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Abstract. In this paper, we introduced Samarandache-2-algebraic structure of Soft 
Neutrosophic Near-ring namely Smarandache–Soft Neutrosophic Near-ring. A 
Samarandache-2-algebraic structure on a set N means a weak algebraic structure S1 on N 
such that there exist a proper subset M of N, Which is embedded with a stronger 
algebraic structure S2, stronger algebraic structure means satisfying more axioms, that is 
S1<< S2 ,by proper subset one can understand a subset different from  the empty set, from 
the unit element if any , from the Whole set. We define Smarandache-Soft Neutrosophic  
Near-ring and obtain the some of its characterization through bi-ideals. 
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1. Introduction 
 In order that, New notions are introduced in algebra to better study the congruence in 
number theory by Florentinsmarandache [2]. By <proper subset> of a set A we consider a 
set P included in A, and different from A, different from empty set, and from the unit 
element in A-if any they rank the algebraic structures using an order relationship: 
They say that the algebraic structures S1 <<  S2 if: both are defined on the same set; all S1 

laws are also S2 laws; all axioms of an S1 law are accomplished by the corresponding S2 

law; S2 law accomplish strictly more axioms that S1 laws, or S2 has more laws than S1 . 
For example: Semi group <<Monoid<<group<< ring<<field, or Semi group << to 
commutative semi group, ring << unitary ring etc. They define a general special structure 
to be a structure SM on a set A, different from a structure SN, such that a proper subset of 
A is a structure, where    SM <<SN. In addition  we have published [6,7,8]. 
 
2. Preliminaries 
Definition 2.1. Let  〈���〉 be a neutrosophic near-ring and (�, 	) be a soft set over 
〈���〉.Then (�, 	) is called soft neutrosophic near-ring if and only if F(�) is a 
neutrosophic sub near-ring of 〈���〉 for all � ∊ 	. 
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Definition 2.2. Let �(�) = 〈���〉  be a neutrosophic near-field and let (�, 	) be a soft 
set over �(�). Then (�, 	) is said to be soft neutrosophic near-field if and only if �(�) is 
a neutrosophic sub near-field of �(�) for all � ∈ 	. 
 
Definition 2.3. Let (F,A) be a soft neutrosophic zero symmetric near-ring over 〈� ∪ �〉, 
which contains a distributive element F(a1) ≠ 0 .Then (F,A) is a near-field if and only if 
for each 
F(a) ≠ 0 in (F,A),  (F,A)F(a) = (F,A) . 
 
Now we have introduced our basic concept, called smarandache–soft neutrosophic–
near ring.  
 
Definition 2.4. A Soft neutrosophic –near ring is said to be Smarandache –soft 
neutrosophic –near ring, if a proper subset of it is a soft neutrosophic –near field with 
respect to the same induced operations. 
 
Definition 2.5. Let (�, 	) be a Smarandache - soft Neutrosophic near –ring over 〈���〉. 
The two subsets (H,A) and (G,A) of (F,A) the product is defined as  
 (H,A)(G,A)   = { H(a1) G(a)  /  H(a1) in (H,A), G(a) in (G,A) }. 
Also we define another operation “ *” on the class of subsets of (F,A) given by  
(H,A ) * (G,A) = { H(a1) (H(a2)  +  G(a))  -  H(a1) H(a2) / H(a1) , H(a2) in (H,A) , G(a) in 
(G,A)}, where (H,A)  is a proper subset of  (F,A) ,which is a Soft Neutrosophic near-
field. 
 
Definition 2.6. Let (F,A) be a  Smarandache - soft Neutrosophic near –ring over 
〈���〉,then a subgroup (LB,A)  of  ((F,A),+)  is said to be a  Soft Neutrosophic Bi –ideal 
of  (F,A) if  (LB,A)(F,A)(LB,A)  ∩((LB,A)(F,A)) * (LB,A)⊆  (LB,A). 
 
