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Abstract—In this paper we introduce a fuzzy uncertainty
assessment methodology based on Neutrosophic Sets (NS).
This is achieved via the implementation of a Radial Basis
Function Neural-Network (RBF-NN) for multiclass classifica-
tion that is functionally equivalent to a class of Fuzzy Logic
Systems (FLS). Two types of uncertainties are considered:
a) fuzziness and b) ambiguity, with both uncertainty types
measured in each receptive unit (RU) of the hidden layer of
the RBF-NN. The use of NS assists in the quantification of the
uncertainty and formation of the rulebase; the resulting RBF-
NN modelling structure proves to have enhanced transparency
features to interpretation that enables us to understand the
influence of each system parameter thorughout the parameter
identification. The presented methodology is based on firstly
constructing a neutrosophic set by calculating the associated
fuzziness in each rule - and then use this information to train
the RBF-NN; and secondly, an ambiguity measure that is
defined via the truth and falsity measures related to each
normalised consequence of the fuzzy rules within the RUs.
In order to evaluate the individual ambiguity in the RUs
and then the average ambiguity of the whole system, a
neutrosophic set is constructed. Finally, the proposed method-
ology is tested against two case studies: a benchmark dataset
problem and a real industrial case study. On both cases we
demonstrate the effectiveness of the developed methodology
in automatically creating uncertainty measures and utilising
this new information to improve the quality of the trained
model.

Index Terms—Neutrosophic sets (NS), Fuzzy Sets (FS),
RBF Neural Network (RBF-NN), Receptive Unit (RU), un-
certainty/indeterminacy, fuzziness, ambiguity, Charpy test
Modelling.

I. INTRODUCTION

RADIAL Basis Function Neural Networks have proved
their effectiveness in several disciplines such as

medicine [1], robotics [2, 3], control theory [4] image
processing [5] and fuzzy modelling [6]. Furthermore, some
researches and practitioners have exploited the functional
equivalence established between the RBF-NN’s and Fuzzy
Logic Systems (FLS) [7-9] to apply the advances in fuzzy
logic on the RBF-NN. Particularly, efforts on fuzzy mod-
elling have been focused on increasing the interpretanbility
and distinguishability of the rulebase while maintaining a
good modelling performance in systems design [10]. For
instance, in [6] a data-driven interval-type-2 neural fuzzy
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system with high learning accuracy and improved model
interpretability is proposed. Juang and Chen built a type-
2 fuzzy model whose design is twofold: (1) an initial
clustering approach was used to generate accurate fuzzy
rules with good accuracy and (2) a gradient descent and
ruled-ordered recursive least square algorithms for learning
the antecedent and consequent parameters of the proposed
network. In [11], Rhee and Choi proposed an off-line
methodology based on interval type-2 fuzzy set theory for
estimating the initial parameters of the RBF-NN. This work
is shown to improve the classification performance and to
control the linguistic uncertainty produced throughout the
construction of the inference mechanism. In [12], Solis
and Panoutsos proposed an RBF-NN-based neutrosophic
framework for the prediction of heat treated steel properties
where a neutrosophic index was designed in order to mea-
sure the inclusion uncertainty throughout the granulation
process used for estimating the parameters of the RBF-
NN. Nevertheless, the design of logic-driven systems and
interpretable models based on RUs has been an ongoing
challenge in the area of modelling. While the concept of
linguistic interpretability exits by default in fuzzy logic
systems being established with linguistic rules and fuzzy
sets associated with these rules [13], transparency is a
not default property being a measure on how reliable
is the linguistic interpretation of a fuzzy system. The
interpretability and transparency of RBF-NN go hand in
hand with the information and the highly dimensional space
of data produced by the RUs. The RBF-NN posses the
characteristic of fuzzy sets that the range of true value
in the RUs is a closed interval of real numbers. In a
like manner, the learning capabilities of the RBF-NN has
some parametric flexibility that can be extended into the
field of intuitionistic logic, interval type-2 fuzzy sets and
neutrosophy. Particularly, neutrosophy is a generalisation
of fuzzy logic [14-15] based on the fact that a proposition
can be true (T), indeterminate (I) and false (F), and the
tuple < T,F, I > can be expressed over the real domain
with no restrictions. Neutrosophy is a branch of philosophy
capable of dealing with prepositions which are true and
false at the same time. For this reason, in this paper
we take advantage of neutrosophic set theory and some
existing fuzzy uncertainty measures in order to explore and
exploit the information contained and produced in each
RU evaluating the role of each parameter for the system
interpretation. A vast number of uncertainty measures for
fuzzy sets [16-18], fuzzy relations [19] and approximate
reasoning [20-21] have been proposed.
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In the design of fuzzy systems, uncertainty appears due
to the lack of information, and it mainly comes into three
different disguises that covers the Probabilistic Uncertainty
(PU), Resolutional uncertainty (RU) and Fuzzy Uncertainty
(FU). The first two types of uncertainty are closely related
to belongingness of elements or events to crisp sets and
the ambiguity of specifying the exact solution respectively.
In this article, we propose a neutrosophic mechanism
which is firstly used to measure the fuzziness I produced
as a consequence of the dimensional overlapping area
among RUs via defining the neutrosophic set < T,F, I >,
where T and F are the overlapping area between two RUs
and its complement respectively. Secondly, an index I is
suggested to measure the non-specificity (ambiguity) by
the RUs throughout the training stage of the RBF-NN.

