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A Neutrosophic Description Logic

Haibin Wang, André Rogatko, Florentin Smarandache and Rajshekhar Sunderraman

Abstract— Description Logics (DLs) are appropriate, widely
used, logics for managing structured knowledge. They allow
reasoning about individuals and concepts, i.e. set of individuals
with common properties. Typically, DLs are limited to dealing
with crisp, well defined concepts. That is, concepts for which the
problem whether an individual is an instance of it is a yes/no
question. More often than not, the concepts encountered in the
real world do not have a precisely defined criteria of membership:
we may say that an individual is an instance of a concept only
to a certain degree, depending on the individual’s properties.
The DLs that deal with such fuzzy concepts are called fuzzy
DLs. In order to deal with fuzzy, incomplete, indeterminate and
inconsistent concepts, we need to extend the capabilities of fuzzy
DLs further.

In this paper we will present an extension of fuzzy ALC,
combining Smarandache’s neutrosophic logic with a classical DL.
In particular, concepts become neutrosophic (here neutrosophic
means fuzzy, incomplete, indeterminate and inconsistent), thus,
reasoning about such neutrosophic concepts is supported. We will
define its syntax, its semantics, describe its properties.

Index Terms— neutrosophic logic, description logic, neutro-
sophic description logic, fuzzy description logic

I. INTRODUCTION

The modelling and reasoning with uncertainty and impreci-
sion is an important research topic in the Artificial Intelligence
community. Almost all the real world knowledge is imperfect.
A lot of works have been carried out to extend existing
knowledge-based systems to deal with such imperfect infor-
mation, resulting in a number of concepts being investigated, a
number of problems being identified and a number of solutions
being developed [1], [2], [3], [4].

Description Logics (DLs) have been utilized in building a
large amount of knowledge-based systems. DLs are a logical
reconstruction of the so-called frame-based knowledge repre-
sentation languages, with the aim of providing a simple well-
established Tarski-style declarative semantics to capture the
meaning of the most popular features of structured represen-
tation of knowledge. A main point is that DLs are considered
as to be attractive logics in knowledge based applications as
they are a good compromise between expressive power and
computational complexity.

Nowadays, a whole family of knowledge representation
systems has been build using DLs, which differ with respect
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to their expressiveness, their complexity and the completeness
of their algorithms, and they have been used for building a
variety of applications [5], [6], [7], [8].

The classical DLs can only deal with crisp, well defined
concepts. That is, concepts for which the problem whether
an individual is an instance of it is a yes/no question. More
often than not, the concepts encountered in the real world do
not have a precisely defined criteria of membership. There
are many works attempted to extend the DLs using fuzzy
set theory [9], [10], [11], [12], [13], [14]. These fuzzy DLs
can only deal with fuzzy concepts but not incomplete, inde-
terminate, and inconsistent concepts (neutrosophic concepts).
For example, ”Good Person” is a neutrosophic concepts, in
the sense that by different subjective opinions, the truth-
membership degree of tom is good person is 0.6, and the
falsity-membership degree of tom is good person is 0.6, which
is inconsistent, or the truth- membership degree of tom is good
person is 0.6, and the falsity-membership degree of tom is
good person is 0.3, which is incomplete.

The set and logic that can model and reason with fuzzy,
incomplete, indeterminate, and inconsistent information are
called neutrosophic set and neutrosophic logic, respectively
[15], [16]. In Smarandache’s neutrosophic set theory,a neutro-
sophic set A defined on universe of discourse X, associates
each element x in X with three membership functions: truth-
membership function T4 (), indeterminacy-membership func-
tion I4(x), and falsity-membership function F4(x), where
Ta(z),Ia(z), Fa(z) are real standard or non-standard subsets
of ]70,17[, and Ta(z),Ia(x), Fa(x) are independent. For
simplicity, in this paper, we will extend Straccia’s fuzzy DLs
[9], [11] with neutrosophic logic, called neutrosophic DLs,
where we only use two components T4(x) and F4(x), with
Ta(x) € [0,1], Fa(z) € [0,1],0 < Ta(z) + Fa(z) < 2. The
neutrosophic DLs is based on the DL ALC, a significant and
expressive representative of the various DLs. This allows us to
adapt it easily to the different DLs presented in the literature.
Another important point is that we will show that the addi-
tional expressive power has no impact from a computational
complexity point of view. The neutrosophic ALC is a strict
generalization of fuzzy ALC, in the sense that every fuzzy
concept and fuzzy terminological axiom can be represented
by a corresponding neutrosophic concept and neutrosophic
terminological axiom, but not vice versa.