3. Preliminary results on soft Neutrosophic bi-ideals 
Here we obtain  certain results for our future use. 
 
Proposotion 3.1. If  (LB,A)  be a Soft Neutrosophic bi-ideal of a Smarandache-soft 
Neutrosophic-near ring (F,A) over 〈���〉 and (F1,A) is a Smarandache-soft Neutrosophic 
sub near ring of (F,A) , then (LB,A)∩ (F1,A) is a Soft Neutrosophic bi-ideal of (F1,A). 
Proof: Since (F,A) be a Smarandache -soft Neutrosophic near –ring over 〈���〉, then by 
definition, there exists a proper subset (H,A), which is Soft neutrosophic near field. 
Since (LB,A) is a Soft Neutrosophic  bi-ideal  of (F,A), 
(LB,A)(F,A)(LB,A)∩ ((LB,A)(F,A))  * (LB,A)  ⊆  (LB,A) , 
let (���,A)  =  (LB,A)∩ (F1,A), 
now (���,A)(F1,A)(���,A)   ∩ ((���,A)(F1,A)  *  (���,A)  =  ((LB,A)∩(F1,A))  (F1,A) 
((LB,A) ∩ (F1,A)) ∩  (((LB,A)∩ (F1,A))(F1,A))  *  ((LB,A)∩(F1,A)) 
⊆	 (LB,A)(F1,A)(LB,A)∩(F1,A)∩((LB,A)(F1,A))  *  (LB,A) 
⊆		(LB,A)∩(F1,A)  =  (���,A).Hence (���,A) is a Soft neutrosophic bi-ideal of (F1,A). 
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Proposition 3.2. Let (F,A) be a Smarandache- soft Neutrosophic near –ring over 
〈���〉,which is zerosymmetric.A subgroup (LB,A) of (F,A) is a Soft Neutrosophic bi-
ideal if and only if   (LB,A)(F,A)(LB,A)  ⊆		(LB,A). 
Proof: Since (F,A) be a Smarandache - soft Neutrosophic near –ring over 〈���〉, then by 
definition, there exists a proper subset (H,A),which is Soft neutrosophic near field. 
For a subgroup  (LB,A ) of   ((F,A),+) , if  (LB,A)(F,A)(LB,A)  ⊆	 (LB,A), then (LB,A)  is  
a Soft Neutrosophic bi-ideal of (F,A). 
Conversly, if   (LB,A)  is a Soft Neutrosophic bi-ideal, we have  
(LB,A)(F,A)(LB,A)∩((LB,A)(F,A))  *  (LB,A) ) ⊆  (LB,A), 
since (F,A)  is Soft Neutrosophic zero symmetric near ring,  (F,A)  (LB,A)  ⊆			(F,A)  *  
(LB,A),  we get  
(LB,A)(F,A)(LB,A)  =  (LB,A)(F,A)(LB,A)∩ (LB,A)(F,A)(LB,A) 
⊆		(LB,A)(F,A)(LB,A)  ∩ ((LB,A) (F,A))  *  (LB,A)  ⊆	 (LB,A). 
 
Proposition 3.3. Let  (F,A) be a Smarandache-soft Neutrosophic near–ring over 〈���〉, 
which is zero symmetric. If  (LB,A) is a Soft neutrosophic bi-ideal of (F,A), then   
(LB,A)H(n1)   and    H(n2)(LB,A)  are Soft Neutrosophic bi-ideals of  (F,A) , where  H(n1), 
H(n2 ) in (H,A) and  H(n2)  is distributive element in (H,A), where (H,A) is a proper 
subset of  (F,A), which is a Soft Neutrosophic near-field. 
Proof: Clearly  (LB,A)H(n1) is a subgroup of ((F,A),+) and  
(LB,A)H(n1)  (H,A)  (LB,A)H(n1)  ⊆  (LB,A) (H,A)   (LB,A)H(n1)  ⊆		 (LB,A)H(n1), 
we get  (LB,A) H(n1)  is a Soft Neutrosophic bi-ideal of (F,A). 
Again  H(n2) (LB,A) is a subgroup  since H(n2)is distributive in (H,A) and 
H(n2) (LB,A)   (H,A)   H(n2) (LB,A)  ⊆  H(n2) (LB,A)(H,A)(LB,A)  ⊆	 H(n1) (LB,A). 
Thus  H(n2)(LB,A)  is a Soft Neutrosophic bi-ideal of (F,A). 
 
Corollary 3.1. If  (LB,A)  is a Soft Neutrosophic bi-ideal of a  Smarandache-soft 
neutrosophic-near ring  (F,A) over〈���〉 and  LB(a)  is a distributive element in (F,A), 
then  LB(a) (LB,A) H(a)  is a Soft Neutrosophic bi-ideal of (F,A),where H(a) in (H,A), 
where (H,A) is a proper subset of (F,A), which is a Soft Neutrosophic near-field. 
 