The rest of this paper is organised into 3 sections:
section II briefly revisits the basic theory of Neutrosophic
Sets. Section III focuses in the description of the proposed
fuzzy uncertainty assessment using an RBF-NN and
neutrosophic sets. To measure the fuzziness and ambiguity
in the course of the training process of the RBF-NN,
two uncertainty indexes are suggested. In section IV,
the performance of the proposed methodology is tested
for modelling the well-know IRIS data set and for the
identification and mechanical property prediction of the
Charpy Toughness of heat-treated steel. Finally, in the
concluding section the characteristics of the proposed
methodology and further work are discussed.

II. NEUTROSOPHIC SET

The concept of neutrosophy was introduced by F.
Smarandache [14, 15] as a generalisation of fuzzy logic,
intuitionistic set, paradoxical set and paraconsistent
logic in order to deal with the origin, nature and
scope of neutralities. The evolution of sets from FS to
NS has gone through different stages. Starting by the
definition given by L. Zadeh in 1965, where a fuzzy set
A = {x, μA(x)∣ ∀x ∈ X , μA(x) ∈ [0,1]}. Goguen defined
the L-fuzzy set in X as a mapping X → L such that
L∗,≤L∗ is a complete lattice, where L∗ = {(x1,x2) ∈
[0,1]2,x1 + x2 ≤ 1},(x1,x2) ≤L∗ (y1,y2) ⇐⇒ x1 ≤ y1. In
1983, Atanassanov introduced the intuitionistic fuzzy
sets (IFS) as a generalisation of FS, where each element
of X is associated not only to its grade of membership
μA(x) ∈ [0,1] but also to the grade of non-membership
νA(x) ∈ [0,1], but such that ∀x ∈ X , μA(x) + νA(x) ≤ 1.
Atanassov introduce the concept of interval-valued
intuitionistic fuzzy sets (IVIFS) on a universe X in
1999 as an object that A = {x,M(A),N(A),x ∈ X} with
MA : X → Int([0,1]) and NA : X → Int([0,1]). IFS theory
proposes an associated truth-membership function and a
falsity-membership function and then such theory uses
intervals was introduced as a toll to capture the uncertainty
of grade of membership. Later on, Smarandache defined
the neutrosophic set as a tuple < T, I,F > in the universe
of discourse X , and the element n ∈ X is represented as
n(T, I,F). The elements T, I, and F are the neutrosophic
logical values of a given proposition in order to deal
with the associated percentage of truth (%T ), the falsity

