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Abstract— In the context of Electronic Support Measures,
the use of the Dempster-Shafer Theory is not flexible enough
to obtain a clear evaluation of the state of allegiance for a
detected target. With the new theory of plausible, paradoxical,
and neutrosophic reasoning, the Dezert-Smarandache Theory, we
are able to get a clearer assessment. The current paper presents
our research for these cases.
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I. INTRODUCTION

As introduced in [1], the Dezert-Smarandache Theory
(DSmT) is able to combine information even in the presence
of large conflicts and constraints. Not only does the DSmT
circumvent the well known problems of the Dempster-Shafer
Theory (DST) [2] reported by Zadeh in [3], but it can also help
us get a more precise assessment of the possible truth as we
will see in section (I-B.1). Even if the DSmT resolves Zadeh’s
problem with the DST, one still faces a problem with the
DSmT which was exposed in [4], namely that combinations
under DSmT were too complex. However, this was not true
anymore after the work presented in [5]. We are now able
to easily experiment with the DSmT in different cases never
explored before due to its apparent complexity.

As mentioned in the abstract, the current paper will present
our work on an analysis between the DST and the DSmT
in a ESM input environment. We will begin by a brief
review of concepts required for the paper in this section,
followed by theorical adaptations and the main aspects of
the implementation process in section (II). We then present a
selection of results and decisions taken by the implementation
for a representative example in section (III). The final section
presents our conclusions and a review of our results and
possible future research with the DSmT.

A. Combining rules for data fusion

1) Definitions:

• Basic Set (Θ) : Θ = {θ1, θ2, . . . θn}. It’s the set including
every possible object θi. This set is exhaustive and its
elements are not exclusive.

• Power set
(
2Θ

)
: represents the set of all possible sets

using the objects (singletons) of the basic set Θ. It

includes the empty set and excludes intersections. With
the basic set defined above, we get the power set:

2Θ = {∅, {θ1} , {θ2} , . . . {θn} , {θ1, θ2} ,

. . . {θ1, θ2, . . . , θn} , . . . , Θ}.

• Hyper-power set
(
DΘ

)
: represents the set of all possible

sets using the objects of the basic set Θ and allowing
intersections between singletons. It includes the empty
set. With the basic set: Θ = {θ1, θ2}, we get the hyper-
power set

DΘ = {∅, {θ1} , {θ2} , {θ1 ∩ θ2} , {θ1 ∪ θ2}} .

• Conjunctive Power set
(
2Θ∩

)
: represents the set of all

possible sets using the objects of Θ. It includes the empty
set and excludes disjunctions. Defined as a mathematical
object, it helps for the evaluation of the DSm cardinal.
With the basic set {θ1, θ2, . . . θn}, we get the conjunctive
power set:

2Θ
∩ = {∅, {θ1} , {θ2} , . . . {θn} , {θ1 ∩ θ2} ,

. . . {θ1 ∩ θ2, . . . ∩ θn}}.

• Constraint : is a set considered impossible to obtain.
• Constraints power set

(
DΘ

c

)
: is the set containing all

elements considered as constrained in the DΘ.
• Basic belief assignment (bba) : m : 2Θ → [0, 1], so the

mass given to a set A ⊆ Θ obeying m (A) ∈ [0, 1].
• Core of Θ (K): The set of all focal elements of Θ, where

a focal element is a subset A of Θ such that m(A) > 0.

2) Conjunctive combining rule [7]: When we refer to
the conjunctive combining rule, we will refer to the version
described as:

q (A) = m1 ∧ m2 =
∑

B∩C=A
B,C⊆Θ

m1 (B)m2 (C) ∀A ⊆ Θ. (1)



3) Disjunctive combining rule [8]: When we refer to
the disjunctive combining rule, we will refer to the version
described as:

q (A) = m1 ∨ m2 =
∑

B∪C=A
B,C⊆Θ

m1 (B) m2 (C) ∀A ⊆ Θ. (2)

4) Dempster-Shafer Theory (DST): The DST rule of combi-
nation is a conjunctive normalized rule working on the power
set. It combines information with intersections. This theory
works with the hypothesis of mathematically independent
sources of evidence. The ith bba’s source of evidence is
denoted mi. The DST works within 2Θ.

