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1. Introduction

Many practical problems involve data that contain uncertainities. These un-
certainities may be dealt with existing theories such as fuzzy set theory [3, 13] and
rough set theory [10]. In 1999, Molodstov [9] pointed out the difficulties of these
theories and he posited the concept of soft set theory. Maji et. al [6] made a the-
oretical study of soft sets in 2003. In 2014, Renukadevi et. al [11] characterized
some of the properties of soft sets and soft basis in terms of soft topology. Soft set
theory has rich potential for applications. In [5], Maji et. al presented an appli-
cation of soft sets in decision making problems. In the year 2005, Chen et. al [1]
pointed out the problems in [5] and introduced a new concept called parameteri-
zation reduction. In order to overcome these problems of suboptimal choice in [1],
Kong et. al [4] introduce the concept of normal parameter reduction for soft sets
and fuzzy soft sets. Han et. al gave the intm − intn decision making algorithm for
soft sets in [2]. In 2012, Maji [7] gave an application of neutrosophic soft sets in
decision making problem. Also, he studied the properties of neutrosophic soft sets
in [8] and gave a decision making algorithm using comparision matrix. As there is
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no characterization for normal parameter reduction, we try to characterize normal
parameter reduction of soft sets. Also, Wang et. al [12] introduced the concept of
reduct in fuzzy information system. We observe that the reduct defintion given by
Wang et. al did not maintain the optimal choice of objects and we prove this by
giving a counter example. Also, we derive a conclusion that every fuzzy information
system is a fuzzy soft set. If the parameter set is large in size, the process of finding
normal parameter reduction becomes a complicated one. So we try to prove the im-
age of a normal parameter reduction is a normal parameter redution. We introduce
the concept of consistency and prove that the image and inverse image of normal
parameter reduction is a normal parameter reduction. Using this characterization,
instead of finding the normal parameter reduction of a soft set with large parameter
set, it is enough to find the normal parameter reduction of soft set with less number
of parameters whereas there is a consistency map between these soft sets.

Definition 1.1 ([9]). A pair S = (F,E) is called a soft set over U if and only if
F is a mapping of E into the set of all subsets of U. That is, F : E → P (U) where
P (U) is the power set of U. In other words, the soft set is a parameterized family of
subsets of U. For every ϵ ∈ E,F (ϵ) may be considered as the set of ϵ-approximate
elements of the soft set (F,E).

Definition 1.2 ([7]). Let U be an initial universe set and E be a set of parameters
(which are fuzzy words or sentences involving fuzzy words). Let F (U) denotes the
set of all fuzzy sets of U. Let A ⊆ E. A pair (FA, A) is called a fuzzy soft set over U
where FA is a mapping given by FA : A → F (U).

Suppose U = {u1, u2, ...un}, E = {e1, e2, ...em} and (F,E) is a soft set (or fuzzy
soft set) with tabular representation. Define fE(ui) = Σ

j
uij where uij are the entries

in the soft set (or fuzzy soft set) tabular representation. For soft set (or fuzzy soft set)
(F,E), U = {u1, u2, . . . , un}, denote cE = {{u1, u2, . . . , ui}f1 , {ui+1, ui+2, . . . , uj}f2 ,
. . . , {uk, uk+1, . . . , un}fs} as a partition of objects in U which partitions according
to the value of fE(.) based on indiscernibility relation and cE is called decision
partition [4] where for the subclass {uv, uv+1, . . . , uv+w}fi , fE(uv) = fE(uv+1) =
· · · = fE(uv+w) = fi and f1 ≥ f2 ≥ · · · ≥ fs, s is the number of subclasses. Objects
with the same value of fE(ui) are partitioned into a same subclass. If there exists

a subset A = {e′

1, e
′

2, . . . , e
′

p} ⊂ E satisfying fA(u1) = fA(u2) = · · · = fA(un), then
A is dispensable [4]. Otherwise, A is indispensable [4]. A subset A of E is a normal
parameter reduction [4] of the soft set(or fuzzy soft set) (F,E) if A is indispensable
and fE−A(u1) = fE−A(u2) = · · · = fE−A(un), that is to say E − A is the maximal
subset of E such that the value fE−A(.) keeps constant. Clearly, the partitions of
objects have not been changed after normal parameter reduction. If CE−G = CE ,
then E −G is called pseudo parameter reduction [4] of E.

