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Abstract. In this paper, we introduced Samarandache-2-ajelstructure of Soft
Neutrosophic Near-ring namely Smarandache-Soft rNgophic Near-ring. A
Samarandache-2-algebraic structure on a set N naeaesk algebraic structure @ N
such that there exist a proper subset M of N, Whiclembedded with a stronger
algebraic structure,Sstronger algebraic structure means satisfyingenasioms, that is
Si<< S, ,by proper subset one can understand a subsetagifffrom the empty set, from
the unit element if any , from the Whole set. Wé&rdeSmarandache-Soft Neutrosophic
Near-ring and obtain the some of its characteopatirough bi-ideals.
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1. Introduction

In order that, New notions are introduced in aigeto better study the congruence in
number theory by Florentinsmarandache [2]. By <prgubset> of a set A we consider a
set P included in A, and different from A, diffetdnrom empty set, and from the unit
element in A-if any they rank the algebraic stroesuusing an order relationship:

They say that the algebraic structures§ Sif: both are defined on the same set; all S
laws are also Saws; all axioms of an3aw are accomplished by the corresponding S
law; S law accomplish strictly more axioms thatl&ws, or $has more laws than S

For example: Semi group <<Monoid<<group<< ring<kfjeor Semi group << to
commutative semi group, ring << unitary ring etbey define a general special structure
to be a structure SM on a set A, different frontracture SN, such that a proper subset of
A is a structure, where  SM <<SN. In addition ese published [6,7,8].

2. Preliminaries

Definition 2.1. Let (NUI) be a neutrosophic near-ring a(, A) be a soft set over
(NUI).Then (F,A) is called soft neutrosophic near-ring if and orfyF(a) is a
neutrosophic sub near-ring A UI) for all a € A.
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Definition 2.2. Let K(I) = (KUI) be a neutrosophic near-field and (€} A) be a soft
set overK (I). Then(F, A) is said to be soft neutrosophic near-field if @andy if F(a) is
a neutrosophic sub near-field K{I) for alla € A.

Definition 2.3. Let (F,A) be a soft neutrosophic zero symmetricrigay over{N U I),
which contains a distributive element F(& 0 .Then (F,A) is a near-field if and only if
for each

F@+#0in (F,A), (F,A)F@) = (F.A).

Now we have introduced our basic concept, called smandache-soft neutrosophic—
near ring.

Definition 2.4. A Soft neutrosophic —near ring is said to be Smdaahe —soft
neutrosophic —near ring, if a proper subset o§ idisoft neutrosophic —near field with
respect to the same induced operations.

Definition 2.5. Let (F, A) be a Smarandache - soft Neutrosophic near —rieg(d\1).
The two subsets (H,A) and (G,A) of (F,A) the prodigsadefined as

(HA)G,A) ={H(a) G(a) / H(g) in (HA), G(a) in (G,A) }.

Also we define another operation “ *” on the classubsets of (F,A) given by
(HA)*(GA) ={H(a) (H(&) + G(a)) - H(@ H(&) /H(a) , H(&) in (H,A) , G(a) in
(G,A)}, where (H,A) is a proper subset of (F,Ayhjch is a Soft Neutrosophic near-
field.

Definition 2.6. Let (F,A) be a Smarandache - soft Neutrosopldar n-ring over
(NUI),then a subgroup @A) of ((F,A),+) is said to be a Soft NeutrokapBi —ideal
of (F!A) If (LBlA)(F1A)(LB!A) n((l—B!'A)(FfA))*(LBl'A)g (LBlA)

3. Preliminary results on soft Neutrosophic bi-ideks
Here we obtain certain results for our future use.

Proposotion 3.1.1f (Lg,A) be a Soft Neutrosophic bi-ideal of a Smarahdasoft
Neutrosophic-near ring (F,A) ovéNUI) and (F,A) is a Smarandache-soft Neutrosophic
sub near ring of (F,A) , then §lA)n (F,A) is a Soft Neutrosophic bi-ideal of (R).
Proof: Since (F,A) be a Smarandache -soft Neutrosophic+raag over{NUI), then by
definition, there exists a proper subset (H,A),ahhis Soft neutrosophic near field.
Since (lg,A) is a Soft Neutrosophic bi-ideal of (F,A),

