for
100 Monte Carlo runs. The evaluation of fusion rules' per-
formance is based on the criteria of tracks' purity, tracks'
life, the variation of pignistic entropy in confirmed tracks
attribute states, the average pignistic entropy value in a
steady state and percentage of miscorrelation. Tracks purity
criteria examines the ratio between the number of particu-
lar performed (observationj-track i) associations (in case of
detected target) over the total number of all possible asso-
ciations during the tracking scenario. Track's life is eval-
uated as an average number of scans before track's dele-
tion. The tracks deletion is performed after the a priori
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defined number (in our case it is assumed to be 3) of in-
correct associations or missed detections. The percentage
of miscorrelation examines the relative number of incorrect
(observation-track) associations during the scans. The re-
sults for GDA are obtained by different fusion rules. Rely-
ing on our previous work [24, 27], where the performance
of DSm Classic and DSm Hybrid (DSmH) rules were ex-
amined, in the present work the attention is directed to the
well-known Dempster's rule, Yager's, Dubois & Prade's,
and especially to DSmH and the new PCR5 rule. From re-
sults presented in Tables 1-4 in next sections, it is obvious
that for both cases 1 and 2 the track's purity and tracks' life
in the case of KDA-MTT are significantly lower with re-
spect to all GDA-MTT, and a higher percentage of miscor-
relaton is obtained with KDA-MTT than with GDA-MTT.
The figures below show typical tracking performances for
KDA-MTT and GDA-MTT systems.

TrackingPer7formance with Kinematics Only D/ta Assoiaton
.......... ........... .......... ........... .........................................

.0.5 ' ' ' '

X - Position [n^]

Fig. 2: Typical performance with KDA-MTT

Fig. 3: Typical performance with GDA-MTT

4.2.1 Simulation resultsfor case 1

Case no. 1 is characterized by no false alarm and maximum
probability of target detection, but the problem consists in
the proximity of the targets (inter-distance of 320 m) with
bad sensor distance resolution (CD = 120m). It results in
cross-associations. The Monte Carlo results on track purity
based on KDA-MTT and on GDA-MTT (based on PCR5,
Dempster (DS), Yager's rules4 and DSmH rule) are given

4Yager's rule, Dubois & Prade's (DP) rule and DSmH rule co-

incide in our example because we are working with only a 2D
specific classes frame e2. This is normal. In general, Yager's,
DP and DSmH do no longer coincide when the cardinality of the
frame becomes greater than two.

in Table 1. Each number of the table gives the ratio of
correct measurement-target association for a given target
and a given MTT algorithm and the last row of the table
provides the average purity performance for all targets and
for each algorithm.

One can see that the corresponding fields for results ob-
tained via Dempster's rule of combination are empty (see
Tables 1-4). There are two major reasons for this:

1. The case of increasing intrinsic conflicts between the
fused bodies of evidence (generalized basic belief as-

signments of targets' tracks histories and new observa-
tions), yields a poor targets tracks' performance. The
situation when this conflict becomes unity, is a stress-
ful, but a real one. It is the moment, when Demp-
ster's rule produces indefiniteness. The fusion process

stops and the attribute histories of tracking tracks can-

not be updated. As a result the whole tracking process
corrupts. Actually in such a case there is a need of
an artificial break and intervention into the real time
tracking process, which could cause noncoherent re-

sults. Taking into account all these particularities, we
can summarize that the fusion process within DST is
not fluent and cannot be controlled without prior un-

justified and artificial assumptions and some heuristic
engineering tricks. As a consequence no one of the
performance criteria cannot be evaluated.

2. In case when in the updated track's attribute history
one of the hypotheses in the frame of the problem is
supported by unity, from this point on, Dempster's rule
becomes indifferent to all observations, detected dur-
ing the next scans. It means, the track's attribute his-
tory remains unchanged regardless ofthe new observa-
tions. It is a dangerous situation, which hides the real
opportunity for producing the non-adequate results.

KDA PCR5 DS Y/DP/DSmH
T 0.6187 0.9650 - 0.9521
T2 0.4892 0.9150 - 0.9150
T3 0.4424 0.8300 - 0.8289
T4 0.5500 0.9084 - 0.9350
T5 0.6797 0.8861 - 0.8689
T6 0.7213 0.9561 - 0.9624
T7 0.8034 0.9863 - 0.9739

Average 0.6149 0.9209 - 0.9194

Table 1: Track's purity for KDA and GDA-MTT (case 1)

The results of the percentage of Track life duration and
miscorrelation are given in Table 2. The third column in Ta-
ble 2 gives the Pignistic Entropy's Steady State Fluctuation
values which correspond to the ratio between the fluctuation
of Pignistic entropy in steady state over its maximum range
(U indicates that no entropy fluctuations can be obtained
from KDA only). The last column represents the average
pignistic entropy value in a steady state.