(%F) and the uncertainty/indeterminacy (%I) of an event.
Neutrosophic set theory is based on infinitesimals for the
definition of non-standard real-subsets ]−a,b+[. A number
r is said to be an infinitesimal if and only if for all positive
numbers n, and the number r can be defined as ∣r∣< 1/n.
Where a non-standard number is defined as −a = a− r
and b+ = b + r. The neutrosophic tuple < T,F, I > can
be evaluated by either standard or noon-standard unit
intervals as follows

Let T, F and I be standard or non-standard real subsets in
]−0,1+[ with

sup T = tsup; in f T = tin f

sup F = fsup; in f F = fin f (1)

sup I = isup; in f I = iin f

Therefore, a neutrosophic set < T, I,F > can be in-
terpreted as intervals, standard or non-standard real sets,
discrete, continuous, single-finite sets, operations under
intersection or union, fuzzy numbers, rough sets, etc.

III. UNCERTAINTY ASSESSMENT IN RBF-NN BY USING

NEUTROSOPHIC SETS

This section presents a procedure for calculating the un-
certainty during the training process of the RBF-NN. Such
methodology includes two types of uncertainty assessment
based on neutrosophic sets, namely: the vagueness among
fuzzy rules which is estimated by calculating the fuzziness
[16] between two fuzzy sets A j and Al using an overlapping
coefficient [22]. And the ambiguity in fuzzy rule con-
struction which is associated with one-to-many relations,
i.e. situations with two or more alternatives during the
learning process of the RBF-NN. The first step of the
proposed methodology is to define the tuple < Ti,Fi, Ii >
in the RBF-NN taxonomy and then use this information to
calculate the associated uncertainty. Secondly, a process of
identification must be carried out in order to estimate the
RBF parameters.

A. RBF-NN based on Neutrosophic Sets

As it is mentioned in [7-8], a functional equivalence
between the RBF-NN and FS can be established if the
following conditions are met:

1) The number of receptive fields in the hidden layer
(see Fig. 1) is equal to the number of fuzzy rules.

2) The MF’s within each rule are chosen as Gaussian
functions.

3) The T-norm operator used to compute each rule’s
firing strength is multiplication.

4) Both the RBF-NN and the FIS under consideration
use the same defuzzification method, that is: either
the centre of gravity or weighted sum to estimate
their overall outputs.

An RBF-NN can be treated as a fuzzy inference engine
that maps an input observed universe of discourse U ⊂
Rn,k= 1, ...,n characterized by a MF μA(x) : U→ [0,1] into
the nonfuzzy Y ∈ R set. In this paper we consider a multi-
input-single-output (MISO) fuzzy system f : U ⊂ Rn→ R
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which has n inputs xk ∈ [x1, ...,xn]
T ∈U1×U2× ..×Uk..×

Un ≜U where the ith rule has the form [34]

R̃i : IF x1 is Ãi
1 and x2 is Ãi

2 . . . and xn is Ãi
n

THEN y is B̃i (2)

where the output RU is

μAi (⃗xp) = fi

(
exp

[
−∥⃗xp− x⃗∥2

σ2
i

])
(3)

where x⃗p = [x1, ...,xn] and σi and x⃗ are the width and
the center of the ith fuzzy set respectively. From this
perspective, the definition of a neutrosophic taxonomy
using the RBF-NN can be defined as illustrated in Fig.
1. Each receptive field can be represented by the tuple
< Ti,Fi, Ii > where Ti can be defined as the firing strength
or its normalised value.

Fig. 1: RBF-NN structure based on NS

Usually, Fi and Ii are defined as the complement of a given
fuzzy set Al and its associated uncertainty respectively.
Therefore, the elements Ti,Fi and Ii are calculated in this
paper according to fuzziness and ambiguity.