II. A Quick Look Tto Fuzzy ALC

We assume three alphabets of symbols, called atomic
concepts (denoted by A), atomic roles (denoted by R) and
individuals (denoted by a and b). !

'Through this work we assume that every metavariable has an optional
subscript or superscript.

305



A concept (denoted by C or D) of the language ALC is
built out of atomic concepts according to the following syntax
rules:

(top concept)
1|  (bottom concept)
A|  (atomic concept)

CMD| (concept conjunction)
CUD| (concept disjunction)
=C|  (concept negation)
VR.C|  (universal quantification)
JR.C'  (existential quantification)

Fuzzy DL extends classical DL under the framework of
Zadeh’s fuzzy sets [17].A fuzzy set S with respect to an
universe U is characterized by a membership function pg :
U — [0, 1], assigning an S-membership degree, 15 (u), to each
element v in U. In fuzzy DL, (i) a concept C, rather than being
interpreted as a classical set, will be interpreted as a fuzzy set
and, thus, concepts become fuzzy; and, consequently, (ii) the
statement “a is C”, i.e. C'(a), will have a truth-value in [0, 1]
given by the degree of membership of being the individual a
a member of the fuzzy set C.

A. Fuzzy Interpretation
A fuzzy interpretation is now a pair Z = (A%, 1), where
A7 is, as for the crisp case, the domain, whereas . is an
interpretation function mapping
1) individual as for the crisp case, i.e. aZ # bZ, if a # b;
2) a concept C into a membership function CZ : AT —
[0,1];
3) arole R into a membership function RZ : AT x AT —
[0,1].
If C is a concept then C7 will naturally be interpreted as the
membership degree function of the fuzzy concept (set) C' w.r.t.
T, i.e. if d € AT is an object of the domain AZ then CZ(d)
gives us the degree of being the object d an element of the
fuzzy concept C under the interpretation Z. Similarly for roles.
Additionally, the interpretation function .~ has to satisfy the
following equations: for all d € A7,

TZ(d) = 1

17%(d) = 0

(cnD)X(d) = min{C%(d),D%(d)}

(CuD)YI(d) = max{CZ(d),DT(d)}

(=C)* () = 1-C%(d)

(VR.C)E(d) = infycaz{max{l - RI(d,d),CT(d)}}
(BRC)E(d) = supyeaz{min{RI(d,d"),CT(d")}}.

We will say that two concepts C' and D are said to be
equivalent (denoted by C =2 D) when C? = D7? for all inter-
pretation Z. As for the crisp non fuzzy case, dual relationships
between concepts hold: e.g. T = =1, (CMD) = —(=CU-D)
and (VR.C) = =(3R.-C).

B. Fuzzy Assertion

A fuzzy assertion (denoted by 1)) is an expression having
one of the following forms (& > n) or (a < m), where
« is an ALC assertion, n € (0,1] and m € [0,1). From a

semantics point of view, a fuzzy assertion (o < n) constrains
the truth-value of a to be less or equal to n (similarly
for >). Consequently, e.g. ( (Video I JAbout.Basket)(v1)
> 0.8) states that video v1 is likely about basket. Formally,
an interpretation Z satisfies a fuzzy assertion (C(a) > n)
(resp. {R(a,b) > n)) iff CT(a®) > n (resp. R*(a®,b?) >
n). Similarly, an interpretation 7 satisfies a fuzzy assertion
(C(a) < n) (resp. (R(a,b) < n)) iff CT(aT) < n (resp.
RZ(a®,b%) < n). Two fuzzy assertion v; and vy are said to
be equivalent (denoted by 11 =2 1) iff they are satisfied by
the same set of interpretations. An atomic fuzzy assertion is a
fuzzy assertion involving an atomic assertion (assertion of the
form A(a) or R(a,b)).