4. Minimal soft neutrosophic bi-ideals and soft neutrosophic near field 
Definition 4.1. A Smarandache - soft Neutrosophic near –ring (F,A) over 〈���〉 is said 
to be LB-simple if it has no proper Soft Neutrosophic bi-ideals. 
       In this section we obtain a characterization of Smarandache- soft neutrosophic near-
ring using Soft Neutrosophic bi-ideals. 
 
Lemma 4.1. Let (F,A) be a Smarandache- soft Neutrosophic near –ring over  〈���〉 with 
more than one element .Then the following conditions are equivalent: 

(i) (H,A)  is a Soft Neutrosophic near-field, 
(ii)  (H,A)  is LB - simple, H(d) ≠ {0} and for 0 ≠H(n1)  in (H,A) there exists 

an element  H(n2) of  (H,A) such that     H(n2)H(n1) ≠0. 
where (H,A) is a proper subset of (F,A), which is a Soft Neutrosophic near-field. 
Proof: (i)⇒(ii) If (H,A) is a Soft Neutrosophic near -field, then {0}  and (H,A) are the 
only Soft Neutrosophic bi-ideals of (H,A).For if 0≠ (LB,A)  is a Soft neutrosophic bi-
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ideal of (H,A) , then , for 0≠ LB(a) in (LB,A) we get (H,A) =  (H,A)LB(a)  and (H,A)  =  
LB(a)(H,A). Now  
(H,A) = (H,A)2 = (LB(a)(H,A)) (H,A)LB(a)) ⊆ LB(a)(H,A)LB(a) ⊆ (LB,A),since (LB,A) is 
a Soft Neutrosophic bi-ideal of  (H,A).  ie.(H,A)  =  (LB,A).Hence (H,A) is LB - simple 
and the identity element in (H,A) satisfies the required condition. 
(ii)⇒(i)  
Since  H(d)≠{0} we get (H,A) is not constant. We know that H(0) is a Soft neutrosophic 
bi-ideal of (H,A) and since (H,A) is LB - simple we get (H,A) =  H(0). Let 0≠H(n1) in 
(H,A), by proposition 3, (H,A)H(n1) is a Soft Neutrosophic bi-ideal of (H,A) and 0≠ 
H(n2)  H(n1) in (H,A)H(n1) for some H(n2) in (H,A). Hence (H,A)H(n1) = (H,A). 
Therefore we have (H,A) is a Soft Neutrosophic near field. 
 
Theorem 4.1. If a minimal (F,A)-subgroup (Hmin,A) of a Smarandache-Soft Neutrosophic  
zero symmetric near ring (F,A)  over 〈���〉 which is zerosymmetric has a non-zero 
distributive idempotent element  H(e), then H(e) (Hmin ,A) is a Multiplicative subgroup of 
(F,A). Moreover it is a minimal Soft Neutrosophic bi-ideal of (F,A). 
Proof: Since (F,A) be a Smarandache -soft Neutrosophic near –ring over 〈���〉, then by 
definition, there exists a proper subset (H,A), which is Soft neutrosophic near field. 
By Proposition 3,    H(e) (Hmin ,A)   is a Soft Neutrosophic bi-ideal of (F,A). 
Clearly  H(e)  is a left identity for   H(e)(Hmin,A). If   H(e)Hmin (a)≠ 0, for some  Hmin (a)  
in  (Hmin,A), then the non-zero   (Hmin ,A) (H(e)Hmin(a))   is a  (F,A) - subgroup of  (F,A)  
and also (Hmin ,A)  (H(e) Hmin(a))   ⊆ (Hmin,A).  Thus we get  (Hmin ,A)  (H(e)Hmin(a))  =  
(Hmin, A), which implies that  (H(e)(Hmin ,A)) (H(e)Hmin(a))  =  H(e)(Hmin,A), i.e. the non-
zero element   H(e)Hmin(a)  has a left inverse  H(e)H(t) such that  (H(e)H(t)) (H(e)Hmin(a))  
=  H(e).Hence the non – zero elements of  H(e)(Hmin,A)  from a multiplicative subgroup 
of (H,A). We have that  H(e)(Hmin,A)  is a Soft Neutrosophic near field. 
        Now  H(e)(Hmin,A)  ⊆  H(0). If (���,A) is a Soft Neutrosophic bi-ideal of (F,A) 
such that {0}≠(���,A)  ⊆	  H(e)(Hmin,A), then (���,A)  (H(e)(Hmin,A))  (���,A)  ⊆  
(���,A)(F,A)(���,A)⊂	  (���,A), which implies that  (���,A)  is  Soft Neutrosophic bi-
ideal of  H(e) (Hmin,A). 
       But  H(e) (Hmin,A)  is a Soft neutrosophic  near field and so by lemma 1, we get   
H(e)(Hmin,A)  is LB-simple. Hence, H(e)(Hmin,A)=(���,A). i.e. H(e)(Hmin,A)  is a minimal 
Soft Neutrosophic bi-ideal of  (F,A). 
 