Equation (3) describes the DST rule of combination where
K is the conflict and is ∀C ⊆ Θ, the conflict in DST being
defined by equation (4).

(m1 ⊕ m2) (C) =
1

1 − K

∑

A ∩ B = C

m1 (A) m2 (B) (3)

K =
∑

A∩B=∅
m1 (A) m2 (B) A, B ⊆ Θ (4)

5) Dezert-Smarandache Theory (DSmT): The DSmT uses
the hyper-power set being thus able to work with intersections.
The DSmT possesses two rules of combination which are able
to work around the mass redistribution problem of the DST
in the presence of large conflicts:

• The Classical DSm rule of combination (DSmC) is based
on the free model Mf (Θ)

m (C) =
∑

A∩B=C

m1 (A)m2 (B) A, B ∈ DΘ

∀C∈DΘ
(5)

• The Hybrid DSm rule of combination (DSmH) is able to
work with many types of constraints

mM(Θ) (A) = φ (A) [S1 (A) + S2 (A) + S3 (A)] (6)

S1 (A) =
∑

X1∩X2=A

m1 (X1)m2 (X2) ∀X1, X2 ∈ DΘ

(7)

S2 (A) =
∑

[(u(X1)∪u(X2))=A]∨
[((u(X1)∪u(X2))∈∅)∧(A=It)]

∀X1,X2∈∅

m1 (X1)m2 (X2)

(8)

S3 (A) =
∑

X1∪X2=A

X1∩X2∈∅

m1 (X1)m2 (X2) ∀X1, X2 ∈ DΘ

(9)

Fig. 1. Venn diagram of degree 3
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Note that φ (A) in equation (6) is a binary function resulting
in 0 for empty or impossible sets, and 1 otherwise. In equation
(8), u (X) represents the union of all objects of set X .
Equation (9) is the union of all objects of sets X1 and X2,
when it is not empty. From equation (8), It represents the total
ignorance, or the union of all objects part of the basic set.

The DSmH can also be viewed in an incremental way:
Step S1: if (θ1 ∩ θ2 ∈ DΘ

c ) , then continue to step S3,
otherwise the mass m1 (X1)m2 (X2) is added to the mass
of A = (θ1 ∩ θ2). Step S3: if

(
θ1 ∪ θ2 ∈ DΘ

c

)
, then continue

to step S2, otherwise, the mass m1 (X1)m2 (X2) is added to
the mass A = (θ1 ∪ θ2). Step S2: if

(
u (X1) ∪ u (X2) ∈ DΘ

c

)
,

then add the mass to It, otherwise, the mass m1 (X1)m2 (X2)
is added to the mass of A = (u (X1) ∪ u (X2)).

Complete examples of the DSmT are available in [6].

B. Electronic Support Measures (ESM)

An ESM is a passive sensor that captures incoming electro-
magnetic energy, which after treatment, reveals informations
about a detected target, such as direction (bearing), identity,
and allegiance of the target that emitted the radiation, together
with a belief about the identity and allegiance.

The belief information thus received is interpreted as a mass
for each of the three possible ESM declarations which are
friendly, neutral and hostile. In the following we will describe
them as θ1 (friendly), θ2 (neutral) and θ3 (hostile). Figure
(1) presents us the Venn diagram for a case without any
constraints.

While the ESM only gives us 3 choices for the allegiance,
the decision maker requires 5 possibilities for the allegiance
(according to STANAG 1241 - NATO Standardization Agree-
ment), which, in the natural language of the DSmT makes θ1∩
θ2 correspond to assumed friendly, with the other intersections
corresponding to suspect (involving an intersection with θ3).

1) DST precision problem: Figure (2) shows us the extent
of the limitation of the DST in our case showing it’s inability
to specify when a target is ’assumed friendly’ or ’suspect’. It
is equivalent to take DΘ

c = DΘ\2Θ, then all intersections are
constraints. Without this ability systems with DST will directly
switch between allegiance states avoiding some allegiance
possibilities. These inaccessible states can be accessed using
the DSmT.