C. Fuzzy Terminological Axiom

From a syntax point of view, a fuzzy terminological axiom
(denoted by 7 is either a fuzzy concept specialization or a
fuzzy concept definition. A fuzzy concept specialization is
an expression of the form A < C, where A is an atomic
concept and C'is a concept. On the other hand, a fuzzy concept
definition is an expression of the form A :~ C, where A
is an atomic concept and C' is a concept. From a semantics
point of view, a fuzzy interpretation 7 satisfies a fuzzy concept
specialization A < C' iff

vd e AT, AT (d) < C*(d), (1)
whereas 7 satisfies a fuzzy concept definition A :~ C iff

Vd € AT, AT(d) = C*(d). )

D. Fuzzy Knowlege Base, Fuzzy Entailment and Fuzzy Sub-
sumption

A fuzzy knowledge base is a finite set of fuzzy assertions
and fuzzy terminological axioms. >4 denotes the set of fuzzy
assertions in X, Y denotes the set of fuzzy terminological
axioms in X (the terminology), if X7 = () then ¥ is purely
assertional, and we will assume that a terminology X7 is such
that no concept A appears more than once on the left hand
side of a fuzzy terminological axiom 7 € X7 and that no
cyclic definitions are present in 2.

An interpretation Z satisfies (is a model of) a set of fuzzy X
iff 7 satisfies each element of . A fuzzy KB X fuzzy entails
a fuzzy assertion 1 (denoted by ¥ =4 ) iff every model of
> also satisfies .

Furthermore, let X1 be a terminology and let C, D be two
concepts. We will say that D fuzzy subsumes C w.rt. Lp
(denoted by C =5, D) iff for every model Z of X, Vd €
AT C%(d) < D*(d) holds.

III. A NEUTROSOPHIC DL

Our neutrosophic extension directly relates to Smaran-
dache’s work on neutrosophic sets [15], [16]. A neutrosophic
set S defined on universe of discourse U, associates each
element v in U with three membership functions: truth-
membership function T's(u), indeterminacy-membership func-
tion Ig(u), and falsity-membership function Fg(u), where
Ts(u), Is(u), Fs(u) are real standard or non-standard subsets
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of |70,1%[, and Ts(u),Is(u), Fs(u) are independent. For
simplicity, here we only use two components Ts(u) and
Fs(u), with Ts(u) € [0,1], Fs(u) € [0,1],0 < Ts(u) +
Fs(u) < 2. It is easy to extend our method to include
indeterminacy-membership function. Ts(u) gives us an esti-
mation of degree of u belonging to U and Fgs(u) gives us an
estimation of degree of u not belonging to U. Ts(u) + Fs(u)
can be 1 (just as in classical fuzzy sets theory). But it is not
necessary. If Ts(u)+ Fs(u) < 1, for all u in U, we say the set
S is incomplete, if Ts(u)+ Fs(u) > 1, for all u in U, we say
the set S is inconsistent. According to Wang [16], the truth-
membership function and falsity-membership function has to
satisfy three restrictions: for all © € U and for all neutrosophic
sets S1, S2 with respect to U

Tsyns, (u) = min{Ts, (v), Ts, (u)},
Fsins, (u) = max{Fg, (v), Fs,(u)},
Ts,us, (u) = max{Ts, (u), Ts, (u)},
Fs,us, (u) = min{Fs, (u), Fs, (u) }
Tg;(u) = Fs, (u), Fg (u) = Ts, (u),

where S is the complement of S; in U. Wang [16] gives
the definition of N-norm and N-conorm of neutrosophic sets,
min and max is only one of the choices. In general case, they
may be the simplest and the best.

When we switch to neutrosophic logic, the notion of degree
of truth-membership Ts(u) of an element u € U w.rt. the
neutrosophic set S over U is regarded as the truth-value
of the statement “u is S”, and the notion of degree of
falsity-membership Fg(u) of an element v € U w.rt. the
neutrosophic set S over U is regarded as the falsity-value of
the statement “u is S”. Accordingly, in our neutrosophic DL,
(7)) a concept C, rather than being interpreted as a fuzzy set,
will be interpreted as a neutrosophic set and, thus, concepts
become imprecise (fuzzy, incomplete, and inconsistent); and,
consequently, (ii) the statement “a is C”, i.e. C(a) will have a
truth-value in [0, 1] given by the degree of truth-membership
of being the individual ¢ a member of the neutrosophic set
C' and a falsity-value in [0, 1] given by the degree of falsity-
membership of being the individual a not a member of the
neutrosophic set C.