B. Fuzziness

Fuzziness or vagueness [23, 25] has been a measure
widely used in the development of fuzzy set theory. Mainly,
because it is associated with respect to the linguistic
uncertainty of fuzzy terms. In [15] a review of a number of
well known measures of fuzziness for discrete fuzzy sets
is presented. In this paper we propose to use that defined
in [18, 19] as follows:

f ei
k(μOv) =

⎧⎨
⎩

(1−μOv)
α eμOv +μα

Ove(1−μOv), i ∕= j

0, i = j.
(4)

Where α ∈ [0,1] and μOv represents the area that the fuzzy
set Ai overlaps the fuzzy set A j ( j = 1, . . . ,M) and can be
obtained as:

μOv =
OvAiA j

Ai
, μOv ∈ [0,1] (5)

The overlapping coefficient OvAiA j is used to calculate the
area under the smaller of the fuzzy distributions Ai and
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Fig. 2: Overlapping Area between the fuzzy sets A j and Ai

A j as is illustrated in Fig. 2. Therefore, OvAiA j can be
calculated as follows [22]:

OvAiA j =
∫ b

a
min [Ai(x),A j(x)]dx (6)

Eq. (2) represents the fuzziness per dimension in the ith
rule between the fuzzy sets Ai and A j. However, the
fuzziness must be an average dimensional measure per
neuron at pattern p which can be obtained as follows:

E p
i ( f ei

k) =
1

M×n

n

∑
k=1

M

∑
i=1,i∕= j

f ei
k(μOv)) (7)

Where M and n are the the number of rules and dimensions
respectively. In order to define the neutrosophic sets based
on the evaluation of the fuzziness in the fuzzy rules con-
struction, the value of the local uncertainty/indeterminacy
Ik between two fuzzy sets Ai and A j is obtained as follows:

Û p
ik =

⎧⎨
⎩

1

(1+eg× f ei
k )
, μOv < t̂;

(eg× f e
j
k )−eg× f ei

k )

(eg× f ei
k )+eg× f ei

k )
, μOv > t̂.

(8)

When i= j the value of Û p
ik is zero. Where t̂ ∈ [0,1] and g∈

R. Therefore the local uncertainty per RU can be defined
as

Ii =
1

M×n

n

∑
k=1

M

∑
i=1,i∕= j

Û p
ik (9)

And the overall network uncertainty at pattern p is defined
as:

Ip =
1

M×n

P

∑
p=1

n

∑
k=1

M

∑
i=1,i∕= j

Û p
ik (10)

Where
P number of training patterns.
Ti is defined as the truth μAi associated to a receptive rule
and Fi = 1−μOv is the falsity.

C. Ambiguity

Usually in fuzzy set theory ambiguity [25] includes
three main types of uncertainty measures, namely: a)
nonspecificity, b) dissonance and c) confusion. In this
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article, the ambiguity is associated with nonspecificity
based on neutrosophic sets which represents a cognitive
uncertainty. In the RBF-NN, the ambiguity is caused by
the uncertainty of choosing one from all the normalized
outputs (normalized firing strengths) in the hidden layer
when classifying the input data. Therefore, the larger the
number of alternatives, the higher the ambiguity is [25]. In
this paper, the ambiguity is defined as the indeterminacy
in choosing which fuzzy rule (receptive field unit) defines
correctly the input data according to its normalized output.
Thus, the tuple < Ti,Fi, I

p
ik > is defined as follows:

The truth is calculated by:

Ti =
μAi (⃗xp)

∑M
i=1 μAi (⃗xp)

(11)

The falsity is calculated by:

Fi = max [Ti]i∕= j (12)

The ambiguity/indeterminacy is obtained by using the
equation defined in [27] and is depicted in Fig. 3;

I p
ik = Ambiguityi = 1−∣Ti−Fi∣ (13)

Therefore, the total neural ambiguity can be calculated by
the following expression

IA =
1

M×n

P

∑
p=1

n

∑
k=1

M

∑
i=1

I p
ik (14)

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Thruth

F
uz

zi
ne

ss
 

 

 

α = 0.25
α = 0.5
α = 1.0

Fig. 3: Fuzziness ( f ei
k)

0

0.5

1

0

0.5

1
0

0.5

1

 

TrueFalsity
 

A
m

bi
gu

ity

0

0.2

0.4

0.6

0.8

1

Fig. 4: Ambiguity (I p
ik)