Fig. 2. Venn diagram of degree 3 for DST

Fig. 3. Venn diagram for our simulated example

II. THEORY AND IMPLEMENTATION

The main challenges and difficulties encountered in this
research are found on the level of the effective, or optimal,
implementation of the DSmH combining rule. In the present
section, we will review critical points where an original
reasoning allowed the implementation of a combining rule
originally considered too complex [4], and of the implementa-
tion of the Generalized Pignistic Transformation (GPT). There
is also the issue of the oscillations which is addressed by
two different tools, the first one being the Florea’s Quasi-
Associativity method [9], the second one being a filter.

A. Constraints on simulation

Our simulation, as mentioned earlier, works with the basic
set described by figure (1), however we’ve added constraints
on sets {[θ1 ∩ θ3] , [θ1 ∩ θ2 ∩ θ3]}. So the simulated example’s
Venn diagram is represented by figure (3).

B. Combining rules

1) Generated ESM information: We seek to generate as
realistic ESM declarations as possible. The situation that
we have in mind is one where the ESM declaration could
have been caused by multiple targets trying to hide behind
each other within the angular accuracy of the ESM’s bearing
measurement. For example, if one were to track a friendly
target, ESM reports from any target within the bearing ac-
curacy of the ESM’s bearing measurement could be asso-
ciated to our friendly. Thus on average we could correctly
associate a friendly ESM declaration (say) 70% of the time
in a dense environment, with 15% sometimes resulting from
miss-association of a ”neutral”, and ”15% from a ”hostile”,
presumably all close in bearing, but far away in range.

Thus we have used a randomly generated ESM declaration
with a probability that the object θ1 is selected 70% of
the time for the first 50 iterations, out of 100 iterations
(with the remaining 30% split evenly between the other two
possibilities). From the 51th iteration to the last one, the object
θ3 is selected 70% of the time (again with the remaining 30%
split evenly between the other two possibilities). For each new
ESM declaration, the selected allegiance is given the mass of
0.70, with the rest of the mass being given to total ignorance
(It). In splitting up each Monte-Carlo run at the halfway point,
we can see the capability of each rule in identifying a true
change in allegiance.

2) Combining rule’s results: To insure a certain level of
computational safety, and to avoid the DST problem when the
conflict approaches the value of 1, we’ve applied a filter at the
output of all combining rules. That filter insures that the mass
given to the total ignorance (It) is never less than 2%.

3) Data format: The information is contained in the same
way described in [5]. Thus, we keep in memory only the
core of the bba of the BOEs (Bodies of Evidence). Each
core information is kept in a structure containing two objects,
one being the matrix of objects, the other one being the
vector of masses. Each one of the objects is kept as a
product of sums, intersections are kept as vectors, unions are
composed of multiple cells in a matrix, each cell being a
vector (intersection). Obviously the structure can be recursive
to support larger objects.

4) Reasoning frame generation: The generation of 2Θ and
DΘ is not required for the evaluation of the combining rules,
but are required for the evaluation of the generalized pignistic
transformation, so we have developed a way of generating 2Θ,
and from it, DΘ. However, the generation of DΘ work only
for Θ, with |Θ| = 3, which is enough for our case.

To generate 2Θ, we built a function that uses as parameter
the cardinal of Θ (3, in our case) and a factor. That factor
tells us which type of power set we want, 2Θ or 2Θ∩ . We use
that function to generate both, then take their intersection and
union to get DΘ. The cardinal sets the dimension of a matrix
of binary numbers that we generate in numerical ascending
order.

A second matrix is built, for which each line represents an
object. Each odd column is a singleton, and each even column
contains a code for a conjunction or a disjunction symbol.
The value contained in each odd column is a numerical value
coded by taking the value of a counter. That counter, counts
the number of odd columns and resets when changing line. To
know when to put in a value for each position, the function
reads the matrix of binary numbers. In that matrix, the line
n corresponds the object represented by the line n in the
second matrix. The column m of the matrix of binary numbers
represents the singleton θm.