A. Neutrosophic Interpretation

A em neutrosophic interpretation is now a tuple 7 =
(AT, ()T, - |5, ] - |7), where AT is, as for the fuzzy case,
the domain, and

1) (-)% is an interpretation function mapping

a) individuals as for the fuzzy case, i.e. aZ # b%, if

a # b;
b) a concept C' into a membership function C% :
AT —[0,1] x [0,1];
¢) arole R into a membership function RZ : AT x
AT — [0,1] x [0,1].
2) |-|* and |- |/ are neutrosophic valuation, i.e. | -|* and
||/ map

a) every atomic concept into a function from A7 to
[0, 1];

b) every atomic role into a function from A% x AT
to [0, 1].

If C is a concept then CT will naturally be interpreted as a
pair of membership functions (|C|?,|C|/) of the neutrosophic
concept (set) C w.rt. Z, ie. if d € AT is an object of the
domain AZ then C7%(d) gives us the degree of being the object
d an element of the neutrosophic concept C' and the degree of
being the object d not an element of the neutrosophic concept
C under the interpretation Z. Similarly for roles. Additionally,
the interpretation function (-)7 has to satisfy the following
equations: for all d € AT,

TL(d) = (1,0
17(d) = (0,1
(€enb)yf(d = (min{|C|*(d),|D[*(d)},
max{|C|#(d), |D|*(d)})
(CuD)E(a) (max{|C|*(d), |D|*(d)},
min{|C|¥(d), |D|* (d)})
(=C)*(d) = (ol @),|ch)
(VR.OYE() = (infycaz{max{|R|/(d,d),|C|"(d)}},
supy oz {min{|R|(d, d'), |C| (d')}})
(BROYE(d) = (supyeaz{min{|R|'(d,d"),|C|"(d)}},

inf e a7 {max{|R|/ (d, '), |C|7 (d')}})

Note that the semantics of VR.C

(VR.CYZ(d) = (inf e ar {max{|Rf (d,d),|CI(d)}},
supgeaz {min{|R|(d,d"), |C|1 (d)}})

is the result of viewing VR.C' as the open first order formula
Vy.—Fr(z,y) V Fo(y), where the universal quantifier V is
viewed as a conjunction over the elements of the domain.
Similarly, the semantics of IR.C’

(FR.C)*(d) = (supgeaz{min{|R[*(d. d"),|C|*(d")}}.
infyeaz {max{| R (d, d'), |C|/ (d')}})

is the result of viewing JR.C' as the open first order formula
Jy.Fr(z,y) A Fo(y) and the existential quantifier 3 is viewed
as a disjunction over the elements of the domain. Moreover,
||t and | - |/ are extended to complex concepts as follows:
for all d € AT

CAD[d) = min{|C|*(d), |D](d)}

lcnDlfd) = max{|C|f(d), DI (d)}
ICUD|d) = max{|C|'(d),|D|'(d)}
)CUDIf(d) = min{|CIf(d),|D}f (d)}

Ot ) = [ (d)

-Clf @) = [Cld)

VROYd) = infyepr{max{|R(d.d)||C]"(d)}}
VRO (d) =  supgeaz{min{|R(dd)[",|C) (d)}}
BRCI'(d) =  supgeaz{min{|R(dd)[",|C|'(d)}}
BRCO(d) = infyepz{max{|R(d.d),|C)f (d)}}

We will say that two concepts C' and D are said to be
equivalent (denoted by C' =" D) when C* = D7? for all
interpretation Z. As for the fuzzy case, dual relationships
between concepts hold: e.g. T =" -1, (CT1 D) =" —~(-CU
=-D) and (VR.C) 2" =(3R.-C).
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B. Neutrosophic Assertion