(Le,A)(F,A)(Le,A)N ((Le,A)FA) *(LsA) & (LsA),

let Lg, A) = (Le,A)N (FLA),

now (Lg,,A)(FLA)(Lg,,A) N ((Lg,,A)(FLA) * (Lg,,A) = ((Le,AN(FLA)) (FuA)
((Le.A) N (FLA) N (L, AN (FLA)(FLA)) * ((Le,AN(FLA))

< (Ls,A)(FLA)(Le,AN(FLAN((Le,A)(FLA)) * (Ls,A)

< (Le,AN(FLA) = (Lg,,A).Hence [, ,A) is a Soft neutrosophic bi-ideal of,(K).
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Proposition 3.2. Let (F,A) be a Smarandache- soft Neutrosophic nearg over
(NUI),which is zerosymmetric.A subgroupg(B) of (F,A) is a Soft Neutrosophic bi-
ideal if and only if (l,A)(F,A)(Lg,A) S (Lg,A).

Proof: Since (F,A) be a Smarandache - soft Neutrosoplac-Agng oveKNUI), then by
definition, there exists a proper subset (H,A),whi Soft neutrosophic near field.

For a subgroup @A) of ((F.A),+), if (Ls,A)(F,A)(Lg,A) S (Lg,A), then (Lg,A) is
a Soft Neutrosophic bi-ideal of (F,A).

Conversly, if (lg,A) is a Soft Neutrosophic bi-ideal, we have

(Le A)(F.A)(Le,A)N((Le,A)F.A) * (LeA)) S (LeA),

since (F,A) is Soft Neutrosophic zero symmetriameng, (F,A) (s,A) € (FA) *
(Lg,A), we get

(LeAYFA(LeA) = (LeA(FA)(Le AN (Le A)FA)(LeA)

c (LsA)(FA)(LsA) N ((LeA) (FA) * (LsA) S (LeA).

Proposition 3.3.Let (F,A) be a Smarandache-soft Neutrosophic meay-ever(NUI),
which is zero symmetric. If @A) is a Soft neutrosophic bi-ideal of (F,A), then
(Lg,A)H(n) and H(r)(Lg,A) are Soft Neutrosophic bi-ideals of (F,A) ,eve H(n),
H(n,) in (H,A) and H(n) is distributive element in (H,A), where (H,A) & proper
subset of (F,A), which is a Soft Neutrosophic Feésld.

Proof: Clearly (Ls,A)H(n,) is a subgroup of ((F,A),+) and

(Le,AH(N) (H,A) (Ls,AH(Ny) & (Ls,A) (H,A) (Ls,A)H(N) & (Ls,A)H(Ny),

we get (ls,A) H(n,) is a Soft Neutrosophic bi-ideal of (F,A).

Again H(n) (Lg,A) is a subgroup since Hijis distributive in (H,A) and

H(np) (Le,A) (HA) H() (Le,A) S H() (Le,A)(HA)(LeA) € H(ny) (LeA).

Thus H(n)(Lg,A) is a Soft Neutrosophic bi-ideal of (F,A).

Corollary 3.1. If (Lg,A) is a Soft Neutrosophic bi-ideal of a Smaraaasoft
neutrosophic-near ring (F,A) o¥dtUI) and lg(a) is a distributive element in (F,A),
then Lg(a) (Ls,A) H(a) is a Soft Neutrosophic bi-ideal of (FMhere H(a) in (H,A),
where (H,A) is a proper subset of (F,A), which Saft Neutrosophic near-field.