After the second matrix is built, a treatment is made to
merge columns, put the objects in the appropriate format, sort
the information, and attribute temporary mass values.

5) Combining rule implementation: The implementation of
rules uses the system developed and presented in [5].



C. Classical Pignistic Transformation

The Classical Pignistic Transformation (CPT) is described
in [7] and modified in [1] is represented by:

Pr{A} =
∑

X∈2Θ

|X ∩ A|
|X | m (X) , ∀A ∈ 2Θ. (10)

In equation (10), |X | = n represents the classical cardinality
of a set X , and n, the number of elements in the set. The CPT
can be used to transform the bba into a probability function
in cases within 2Θ.

D. Generalized Pignistic Transformation

The Generalized Pignistic Transformation (GPT) as de-
scribed in [1] required modifications so its implementation
would be efficient. If one takes a look at the original equation
for the GPT, in section (7.3) of [1] we have:

Pr {A} =
∑

X∈DΘ

CM (X ∩ A)
CM (X)

m (X) , ∀A ∈ DΘ. (11)

For efficiency purposes, even if A is considered as a set part
of DΘ, only A ∈ 2Θ

∩ are used. This choice has been made to
avoid all the redundancy of evaluating pignistic probabilities
for all the sets part of DΘ, considering that we can evaluate
disjunctions by simple summations and subtractions as in the
probability theory. Theses evaluations can be accomplished
using Theorem 2.3.4 as seen in [10] (See example case
in equation (12)). It also had the effect of optimizing our
simulation system.

P (A ∪ B) = P (A) + P (B) − P (A ∩ B) (12)

For the same reason of efficiency, we’ve modified the range
of X . Rather than X ∈ DΘ, which is true, we have restricted
it to the core, K. Hence, it will be for the subset of DΘ which
includes only non zero masses. In other words, only the sets
given in input will be considered, since our system considers
only non empty objects. Note that the GPT requires to take
the decision only by choosing the object with the maximum
pignistic probability.

1) DSm cardinal: The DSm cardinal could be viewed as
presented in chapter 3 of [1]. It can also be viewed and
implemented as in the following algorithm. For E, CM (E)
can be considered as the sum of the number of effective
intersections with F , ∀F ∈ DΘ

∗ , where DΘ
∗ is the set DΘ

without constraints (DΘ
∗ = DΘ\DΘ

c ).
2) GPT implementation: We have implemented the GPT as

a function which takes into parameters the current core of Θ
and current constraints and then gives us a structure containing
a matrix of objects associated with a vector of computed
pignistic probabilities. The function evaluates at each call DSm
cardinal values for all possible sets of DΘ

∗ , and then proceeds
with equation (11). When required, a value of any given DSm
cardinal is not evaluated but looked up in the table of DSm
cardinal values previously built.

Fig. 4. Florea’s Quasi-Associativity

3) Power set cases resolved under the GPT: Our system has
only the GPT version of pignistic transformation implemented.
This is quite sufficient, since as demonstrated in both examples
of section (7.4) of [1], the GPT is able to work with Shafer’s
model cases considering DΘ

c = DΘ\2Θ. Since our system
works under DΘ, we need to add to the list of constraints the
list of all possible conjunctions so the GPT would work as the
CPT.

E. Quasi-Associativity (QA)

In our implementation, we’ve also experimented with an
algorithm to implement QA into DSmT. We’ve experimented
with the QA version presented in [9] and a modified version.
Florea’s algorithm exploits the fact that the conjunctive and
disjunctive rules respects the associativity property.

As we see in figure (4), Florea’s QA combines the in-
formation using the conjunctive rule until time (iteration) τ
where we have to make a decision. At that time, we use the
new information from time τ and combine it using the non-
associative rule with the combined output of the conjunctive
rule of time (τ − 1). Thus turning a non-associative rule to a
QA rule.

In [9], it is only shown that the result of such QA rule
respect the associativity property. As shown in figure (4), the
result of the QA rule at time τ is not used for subsequent
combinations, it is the result of the conjunctive rule that is
used in subsequently.