D. Parameter identification methodology

The parameter identification consists of two main stages:
a) a process of granulation [12, 26] where are calculated the
initial parameters of the RBF-NN and b) their correspond-
ing optimization by using an adaptive gradient descent
approach including the uncertainty from two different

perspectives based on fuzziness and ambiguity. The flow
diagram of the fuzzy uncertainty assessment by using RBF-
NN’s and NS for classification is depicted in Fig. 5.
The energy expression and the objective function is ob-
tained respectively as follows:

Pi =
P

∑
p=1

M

∑
i=1

E p
i e2

p (15)

where E p
i e2

p represents the neutrosophic inference mech-
anism throughout the learning process. And the fuzzy
inference can be established as the weighted normalised
average expressed in (11).

Fig. 5: Neutrosophic parameter identification process

The update rule for the output weight is:

wi(p+1) = γwi(p)− f ei
kβepgi; (16)

Where gi =
μAi (⃗xp)

∑ j μAi (⃗xp)
and the update rule for the width is:

σi(p+1) = γσi(p)− f ei
kβepgi(wi(p)− yp)

(xi(k)−Cik)
2

σ3
i

;

(17)
And the update rule for the ith centre is:

Cik(p+1) = γCik(p)− f ei
kβepgi(wi(p)− yk)

(xi(k)−Cik)

σ2
i

;

(18)
Where β is the learning rate and γ is the momentum. The
energy index is used to update the adaptation algorithm as
follows:

∙ if Pi(t +1) ≥ Pi(t) Then

α(t +1) = hdα(t), γ(t +1) = 0

∙ if Pi(t +1) < Pi(t) and

∣∣∣∣∣ ΔPi
Pi(t)

∣∣∣∣∣< δ Then

α(t +1) = hiα(t), γ(t +1) = γ0 (19)

∙ if Pi(t +1) < Pi(t) and

∣∣∣∣∣ ΔPi
Pi(t)

∣∣∣∣∣≥ δ Then

α(t +1) = α(t), γ(t +1) = γ(t)
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Where hd and hi are the decreasing and increasing factors,
respectively. As it is mentioned in [24], the value of the
constrains are:

0< hd < 1, hi > 1 (20)

IV. SIMULATION RESULTS

To show the effectiveness and efficiency of the pro-
posed methodology, two different problems of 4 and 16
dimensional space are reported here. First we explore the
assessment of uncertainty due to the fuzziness by using the
Iris plant database which is perhaps one of the most classic
data sets in pattern recognition. The second case study
under simulation is the predictive modelling of the Charpy
Toughness of the Heat treated steel [12, 26]; a process that
exhibits very high uncertainty in the measurements due to
its thermomechanical complexity of the Charpy test itself.
In this second experiment, the fuzziness and ambiguity
assessment when training the RBF-NN is presented. Finally
the experimental results are compared to those simulations
presented in [9], [12] and [26].

A. Example 1: Iris Plant Classification

This example employs the Iris data set which contains
three main categories, namely; a) Iris Setosa, b) Iris
Versicolour and c) Iris Virginica of 50 instances each,
where each category refers to a type of an iris plant
and whose main classification feature is that one category
is linearly separable from the two others and the latter
are non linearly separable each other. This experiment
also explores the proposed neutrosophic frameworks for
creating a more distinguishable discourse of universe where
RBF-NN is trained by using the 100% of data and the
network uncertainty caused by the overall fuzziness related
to this training process is evaluated. Table I, shows the
attribute information and the summary statistics of the
Iris data set and the correct percentage (%) of average
classification accuracy for the class 1, 2, and 3 by using
the tuple < Ti,Fi, Ii >.