Definition 1.3 ([12]). Let A, B be two universes and i : A → B a mapping from A
to B. For each x ∈ A, the equivalence class is defined by [x]i = {y ∈ A|i(x) = i(y)}.
Then {[x]i|x ∈ A} is a partition on A with respect to i.

Lemma 1.4 ([12], Theorem 4.4). Let (U,C) be a fuzzy information system, (V, f(C))
an f− induced fuzzy information system, f a consistency-based homomorphism from
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(U,C) to (V, f(C)) and P ⊆ C. Then P is a reduct of C if and only if f(P ) is a
reduct of f(C).

2. Normal parameter reduction of soft sets

The normal parameter reduction plays an important role in attribute reduction.
In 2008, Kong et. al [4] introduced the concept of pseudo parameter reduction and
normal parameter reduction. But they did not find any relationship between these
two parameter reductions. As there is no characterization for normal parameter
reduction, we try to give some characterizations of normal parameter reduction for
soft sets. In this section, we prove that every normal parameter reduction is a pseudo
parameter reduction but not conversely. Also, we characterize the normal parameter
reduction of soft sets using equivalent decision partition, NA and VA where A is the
set of parameters.

Proposition 2.1. Normal parameter reduction of (F,E) is a pseudo parameter
reduction of (F,E).

Proof. Suppose A is a normal parameter reduction of E. Then E −A is a maximal
subset of E such that fA(ui) ̸= fA(uj) for some i, j and fE−A(ui) = fE−A(uj) for
all i, j. Since fE−A(ui) = fE−A(uj) for all i, j, after removing E − A, the decision
partition value of CE will be changed but the decision partition of CE will not
be changed. Therefore, CE = CA. Hence A is a pseudo parameter reduction of
(F,E). □

The converse of the above Proposition 2.1 need not be true as shown by the
following Example 2.2.

Example 2.2. Consider the universe U = {u1, u2, u3, u4, u5} is the set of houses and
the parameter set for these houses is E = {e1 = beautiful, e2 = cheap, e3 = green sur-
roundings, e4 = good water supply, e5 = wooden}. The soft set of (F,E) is given by
(F,E) = {(e1, {u1, u2, u3}), (e2, {u2, u4, u5}), (e3, {u1}), (e4, {u1, u2, u4}), (e5, {u2, u3}}.
The tabular representation for this soft set is given below.

U e1 e2 e3 e4 e5 fE(.)
u1 1 0 1 1 0 3
u2 1 1 0 1 1 4
u3 1 0 0 0 1 2
u4 0 1 0 1 0 2
u5 0 1 0 0 0 1

Table 1

The decision partition of E is CE = {{u2}4, {u1}3, {u3, u4}2, {u5}1}. Let A =
{e1, e3, e4}. Then the decision partition ofA is CA = {{u2}2, {u1}3, {u3, u4}1, {u5}0}.
Therefore, CE = CA. Hence A is a pseudo parameter reduction. But fE−A(u1) =
0 ̸= 2 = fE−A(u2). Therefore, A is not a normal parameter reduction of (F,E).

Remark 2.3. Consider the soft set given in Example 2.2. For the parameter set
E, the maximum of fE(.) is fE(u2) = 4. Therefore, the optimal choice with respect
to E is u2. But for the parameter set A, the maximum of fA(.) is fA(u1) = 3.
Therefore, the optimal choice with respect to A is u1. Thus, A does not maintain
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the optimal choice object of E whereas A is a pseudo parameter reduction. Hence
pseudo parameter reduction does not maintain the optimal choice of objects. So
pseudo parameter reduction is not the optimum one.

Since the pseudo parameter reduction is not optimum, we try to find a condition
for which the pseudo parameter reduction becomes normal parameter reduction. For
this, we introduce a new concept namely, equivalent decision partition.

Definition 2.4. Let B ⊆ A and the decision partition of A and B be CA and CB

respectively. If CA = CB and fAi − fAj = fBi − fBj for all i and j, then CA and
CB are equivalent.