Two adaptations were developed from Florea’s QA for our
research. Since the disjunctive rule converges too quickly
toward total ignorance (It), it cannot be used as described
in [9] with both conjunction and disjunction as it would be
required by DSmT. So the first adaptation we had to make,
is the use of the conjunctive rule only. The second adaptation
is a modification to the first one. This time, instead of the
conjunctive rule, we’ll be using the DST’s combining rule.

1) QA implementation: Our implementation of Florea’s QA
is not exactly as described by figure (4). The difference is at
the point where the non-associative combining rule takes it’s
input information. Florea’s version, takes the input information
from the output of the conjunction at time τ , and combines



it to get the output at time τ . In our version, since the non-
associative combining rule version has it’s own conjunction
calculator module, we’ve taken the combined output of the
conjunctive rule of time (τ −1) as an input. The implemented
system can thus be, and stay, modular and scalable.

F. Filters and preconditioning filter

To avoid an output with a behavior having oscillations,
we’ve tried different types of filters. The first one is rather sim-
ple, but doesn’t have a theoretical basis other than smoothing
the graphical output. The filter applies an arithmetic mean on a
window of the output. In a second experimented filter is a little
more original, we’ve tried a filtering by window method on
the input mass information. Theoretically, this is based on the
hypothesis that the oscillations present in the output may be
caused by unprecise, and/or biased input. Thus, input filtering
would attenuate the effect of incorrect inputs.

1) Filters implementation: The implementation of the first
type of filter, as described in the previous section, is based on
the following equation:

mτ =

(
mτ−3+mτ−2+mτ−1

3

)
+ mτ0

2
, (13)

where mτ0 is the mass at time τ of the input, and mτ is the
filtered mass for time τ . The filter form was chosen arbitrarily
to smoothen the graphical output. We could’ve tried many
types of filter that kept coherent results and let the rule react
in a promptly to new information. One of the possibility was
to take a continuous window with an exponential weighting,
instead of a discrete window.

The implementation of the second type of filter counts the
number of occurrences of each of the possible singletons
in the last four iterations including the current one. If the
current singleton θa occurred more than 3 times out of the
4 possibilities, the mass of the bba of the BOE is kept intact.
If θa occurred only 2 times, it’s mass is reduced from 0.70 to
0.60, the balance always going to total ignorance (uncertainty).
If θa occurs only 1 time, the given mass for θa is 0.50, thereby
giving more mass to uncertainty, since the input information
hasn’t proven to be of high quality. Note that we shouldn’t
reduce the mass of θa to values lower than 0.5 since we don’t
want to give a mass too high for the ignorance.

III. RESULTS AND DECISION

This section presents us graphical outputs for a randomly
generated case where we obtained a rate of occurrence of
42.57% for both θ1 and θ3 (close to the expected (70 +
15)/2%), with θ2 having the rest of the occurrences (14.85%).
Figure (5) shows us which singleton was detected at which
time index. Note that in this section, all figures (5-13) have
the X-coordinate representing time index.

A. Cases using the Dempster-Shafer combining rule

1) Decision based on the DS rule: The figure (6) shows
the mass of θ1, (m(θ1)), as being the solid line. We can see
from figure (6) that Dempster-Shafer combination rule has a

Fig. 5. Occurrences of (θ1, θ2, θ3) from the ESM
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Fig. 6. m(θ1) and m(θ3) for DS rule
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fairly quick reaction when new input information arrives. Less
than ten iterations after the change of allegiance toward θ3,
the dashed-line (m(θ3)) becomes dominant. At the same time,
m(θ1) decreases to lower values. No mass ever reaches the
value of 1 because of the filter which guarantees a minimum
mass of 0.02 to total ignorance (It). However, even if the
combining result never reaches 1, it gives us a direction toward
a specific set with confidence.