Looking on the results achieved according to GDA, it can
be underlined that:

1. The tracks' purity, obtained by PCR5 rule outperforms
the tracks' purity results obtained by using all other
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Trackers Track Life [%] MisCor [%I PEF APE
KDA-MTT 65.01 37.68 * U
GDApCR5-MTT 93.67 7.55 0.05 0.02
GDADS-MTF - - - -

GDAy-MTT 93.46 7.68 0.06 0.04
GDADP-MTT 93.46 7.68 0.06 0.04
GDADSmH-MTT 93.46 7.68 0.06 0.04

Table 2: Track's life, Miscorrelation, Pignistic Entropy
Fluctuations (PEF) and Average Pignistic Entropy (APE)
value in steady state (case 1)

rules. Yager's, Dubois & Prade's and DSmH rules lead
to a small decrease in GDA performance and in this
2D frame case based on Shafer's model their tracks'
purity results are equal which is normal.

2. According to Table 2, the average tracks' life, the
percentage of miscorrelation and Pignistic Entropy's
Steady State Fluctuation related to the performance of
PCR5 rule are a little bit (about percent) better than all
other rules' performance.

3. Using the Pignistic Entropy's Steady State Fluctuation
criteria and looking at the third column of Tables 2 and
4, one can see that during the consecutive scans, the
pignistic entropy obtained via PCR5, Yager's, Dubois
& Prade's, DSmH rule decrease gradually during the
first 3-4 scans, approaching zero and this process is a
stable one. According to the criteria of average pig-
nistic entropy value in a steady state, one can see that
the entropy associated with updated tracks' attribute
states by using PCR5 rule is almost 2 times less than
the entropy obtained by using all other rules. It means
that PCR5 rule leads to results, which are much more
informative in comparison with the other ones.

4.2.2 Simulation resultsfor case 2

Case no. 2 is more difficult than case no. 1 since the pres-
ence of false alarms and missed target detections signifi-
cantly degrade the process of data association even in the
case of GDA. But in comparison with KDA, one sees in
Table 3 that the use of the attribute type information still
helps significantly to reduce the cross-associations and in-
crease the track's purity performances.

KDA PCR5 DS Y/DP/DSmH
T, 0.5576 0.6600 - 0.597
T2 0.3642 0.6011 - 0.4650
T3 0.3424 0.4726 - 0.4308
T4 0.3945 0.6750 - 0.5858
T5 0.4968 0.5937 - 0.5129
T6 0.5418 0.6668 - 0.6145
T7 0.6471 0.7689 - 0.7071

Average 0.4777 0.6340 - 0.5590

Table 3: Track's purity for KDA and GDA-MTT (case 2)

The results of the percentage of Track life duration and
miscorrelation, and Pignistic Entropy's Steady State Fluc-
tuation are given in Table 4.

5 Conclusions
In this paper a comparison of the performances of differ-
ent fusion rules is presented and compared in order to as-
sess their efficiency for GDA for MTT in highly conflicting

Trackers Track Life [%] MisCor [%] PEF APE
KDA-MTT 47.87 45.48 * U
GDApCR5-MTT 63.13 30.58 0.44 0.175
GDADS-MTr - . - -

GDAy-MTT 57.01 37.39 0.62 0.3
GDADP-MTr 57.01 37.39 0.62 0.3
GDADS,nH-MTT 57.01 37.39 0.62 0.3

Table 4: Track's life, Miscorrelation, Pignistic Entropy
Fluctuations (PEF) and Average Pignistic Entropy (APE)
value in steady state (case 2)

situations in clutter. A model of an attribute type classi-
fier is considered on the base of particular input fuzzifica-
tion interface according to the target RCS values and on
fuzzy rule base according to the target type. A general-
ized likelihood ratio is obtained and included in the pro-
cess of GDA. The classification results rely on the confu-
sion matrix specifying the accuracy of the classifier and on
the implemented fusion rules (PCR5, Dempster's, Yager's,
Dubois & Prade's, DSmH). The goal was to examine their
advantages and milestones and to improve association re-
sults. This work confirms the benefits of attribute utiliza-
tion and shows some hidden drawbacks, when the sources
of information remain in high conflict, especially in case
of using Dempster's rule of combination. In clutter-free
environment with maximum of target detection probabil-
ity and very good classifier quality, the results, according
to the performance criteria, obtained via PCR5 rule out-
perform the corresponding results obtained by using all the
other combination rules tested. When tracking conditions
decrease (presence of clutter, missed target detections with
lower classifier quality), the PCR5 fusion rule still provides
the best performances with respect to other rules tested for
our new GDA-MTT algorithm. This work reveals also the
real difficulty to define and to choose an unique or a multi-
ple performance criteria for the fair evaluation of different
fusion rules. Actually the choice of the fusion rule is in
practice highly conditioned by the performance criteria that
the system designer considers as the most important for his
application. More efforts on multicriteria-based methods
for performance evaluation are under investigations. Fur-
ther works on GDA-MTT would be to define some precise
benchmark for difficult multitarget tracking and classifica-
tion scenarios and to see if the recent MITM approach (i.e.
RMIMM coupled with MAJPDA) can be improved by our
new generalized data association method.
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