TABLE I: Iris Database statistics, attributes and
average classification accuracy

Summary Statistics Min Max Mean SD

Sepal Length (cm) 4.3 7.9 0.83 5.84

Sepal Width (cm) 2.0 4.4 0.43 5.84

Sepal Length (cm) 1.0 6.9 1.76 5.84

Sepal Width (cm) 0.1 2.5 0.76 5.84

Name class 1 % class 2 % class 3 %

Iris 100 97.66 99

In order to test the effectiveness of the proposed frame-
work, in figure 6 the final distribution of the universe of
discourse in the dimension 4 using the tuple < Ti,0,0 >
and < Ti,Fi, Ii >, the local uncertainty E p

i and the overall
network uncertainty Ip behaviours due to the fuzziness
are illustrated respectively. Fig. 6(d), illustrates the overall

fuzziness Ik performance in the RBF network by evaluating
the tuple < Ti,Fi, Ii > throughout the training process.
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Fig. 6: (a) Final distribution using the tuple < T,0,0>, (b)
Final distribution using the tuple < T,F, Ik >, (c) local

uncertainty Ek
j performance and (d) Overall uncertainty Ik

produced by the overlapping among the RUs throughout the
training process

In Fig. 6(c), the assessment of uncertainty clearly indi-
cates the relationship of the fuzziness and the classification
of the different Iris categories. it is also obvious that for
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this case in particular, the neural network uncertainty Ip

diminished importantly when using the tuple < Ti,Fi, Ii >
during the training. This means that it is possible to exploit
the information contained in the RUs, and then manipulate
the transparency and interpretability of the information per
RU. The inclusion of f ei

k in this study aims to unify the
concept of uncertainty and the evaluation of truth under a
neutrosophic framework. In Fig. 6(d), in comparison to the
overall uncertainty trend described by the RBF network by
using just the tuple < Ti,0,0>, the overall uncertainty by
using the tuple Ti,Fi, Ii decreased sharply after the iteration
500.

B. Example 2: Charpy test

This example is used to assess the uncertainty caused by
the fuzziness and ambiguity during the training process of
the RBF-NN over a real industrial case study. The example
consists of a data set related to the Impact Energy Test
of Heat treated grade steel. Particularly, impact energy
is a highly non-linear property in relation to the steel
composition, and difficult to be modelled mainly due to
the multitude of standards that exists, and the variety of
results that can occur under almost perfect test conditions
[26]. Besides, The notorious complex results produced by
the impact test can be highly scatter and low repeatable.
The Charpy toughness data set used in this work consists
of 1661 measurements on heat-treated steel (TATA Steel,
Yorkshire, UK).

The data set has 16 input dimensions, and 1 output
(Impact Energy, Joules), the scarcity of some of the
data dimensions is illustrated in the Table II. For cross-
validation purposes the data have been split into training,
checking and testing data sets, in order to avoid over-fitting
and hence enhancing the generalisation properties when
modelling the Charpy test.

The initial data used to train the RBF network consists
of 1084 (65%), which are composed of just raw data.
The checking and testing data are 277 (17%) and 300
(18%) respectively. The selection of Data was set to
identically match the data set used in [12] for comparison
purposes. The chemical composition, test parameters and
heat treatment conditions are shown in table II.

TABLE II: Charpy Toughness: Input variables

Chemical

Composition Test Parameters Heat Treatment

C, Si, Mn, Test Depth, Hardening
S, Cr, Mo, Specimen Size, Temperature,
Ni, Al, V Test Site, Cooling medium

Test Temperature Tempering
Temperature

In Fig. 7, a plot of the modelling results evaluating
the fuzziness are illustrated. Such results are obtained by
using the proposed gradient descent algorithm and the tuple
< Ti,Fi, Ii > where the term Ip is the overall fuzziness
which is computed using the Eq. (10). In Fig. 8, the
final distribution by assessing the fuzziness of the fuzzy

sets at dimension 3 (Test site test parameter) and the
local uncertainty E p

i are illustrated. Fig. 8(b) illustrates
the behaviour of the overlapping of the entire RBF-NN
throughout the training process. As it is illustrated in Fig.
8(a), the higher the overlapping per dimension, the larger
the local uncertainty per receptive unit (see Fig. 8(b)).
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Fig. 7: Performance of (a) Training, (b) Checking and (c)
Testing using the tuple < T,F, Ik >

In this sense we offer the comment that an RBF network
shares the capability of fuzzy systems for dealing with
situations where set-boundaries are not sharply defined
[16] and the proposed fuzziness measure of the final
distribution per RU contributes to the interpretability of
the RBF-NN. To investigate the RBF-NN performance
based on the ambiguity assessment, we then implement
the proposed adaptive gradient descent algorithm [26]
using the term I p

ik in the energy equation (13) instead of
the term f ei

k.