2) Decision based on the GPT with DS rule: The dash-dot
line, in figure (7), representing the pignistic probability of θ2

(Pr(θ2)), is relatively important through all the time index
(which might possibly become a problem in other cases). The
solid-line represents Pr(θ1) and the dashed one, Pr(θ3). We

Fig. 7. Pignistic probabilities for (θ1, θ2, θ3) for GPT DS rule
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Fig. 8. m(θ1) and m(θ3) for DSmH
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Fig. 9. m(θ1 ∩ θ2) and m(θ2 ∩ θ3) for DSmH
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should also observe that sometimes
∑

i Pr(θi) ≥ 1 because
we must take into account the pignistic probability given to
intersections. Note that, as explained in the introduction, our
case requires such basic belief assignment. However, for cases
requiring empty intersection, contraints could be added to the
process. As it is required by the GPT decision process, we
should take the object with the most significant amount of
pignistic probability to make the decision at time τ . We can see
from the figure (7) that the decision would be taken correctly
through all the simulation.

B. Cases using the DSmH combining rule

1) Decision case based on the DSmH: Figures (8, 9) shows
masses of four objects for the DSmH combining rule case.
The first figure shows m(θ1) and m(θ3) for which there is
little activity with m(θ1) being higher than m(θ3) for the first
half of the simulation, both having little confidence. On the
other hand, the second figure, which shows us m(θ1 ∩ θ2),
(the solid-line), and m(θ2∩θ3), (the dashed-line), accumulates
most of the mass. m(θ1 ∩ θ2) is dominant in the first half of
the simulation. m(θ1∩θ2) and m(θ2∩θ3) represents ”assumed
friend” and ”suspect” allegiance state respectively. As we can
see, the DSmH has the same problem as the conjunctive rule:
accumulating the mass on conjunctions.

2) Decision case based on sum of masses for DSmH:
Figure (10) shows two curves, both represents sum of masses
including θi such as the sum m(θi) + m(θi ∩ θj) + m(θi ∩
θk) + m(θi ∪ θj) + m(θi ∪ θk) for i, j, k ∈ {1, 2, 3} where

Fig. 10. Filtered sum of masses including θ1 and θ3 for DSmH
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Fig. 11. Filtered θ1, θ3 and It for DSmH using Florea’s QA
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i �= j �= k.
Figure (10) shows that we can make decisions bases on

DSmH’s results after a few simple arithmetics. If we use a
threshold of 70% before making a decision, we can make
the correct decision most of the time. It should be noted that
procceding this way gives the curves of figure (10) which
ressembles the DS seen on figure (6). Using curves based
on summations using fewer objects lessens the decision’s
efficiency and increases the oscillation behavior of the output
after combination.

3) Decision based on Florea’s QA: Figure (11) gives the
filtered values for the mass given to θ1, θ3 and It for a
DSmH combination using Florea’s QA. Filtering the output
was necessary since the unfiltered version was too unstable
with an excessive oscillation preventing us from making any
decision.

In figure (11), we’re able to take a decision. However,
the confidence is lower than expected. Except a few times,
it never exceeds 70%. It should also be observed that with
this combining method, we obtained a high level of m(It)
as showed by the dash-dot line around mass of 30%. This
effect hasn’t been observed with the QA version using the DS
rule shown in the following section. Further research would
be required to investigate the source of the problem.

4) Decision based on Florea’s QA using DS rule: The
modified version of QA using the DS combining rule presented
in figure (12) has the same behavior as the DS combining
rule with an increased oscillatory behavior. The solid-line



Fig. 12. Filtered θ1, θ3 and It for DSmH with Florea’s QA using DS rule
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Fig. 13. m(θ1 ∩ θ2) and m(θ2 ∩ θ3) for DSmH with filtered ESM
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represents m(θ1), m(θ3) being the dashed one. The dash-dot
line near 0.02 represents the mass given to total ignorance
m(It).

5) Decision based on filtered ESM input: Figure (13)
should not be considered alone but in comparison with figure
(9) while looking at the ESM inputs shown in figure (5). We
can see that the more an event is isolated, the less that event’s
occurrence has an impact on the combining rule. As described
in section (II-F), the filter has the effect of reducing the mass
of locally rare events.