Let (F,E) be a soft set over U. Denote VE = {u ∈ U |fE(u) = ∨ui∈UfE(ui)} [2].
Also, NE = {fE(ui)|ui ∈ U}. The following Theorem 2.5 gives a characterization
for normal parameter reduction of soft sets.

Theorem 2.5. For the soft set (F,E), the following hold.

a. A is a normal parameter reduction of (F,E).
b. A is a minimal subset of E such that CA and CE are equivalent.
c. E −A is a maximal subset of E such that NE−A is a singleton set and NE

and NA are equivalent.
d. E −A is a maximal subset of E such that VA = VE and VE−A = U.

Proof. (a) ⇒ (b). Suppose A is a normal parameter reduction of (F,E). Then
E − A is a maximal subset of E such that fA(ui) ̸= fA(uj) for some i and j and
fE−A(ui) = fE−A(uj) for all i and j. Since fE−A(ui) = fE−A(uj) = constant (say,
c), fE(ui) = fE−A(ui)+fA(ui) = fA(ui)+c. Therefore, the decision partition of CA

and CE are equal and fEi − fEj = fAi + c− fAj − c = fAi − fAj . Since E − A is a
maximal subset of E such that fE−A(ui) = fE−A(uj) for all i and j, A is a minimal
subset of E such that CA and CE are equivalent.
(b) ⇒ (c). Since CE = CA and E is finite, fEi and fAi are equivalent. Therefore,
NE and NA are equivalent. Since fE(ui) = fE−A(ui)+ fA(ui), fEi = fAi + f(E−A)i .
Also since fEi − fEj = fAi − fAj , f(E−A)i = f(E−A)j . Thus, fE−A(ui) = constant
(say, c) for all ui ∈ U. Since A is a minimal subset of E such that CA and CE are
equivalent, E −A is a maximal subset of E such that NE−A = {c}.
(c) ⇒ (d). Since NE−A = {c}, fE−A(ui) = c for all ui ∈ U. Hence VE−A = U.
Also, since fE(ui) = fE−A(ui) + fA(ui) = fA(ui) + c, sup {fE(ui)|ui ∈ U} =
sup {fA(ui)|ui ∈ U}. Hence VA = VE .
(d) ⇒ (a). Since VE−A = U, fE−A(ui) = fE−A(uj) for all i and j. Also, since E−A
is a maximal subset of E such that VE−A = U, VE ̸= U. Therefore, VA ̸= U and
hence there exist ui ∈ U such that fA(ui) < ∨u∈UfA(u). Let ∨u∈UfA(u) = uj .
Then fA(ui) < fA(uj) and hence fA(ui) ̸= fA(uj). Thus, A is a normal parameter
reduction of (F,E). □

3. Drawbacks in [12]

In 2014, Wang et. al [12] gave the reduct definition for fuzzy information system.
We observe that the reduct definition in [12] do not retain the optimal choice of
objects. In this section, we give an example to show that the reduct definition given
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by Wang et. al [12] does not give the optimal choice.
In [12], Wang et. al defined lower reduct and the upper reduct as “∩P = ∩C and
∩P ⊂ ∩(P − {Ai}) for all Ai ∈ P” and “∪P = ∪C and ∪P ⊂ ∪(P − {Ai}) for all
Ai ∈ P”, respectively. But for all Ai ∈ P,∪P ⊇ ∪(P − {Ai}). So the upper reduct
definition given by Wang et. al need not be true in general. Also, Wang et. al use the
definitions of lower reduct and upper reduct as “∩P = ∩C and ∩P ̸= ∩(P − {Ai})
for all Ai ∈ P” and “∪P = ∪C and ∪P ̸= ∪(P −{Ai}) for all Ai ∈ P”, respectively,
for proving Theorem 4.4 and Example 4.1 in [12]. Therefore, we redefine the lower
reduct and upper reduct as follows.

Definition 3.1. Let (U,C) be a fuzzy information system and P ⊆ C. Then

i. P is referred to as a lower reduct of C if P satisfies ∩P = ∩C and ∩P ̸=
∩(P − {Ai}) for all Ai ∈ P

ii. P is referred to as an upper reduct of C if P satisfies ∪P = ∪C and ∪P ̸=
∪(P − {Ai}) for all Ai ∈ P

iii. P is referred to as a reduct of C if P is both an upper and a lower reduct of
C.