4. Minimal soft neutrosophic bi-ideals and soft netiosophic near field
Definition 4.1. A Smarandache - soft Neutrosophic near —ring (leyr (NUI) is said
to be Lg-simple if it has no proper Soft Neutrosophic keads.
In this section we obtain a characterizatbbi®marandache- soft neutrosophic near-
ring using Soft Neutrosophic bi-ideals.

Lemma 4.1.Let (F,A) be a Smarandache- soft Neutrosophic reag over (NUI) with
more than one element .Then the following condgtiare equivalent:

0] (H,A) is a Soft Neutrosophic near-field,

(i) (H,A) is Lg - simple, H(d)# {0} and for 0=H(n,) in (H,A) there exists

an element H@ of (H,A) such that H@H(ny) 0.

where (H,A) is a proper subset of (F,A), which iSaft Neutrosophic near-field.
Proof: (i)=(ii) If (H,A) is a Soft Neutrosophic near -fielchgn {0} and (H,A) are the
only Soft Neutrosophic bi-ideals of (H,A).For i#0(Lg,A) is a Soft neutrosophic bi-
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ideal of (H,A) , then , for € Lg(a) in (Lg,A) we get (H,A) = (H,A)lk(a) and (H,A) =
Lg(a)(H,A). Now

(HA) = (H,A)* = (Le(@)(H,A)) (H,A)Ls(a)) € Le(a)(H,A)Ls(a) € (Ls,A) since (ls,A) is
a Soft Neutrosophic bi-ideal of (H,A). ie.(H,A¥ (Lg,A).Hence (H,A) is kg - simple
and the identity element in (H,A) satisfies theuiegd condition.

(i) =()

Since H(d¥{0} we get (H,A) is not constant. We know that H{8)a Soft neutrosophic
bi-ideal of (H,A) and since (H,A) isd-- simple we get (H,A) = H(0). Let#H(n,) in
(H,A), by proposition 3, (H,A)H(1) is a Soft Neutrosophic bi-ideal of (H,A) ang0
H(n,) H(ny) in (H,A)H(ny) for some H(p) in (H,A). Hence (H,A)H(p) = (H,A).
Therefore we have (H,A) is a Soft Neutrosophic riedd.

Theorem 4.1.1f a minimal (F,A)-subgroup (kn,A) of a Smarandache-Soft Neutrosophic
zero symmetric near ring (F,A) ovéNUI) which is zerosymmetric has a non-zero
distributive idempotent element H(e), then H(e}{HA) is a Multiplicative subgroup of
(F,A). Moreover it is a minimal Soft Neutrosophieidieal of (F,A).

Proof: Since (F,A) be a Smarandache -soft Neutrosophic+raag over{(NUI), then by
definition, there exists a proper subset (H,A),ahhis Soft neutrosophic near field.

By Proposition 3, H(e) (kh ,A) is a Soft Neutrosophic bi-ideal of (F,A).

Clearly H(e) is a left identity for H(e)@#,A). If H(e)Hnin (@)~ 0, for some Hi, (a)

in (Hmin,A), then the non-zero ¢ ,A) (H(e)Hmn(a)) is a (F,A) - subgroup of (F,A)
and also (Kin ,A) (H(e) Huin(@)) < (HminA). Thus we get (Fh ,A) (H(€)Hnn(a)) =
(Hmins A), which implies that (H(e)(H. ,A)) (H(e)Hnn(a)) = H(e)(KinA), i.e. the non-
zero element H(e)ih(a) has a left inverse H(e)H(t) such that (HEHH(e)Hnin(a))

= H(e).Hence the non — zero elements of H(g)A) from a multiplicative subgroup
of (H,A). We have that H(e)(khA) is a Soft Neutrosophic near field.

Now H(e)(HinA) S H(0). If (Lp,,A) is a Soft Neutrosophic bi-ideal of (F,A)
such that {0}(Lg,,A) < H(€)(HnnA), then (g ,A) (H(E)(HinA)) (Lp,,A) <
(Lg, A)(F,A)(Lg,,A)c (Lg,,A), which implies that Kz ,A) is Soft Neutrosophic bi-
ideal of H(e) (Khin,A).