Lemma 4.2. If a Minimal Soft Neutrosophic bi-ideal  (LB,A)  of Smarandache -soft 
neutrosophic near ring  (F,A) over 〈���〉 which is zero symmetric contains a distributive 
element  LB(a)  such that  LB(a) is neither a left zero divisor nor  right zero divisor ,then  
(F,A) must have a two-sided identity. 
Proof: Since (F,A) be a Smarandache -soft Neutrosophic near –ring over 〈���〉. 
Then by definition (H,A) is a proper subset of (F,A), which is a Soft Neutrosophic near-
field. 
      Clearly  (LB(a)) 3≠ 0 and  (LB(a)) 3  in   LB(a)(F,A)LB(a)   ⊆  (LB,A). By corollary 4, 
LB(a)(F,A)LB(a)  is a Soft Neutrosophicbi-ideal of  (F,A)  and  LB(a)(F,A)LB(a)  =  
(LB,A), since  (LB,A)  is minimal.Therefore   LB(a)  =  LB(a)F(a)LB(a)  for some  F(a) in 
(F,A). 
For   F(x),F(y)  in (F,A) ,we have  F(x)  =  F(x)LB(a)F(a)   and   F(y) = F(a)LB(a)F(y) , 
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Since  LB(a)  is neither a left zero divisor nor a right zero divisor. 
i.e. F(a)LB(a)  and  LB(a)F(a ) are left and right identities for (F,A) respectively and  
hence  F(a) LB(a  )  =  LB(a)F(a)  is the required  identity element in (F,A) 
 
Now we prove the main theorem of this paper. 
 
Theorem 4.2. Let (F,A) be a Smarandache-soft neutrosophic near ring over 〈���〉,which 
is zerosymmetric. Then (H,A) is a Soft Neutrosophicnear field if and only if  (H,A)  has a 
distributive element which is neither a left zero divisor nor a right zero divisor and which 
is contained in a minimal Soft Neutrosophicbi-ideal (LB,A) of (F,A). 
Proof: Since (F,A) be a Smarandache -soft Neutrosophic near –ring over 〈���〉. 
Then by definition (H,A) is a proper subset of (F,A), which is a Soft Neutrosophic near-
field. If  (H,A) is a Soft Neutrosophic near field ,then (H,A)   itself is a minimal Soft 
Neutrosophic bi-ideal satisfying the required conditions. 
    Conversely,  let (LB,A) be a minimal Soft Neutrosophicbi-ideal of (F,A) containing a 
distributive element H(d) which is neither a left nor a right zero divisor . 
By lemma 3, (H,A) contains a identity H(e). 
Again by corollary 4,  H(d)2 (H,A) H(d)2  is a Soft Neutrosophicbi–ideal  and  0 ≠H(d)2 
(H,A) H(d)2   ⊆   (LB,A)(H,A)(LB,A)   ⊆	 (LB,A). 
Since (LB,A) is a minimal we get  (LB,A)  =  H(d)2 (H,A) H(d)2 . 
Now  H(d) in (LB,A) = H(d)2 (H,A) H(d)2   implies that   H(d) = H(n)H(d)2  for some H(n) 
in (H,A). 
     But   H(d) = H(e)H(d)   and so  H(e) = H(n)H(d)  
i.e. H(e) in (H,A)H(d).  Similarly we get  H(e) in  H(d)(H,A). 
Therefore    H(e) = H(e)2    in  (H(d)(H,A))   ((H,A)H(d))   ⊆   H(d) (H,A) H(d)   ⊆   
(LB,A), whence    (H,A)  =  H(e)(H,A)H(e)   ⊆		 (LB,A) (H,A)(LB,A)    ⊆			 (LB,A), that is 
(H,A)   =   (LB,A). 
      This relation and minimality of (LB,A) implies that (H,A) is  LB - simple and so (H,A) 
is a Soft Neutrosophic near –field by lemma 1.  
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