Using Definition 3.1, Wang et. al proved Lemma 1.4. But the following Example
3.2 shows that the reduct definition does not maintain the optimal choice of objects.
Therefore, we conclude that the 1.4 does not give the optimal choice of objects and
hence there is no use for using the reduct definition of [12] given by Wang et. al.

Example 3.2. Consider the fuzzy information system (U,C) where U = {x1, x2, x3,
x4, x5, x6} and C = {A1, A2, A3} where A1 = {(x1, 0.4), (x2, 0.6), (x3, 0.5), (x4, 0.1),
(x5, 0), (x6, 0.3)}, A2 = {(x1, 0.2), (x2, 0.1), (x3, 0.3), (x4, 0.4), (x5, 0.7), (x6, 0.4)},
A3 = {(x1, 0.1), (x2, 0), (x3, 0.2), (x4, 0.7), (x5, 0.8), (x6, 0.6)}. Let P = {A1, A3}.
Then ∪P = {(x1, 0.4), (x2, 0.6), (x3, 0.5), (x4, 0.7), (x5, 0.8), (x6, 0.6)} = ∪C and ∩P
= {(x1, 0.1), (x2, 0), (x3, 0.2), (x4, 0.1), (x5, 0), (x6, 0.3)} = ∩C. Also, ∪P ̸= ∪(P −
{Ai}) and ∩P ̸= ∩(P −{Ai}). Therefore, P is a reduct of C. But for P, the optimal
choice is x6 whereas the optimal choice of C is x5. Thus, this reduct definition do
not maintain the optimality of objects.

Remark 3.3. Take {Ai|Ai ∈ C} as parameter set E and U as universe. Then every
fuzzy information system can be considered as a fuzzy soft set. Thus, we use normal
parameter reduction of fuzzy soft sets for fuzzy information system. Also, all the
results in Section 2 hold for fuzzy soft sets. Therefore, using these characterizations
also, one can find the reduction of the fuzzy information system.

Example 3.4. Consider the fuzzy information system as in Example 3.2. Let
E = {A1, A2, A3} be the set of parameters and U = {x1, x2, x3, x4, x5, x6} be the
universe. Then the fuzzy information system is considered as the fuzzy soft set with
tabular representation as given below.
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U A1 A2 A3 fE(.)
x1 0.4 0.2 0.1 0.7
x2 0.6 0.1 0 0.7
x3 0.5 0.3 0.2 1
x4 0.1 0.4 0.7 1.2
x5 0 0.7 0.8 1.5
x6 0.3 0.4 0.6 1.3

Since there is no A ⊆ E such that fE−A(x1) = fE−A(x2) = fE−A(x3) = fE−A(x4) =
fE−A(x5) = fE−A(x6), the whole set E is the reduction for the information system
given in Example 3.2.

4. Image of a normal parameter reduction

In soft set, Maji et. al [5] introduced the reduct concept using rough sets. But,
Chen et. al [1] pointed out the problems involved in the reduct definition using
rough sets given by Maji et. al [5] and they initiated the concept of parameterization
reduction. In the parameterization reduction, the optimal choice objects of the soft
set are maintained. But the suboptimal choice of objects are not maintained. To
overcome these drawbacks in parameterization reduction, Kong et. al [4] introduced
the concept of normal parameter reduction using choice value of objects. Till now,
normal parameter reduction is the only method which maintains the optimal choice
as well as the suboptimal choice of objects
Importance: Normal parameter reduction is the best tool for finding reduction of
parameters. But if the size of objects and the parameters are very large, then the
problem of finding normal parameter reduction becomes a complicated one. So we
try to find out whether the image of normal parameter reduction of one soft set is
normal parameter reduction of another soft set. In general, the image of normal
parameter reduction of one soft set is not a normal parameter reduction of another
soft set. But if we are able to find the consistency map between these two soft sets,
then it holds good. Thus, if our soft set has larger parameter collection, it is enough
to find the normal parameter reduction of another soft set having lesser parameter
collection which was induced from the given soft set.