In Fig. 9, a plot of the simulation results is presented.
Such results are comparable to those obtained by
evaluating the overall fuzziness and to the RBF-NN of
Mamdani type presented in [12] and [26]. The overall
ambiguity index IA is the average ambiguity of the M
normalised output of the RUs. Even though, Fig. 9(d)
shows that the overall ambiguity behaviour over the
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span of the training process posses a decreasing trend,
and the use of a measure based on ambiguity enhanced
the training performance as presented in table III, the
final ambiguity value is never zero. This is mainly due
to high non-linear property of the steel composition
and heat treatment regime. Moreover, some outliers
points are equally misclassified in either by evaluating
the overall fuzziness or by evaluating the overall ambiguity.
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Fig. 8: (a) Final distribution using the tuple < T,0,0>, (b)
local uncertainty based on fuzziness

Finally, in order to reveal that RBF-NN based on the un-
certainty assessment has good performance for modelling
high-dimensional problems, table III shows a comparison
between three different types of uncertainty assessment,
namely: using a) the tuple < Ti,0,0 >, b) the tuple <
Ti,Fi, Ii > and c) the tuple < Ti,Fi, I

p
ik > which is the RBF-

NN of Mamdani type. As it is described in [25], in certain
cases where some data were wrongly predicted mainly
during the checking and testing stages; it can be concluded
that such misclassification is a consequence of process
repeatability of the data set (Charpy test experiments)
which turns out in noisy data (or wrong data and outliers).

TABLE III: Performance of optimised RBF-NN for modelling
the Charpy test.

Model Number of rmse rmse rmse

rules Training Checking Testing

< T,0,0> 9 16.76 19.25 20.91
< T,F, Ik > 9 16.93 20.38 21.60
< T,F, I p

ik > 9 16.66 20.25 21.39

Particularly, the nature of the Charpy test produces
very high data scatter and due to its low repeatability in
obtaining the same results under the same input conditions,
the performance of the RBF-NN is affected. In the view
of the former results, the use of neutrosophic sets is not
only the generalisation of fuzzy sets but also such sets
can be exploited in order to increase the transparency
and interpretability of systems functionally equivalence to
fuzzy and then neutrosophic frameworks.
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Fig. 9: Performance of (a) Training, (b) Checking and (c)
Testing using the tuple < T,F, IA > and (d) the behaviour of the

overall ambiguity IA

,
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V. CONCLUSIONS

By exploiting the functional equivalence between
RBFNNs and fuzzy systems of type-1, and the application
of neutrosophic sets theory, we show how one may exploit
the information contained in each receptive unit in an RBF-
NN to measure uncertainty and use this information to
improve the modelling structure. Two uncertainty measures
were considered: a) fuzziness and b) ambiguity. Firstly,
we defined a fuzziness measure to examine the agreement
between fuzzy rules (Gaussian fuzzy rules) by using an
overlapping coefficient. Secondly, an ambiguity index was
constructed based on the associated truth and falsity of
each fuzzy rule, as calculated within each RU. Finally,
an adaptive Back Error Propagation approach - taking
advantage of the neutrosophic sets based on fuzziness and
ambiguity - was employed for the parametric optimisation
of the model. The presented methodology was tested
against a benchmark data set and real industrial case study
of high dimensionality and complex nature. The resulting
modelling structures produced comparable performance to
that obtained by just using fuzzy sets of type-1 (RBFNN),
however this was achieved with a much simpler and more
interpretable rulebase that can be further interrogated by
process experts. The simplicity of the resulting structure
also adds to the computational efficiency of the model, thus
enabling it to be used in real-time critical applications.
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