IV. CONCLUSIONS

As introduced earlier, our research covered the use of the
considered too complex Dezert-Smarandache Hybrid com-
bining rule for the evaluation of the state of allegiance of
detected targets by electronic support measures (ESM). We
have compared the behavior of the DSmT in such context
with the Dempster-Shafer rule and with different versions of
combination rules. We have explored the use of two types
of quasi-associativity algorithm (Florea’s QA [9], Florea’s
QA with DS rule), two types of filtering methods (on the
combining output’s masses, on ESM’s bba) and three types of
decisions (with masses, with sum of masses, using generalized
pignistic transformation).

A. Results review

1) Using the Dempster-Shafer combining rule: As we have
seen the DS combining rule enables us to take directly from

the output mass an efficient and quick decision. By quick,
we mean that it is easy to modify the decision quickly after a
change of allegiance. The rule is also resistant to random errors
in detection keeping the decision right as it should. When
we base our decision on the pignistic probability function the
decision is taken correctly even with high level of pignistic
probability given to some objects.

2) Using the Dezert-Smarandache hybrid rule: With a
threshold of 70%, we are unable to make a decision based on
bba. In rare cases, we can do so with intersections, however,
even in those cases, the confidence isn’t very high. However,
when we base the decision on sum of masses as described in
section (III-B.2), we are able to make a good decision. Since
summed masses with this method adds masses from different
objects, we are unable to choose precisely one of them.

3) DSmH using Florea’s QA: As in the non-QA version of
the DSmH rule, we are faced with a level of confidence not
high enough to make a decision based on a threshold of 70%.
If we consider a lower threshold, we are able to make the
right decision. Note that even filtered, the output has quite an
oscillatory behavior. A stronger filter might be recommanded.
However, we must consider the side effects of such filters,
which would slow down the reaction time.

4) DSmH using Florea’s QA with DS rule: This version
of the Florea’s QA uses the DS combining rule instead of
the conjunctive rule. As a consequence, the modified DSmH
behaves quite like the DS rule with little oscillation of the
output. A filter at the output is already in use, a stronger one
could be tried. This version of DSmH behaves quite well,
making the right decision at the right time and changing it’s
decision in 10 iterations from a change of allegiance.

5) DSmH using a filter on ESM’s bba: In the cases where
we used a filter on ESM’s basic belief assignment, we’ve ob-
served a better reaction to locally rare singletons occurrences
as it was expected. This filter attenuates the effect of events
that occurs rarely in a fixed-size filtering window. Further
research should be done to find out how well and how much
such filter can help.

B. Encountered problems to investigate

1) With the DSm hybrid rule: The DSmH seems unable to
concentrate a wide proportion of the mass to a specific object.
Most of the time, it has divided the confidence in too many
objects to get a high enough confidence on a single one. To
palliate to this problem, we’ve tried to add the mass of different
objects as described earlier, in section (III-B.2). However, this
method has the problem of removing the advantage of using
the DSmH rule, which was to get a clearer assessment on a
target’s allegiance. A possible method to investigate would be
to lower the decision threshold when using the DSmH.

2) With DSmH using Florea’s QA: As said earlier, the
DSmH case using Florea’s QA doesn’t give high confidence
to θ1 nor θ3. A careful look at figure (11), shows that a great
level of mass is given to ignorance. We haven’t found errors
or mistakes in the implementation of the rule, so we may have
to investigate further the rule’s behavior to find the cause.



C. Possible future works on the DSmT

Our work did not cover comparative analysis of the com-
plexity of different methodology, nor the possibility of using
different decision process than the use of the GPT. Work
should be done in this area to be able to completely assess
the efficiency of a complete system.

There are two main possible avenues to take for future
works on the topic. One is the possibility of comparing DS
and DSmH to other combining rules in the same study context.
There is also the possibility of re-evaluating different versions
of Florea’s QA, different types of filters or the presented ones
but with different parameters.

More work could be done at the decision level to evaluate
the rate of successful decisions. Obviously, we should also
explore different simulation runs, thus trying different distri-
butions of bba.
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