Definition 4.1. Let (F,A) be a soft set over U. Any two elements ei and ej in A
are said to be consistent if (i) F (ei)∪F (ej) ̸= U (ii) F (ei)∩F (ej) ̸= ∅ (iii) For each
uk ∈ F (ei) ∩ F (ej), F (ei) ∩ (F (es) − uk) ̸= ∅ or F (ej) ∩ (F (es) − uk) ̸= ∅ where
es ̸= ei, ej .

The following Example 4.2 shows the existence of consistent and non-consistent
parameters.

Example 4.2. Consider the universe U = {u1, u2, u3, u4, u5} and the parameter set
E = {e1, e2, e3, e4}.
(a) Let (F,E) be the soft set defined by F (e1) = {u1, u3, u5}, F (e2) = {u1, u3}, F (e3)
= {u3, u4, u5}, F (e4) = {u2, u5}. Consider the parameters e2 and e3. Then F (e2) ∪
F (e3) = {u1, u3, u4, u5} ≠ U and F (e2) ∩ F (e3) = {u3} ≠ ∅. Also, F (e1)− {u3} =
{u1, u5} and F (e4)− {u3} = {u2, u5}. Therefore, F (e2) ∩ (F (e1)− {u3}) = {u1} ̸=
∅, F (e3) ∩ (F (e1) − {u3}) = {u5} ̸= ∅ and F (e3) ∩ (F (e4) − {u3}) = {u5} ̸= ∅.
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Thus, for each ei ̸= e2, e3 and for u3 ∈ F (e2)∩F (e3), F (e2)∩ (F (ei)−{u3}) ̸= ∅ or
F (e3) ∩ (F (ei)− {u3}) ̸= ∅. Therefore, e2 and e3 are consistent.
(b) Let (G,E) be the soft set defined by G(e1) = {u1, u2, u3, u5}, G(e2) = {u1, u3},
G(e3) = {u3, u4}, G(e4) = {u2, u5}. Consider the parameters e2 and e3. ThenG(e2)∪
G(e3) = {u1, u3, u5} ̸= U and G(e2) ∩ G(e3) = {u3} ̸= ∅. Now, G(e4) − {u3} =
{u2, u5}. Then G(e2)∩ (G(e4)− {u3}) = G(e3)∩ (G(e4)− {u3}) = ∅. Therefore, e2
and e3 are not consistent parameters.

Definition 4.3. Let (F,A) be a soft set over U and i : A → B be a mapping where
B ⊆ E. The equivalence class [e]i of A with respect to i is consistent equivalence
class if (i) ∪ek∈[e]iF (ek) ̸= U and (ii) any one of the pair of ei, ej ∈ [e]i, ei and ej
are consistent.

Example 4.4. Consider the soft set (F,A) in Example 4.2(a) and let B = {t1, t2} be
another parameter set on U. Define a mapping i : A → B by i(e1) = i(e2) = i(e3) =
t1 and i(e4) = t2. Then the equivalence classes of A with respect to the mapping i is
given by {e1, e2, e3} and {e4}. Consider the equivalence class [e1]i = [e2]i = [e3]i =
{e1, e2, e3}. Then ∪ek∈[e1]iF (ek) = F (e1) ∪ F (e2) ∪ F (e3) = {u1, u3, u4, u5} ̸= U.
Also, e2 and e3 are consistent. Hence {e1, e2, e3} is the consistent equivalence class
of A with respect to i.

Definition 4.5. Let (F,A) be a soft set over U and i : A → B be a mapping where
B ⊆ E. Then the equivalence class E2 of A with respect to i is said to be core
equivalence class if E2 is the minimal subset of A such that ∪F (E2) = U and F (E2)
are mutually disjoint.