A neutrosophic assertion (denoted by ¢) is an expression
having one of the following form {(« :> n,< m) or (a :<
n,> m), where « is an ALC assertion, n € [0,1] and
m € [0,1]. From a semantics point of view, a neutrosophic
assertion (o :> n,< m) constrains the truth-value of « to
be greater or equal to n and falsity-value of o to be less
or equal to m (similarly for {« :< n,> m)). Consequently,
e.g. {(Poll M ISupport.War x)(pl) :> 0.8, < 0.1) states that
poll p1 is close to support War_x. Formally, an interpretation
7 satisfies a neutrosophic assertion (o :> n,< m) (resp.
(R(a,b) :> n,< m)) iff |C|*(a®) > n and |C|f(a?) < m
(resp. |R|*(a%,b%) > n and |R|f(a%,b%) < m). Similarly,
an interpretation Z satisfies a neutrosophic assertion (o :<
n,> m) (resp. (R(a,b) :< n,> m)) iff |C|*(a) < n and
|IC|f(a%) > m (resp. |R|*(a®,b?) < n and |R|/(aZ,b?) >
m). Two fuzzy assertion 1 and @9 are said to be equivalent
(denoted by 1 =" o) iff they are satisfied by the same set of
interpretations. Notice that (=C(a) :> n, < m) 2" (C(a) :<
m,> n) and (-C(a) :< n,> m) =" (C(a) :> m,< n).
An atomic neutrosophic assertion is a neutrosophic assertion
involving an atomic assertion.

C. Neutrosophic Terminological Axiom

Neutrosophic terminological axioms we will consider are
a natural extension of fuzzy terminological axioms to the
neutrosophic case. From a syntax point of view, a neutrosophic
terminological axiom (denoted by 7) is either a neutrosophic
concept specialization or a neutrosophic concept definition. A
neutrosophic concept specialization is an expression of the
form A <™ C, where A is an atomic concept and C is a
concept. On the other hand, a neutrosophic concept definition
is an expression of the form A :~" C, where A is an
atomic concept and C' is a concept. From a semantics point
of view, we consider the natural extension of fuzzy set to the
neutrosophic case [15], [16]. A neutrosophic interpretation Z
satisfies a neutrosophic concept specialization A <™ C' iff

vd e AT, |Al"(d) < |C['(d), |A[/ (d) = [C)/ (d), (3)

whereas 7 satisfies a neutrosophic concept definition A :~™ C'
iff

vd € A7 A]'(d) = |CHd), AV (@) = | (@), @)

D. Neutrosophic Knowledge Base, Neutrosophic Entailment
and Neutrosophic Subsumption

A neutrosophic knowledge base is a finite set of neu-
trosophic assertions and neutrosophic terminological axioms.
As for the fuzzy case, with ¥4 we will denote the set of
neutrosophic assertions in >, with X7 we will denote the set of
neutrosophic terminological axioms in X (the terminology), if
Y1 = () then X is purely assertional, and we will assume that a
terminology Y7 is such that no concept A appears more than
once on the left hand side of a neutrosophic terminological
axiom 7 € Xp and that no cyclic definitions are present in
.

An interpretation Z satisfies (is a model of) a neutrosophic
>, iff 7 satisfies each element of ¥. A neutrosophic KB X
neutrosophically entails a neutrosophic assertion ¢ (denoted
by X E" ) iff every model of X also satisfies ¢.

Furthermore, let X1 be a terminology and let C, D be two
concepts. We will say that D neutrosophically subsumes C'
w.rt. X (denoted by C =%, D) iff for every model 7 of
Sr, Vd € A% |C|/(d) < |D|(d) and |C|/(d) > |D|’(d)
holds.

Finally, given a neutrosophic KB ¥ and an assertion «, we
define the greatest lower bound of a w.r.t. X (denoted by
glb(X,a)) to be (sup{n : ¥ " (o :> n,< m)},inf{m :
Y E" (a:>n,< m)}). Similarly, we define the least upper
bound of « with respect to ¥ (denoted by lub(X, «)) to be
(inf{n : ¥ E" (a :<n,>m)},sup{m : ¥ E" (o :< n,>
m)}) (sup® = 0,inf @ = 1). Determing the lub and the glb is
called the Best Truth-Value Bound (BTVB) problem.
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