But H(e) (Kin,A) is a Soft neutrosophic near field and so é&ya 1, we get
H(e)(Hwn,A) is Ls-simple. Hence, H(e)(kh,A)=(Lg,.A). i.e. H(e)(HunA) is a minimal
Soft Neutrosophic bi-ideal of (F,A).

Lemma 4.2.If a Minimal Soft Neutrosophic bi-ideal §lA) of Smarandache -soft
neutrosophic near ring (F,A) ov&UI) which is zero symmetric contains a distributive
element (a) such that i(a) is neither a left zero divisor nor right zeligisor ,then
(F,A) must have a two-sided identity.

Proof: Since (F,A) be a Smarandache -soft Neutrosophic-+réey over(NUT).

Then by definition (H,A) is a proper subset of (J;,hich is a Soft Neutrosophic near-
field.

Clearly (lz(a))®# 0 and (lg(a))®in Lg(@)(F,A)lg(d) S (Lg,A). By corollary 4,
Lg(@)(F,A)Lg(a) is a Soft Neutrosophicbi-ideal of (F,A) anbg(a)(F,A)ls(a) =
(Lg,A), since (lz,A) is minimal.Therefore 4(a) = Ls(a)F(a)ls(a) for some F(a) in
(F,A).

For F(x),F(y) in(F,A) ,we have F(x) = F(gla)F(a) and F(y) = F(ay@)F(y) ,
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Since lg(a) is neither a left zero divisor nor a rightaéivisor.
i.e. F(a)lg(a) and k(a)F(a) are left and right identities for (F,Appectively and
hence F(a)i(a ) = Lg(a)F(a) is the required identity element in (F,A)

Now we prove the main theorem of this paper.

Theorem 4.2.Let (F,A) be a Smarandache-soft neutrosophic negraver(NUI),which
is zerosymmetric. Then (H,A) is a Soft Neutrosopbar field if and only if (H,A) has a
distributive element which is neither a left zemaigbr nor a right zero divisor and which
is contained in a minimal Soft Neutrosophichi-id@al,A) of (F,A).
Proof: Since (F,A) be a Smarandache -soft Neutrosophic-+réey over(NUT).
Then by definition (H,A) is a proper subset of (F;,&hich is a Soft Neutrosophic near-
field. If (H,A) is a Soft Neutrosophic near fieJthen (H,A) itself is a minimal Soft
Neutrosophic bi-ideal satisfying the required ctinds.

Conversely, let @,A) be a minimal Soft Neutrosophicbi-ideal of (F,é9ntaining a
distributive element H(d) which is neither a lefirm right zero divisor .
By lemma 3, (H,A) contains a identity H(e).
Again by corollary 4, H(d)(H,A) H(d)* is a Soft Neutrosophicbi—ideal and=+®i(d)
(H,A) Hd)* € (Lg,A)(H,A)(Lg,A) S (Lg,A).
Since (lg,A) is a minimal we get @A) = H(dF (H,A) H(d)*.
Now H(d) in (Ls,A) = H(d} (H,A) H(d)* implies that H(d) = H(n)H(d) for some H(n)
in (H,A).

But H(d) = H(e)H(d) and so H(e) = H(n)k(d
i.e. H(e) in (H,A)H(d). Similarly we get H(e) ikl(d)(H,A).
Therefore  H(e) = H(8) in (H(d)(H,A) ((HAH) < H(d) (HA) H(d) <
(Lg,A), whence (H,A) = H(e)(H,A)H(e)c (Lg,A) (H,A)(Lg,A) < (Lg,A), thatis
(HA) = (La,A).

This relation and minimality of gLA) implies that (H,A) is k - simple and so (H,A)

is a Soft Neutrosophic near —field by lemma 1.
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