Example 4.6. Consider the universe set U = {u1, u2, u3, u4, u5} and the param-
eter set E = {e1, e2, e3, e4, e5, e6, e7, t1, t2, t3, t4}. Let A = {e1, e2, e3, e4, e5, e6, e7}
and B = {t1, t2, t3, t4}. Consider the soft set (F,A) which is defined by F (e1) =
{u1, u3, u5}, F (e2) = {u2, u5}, F (e3) = {u1, u3}, F (e4) = {u1, u3}, F (e5) = {u3, u4,
u5}, F (e6) = {u2, u5}, F (e7) = {u4}. Let the mapping i : A → B be defined
by i(e1) = t1, i(e2) = {t2}, i(e3) = i(e6) = i(e7) = t3 and i(e4) = i(e5) =
t4. Then the equivalence classes of A with respect to the mapping i is given by
{e1}, {e2}, {e3, e6, e7}, {e4, e5}. Consider the equivalence classX = {e3, e6, e7}. Then
∪x∈XF (x) = F (e3) ∪ F (e6) ∪ F (e7) = U and F (e3) ∩ F (e6) = F (e6) ∩ F (e7) =
F (e3) ∩ F (e7) = ∅. Therefore, ∪x∈XF (x) = U and F (X) is mutually disjoint.
Hence {e3, e6, e7} is a core equivalence class.

Definition 4.7. Let (F,A) be a soft set over U and i : A → B be a onto function
defined by i(ei) = tj for all ei ∈ A. Then i induces a soft set (G,B) over U, defined
by G(ti) = ∪ei∈i−1(ti)F (ei). The soft set (G,B) is called the i− induced soft set of
(F,A).

Example 4.8. Consider the soft set (F,A) and the mapping i which are defined
in Example 4.6. Then the i− induced soft set (G,B) is given by G(t1) = F (e1) =
{u1, u3, u5}, G(t2) = F (e2) = {u2, u5}, G(t3) = ∪ei∈i−1(t3)F (ei) = F (e3) ∪ F (e6) ∪
F (e7) = U,G(t4) = ∪ei∈i−1(t4)F (ei) = F (e4) ∪ F (e5) = {u1, u3, u4, u5}. Therefore,
(G,B) = {(t1, {u1, u3, u5}), (t2, {u2, u5}), (t3, U), (t4, {u1, u3, u4, u5})}.
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Definition 4.9. Let (F,A) be a soft set over U and i : A → B be a mapping where
B ⊆ E. Then the map i is a consistent map if all the equivalence classes of A with
respect to i is either in E1 or in E2 or in E3 where E2 is the core equivalence class,
E1 is the consistent equivalence class of A − E2 and E3 is the equivalence class of
single element.

Example 4.10. Consider the soft set (F,A) and i as in Example 4.6. Then the
equivalence classes of A with respect to the mapping i are {e1}, {e2}, {e3, e6, e7}, {e4,
e5}. By Example 4.6, {e3, e6, e7} is a core equivalence class. Also, {e4, e5} is a
consistent equivalence class of A−{e3, e6, e7}. Thus, all the equivalence classes of A
with respect to i are in either E1 or E2 or E3. Therefore, i is a consistent map.

Definition 4.11. Let (F,A) be a soft set over U and i : A → B be an onto function
from A to B. Then i induces a map h : D → B where D is the set of all equivalence
classes of A with respect to i. The map h is called an i− induced map. Clearly, h is
a bijection.

Example 4.12. Consider the Example 4.10. Here the i− induced map h is given
by h({e1}) = t1, h({e2}) = t2, h({e3, e6, e7}) = t3, h({e4, e5}) = t4.

Remark 4.13. If i is a consistent map, then the i− induced map h is also consistent.

Theorem 4.14. Suppose (F,A) is a soft set over U and i is an onto consistent map
from A to B ⊆ E. Let (G,B) be an i− induced soft set of (F,A) over U and h be
an i− induced map. Then P is a normal parameter reduction of (F,A) if and only
if h(P ) is a normal parameter reduction of (G,B).

Proof. Suppose (F,A) is a soft set over U and h is an i− induced map. Let P
be a normal parameter reduction of (F,A). Then A − P is a maximal subset of A
such that fP (ui) ̸= fP (uj) for some ui, uj ∈ U and fA−P (ui) = constant (say, c)
for all ui ∈ U. Since fA−P (ui) = c for all ui ∈ U,F (A − P ) = U or ∅. Since ∅ is
neither in E1 nor in E2 and nor in E3 and h is consistent, F (A−P ) = U and hence
A − P is a core equivalence class. Therefore, all the elements in A − P is mapped
into the single image ti and hence G(ti) = ∪ei∈h−1(ti)F (ei) = ∪ei∈A−PF (ei) = U.
That is, G(h(A − P )) = U. Since h(A − P ) = {ti}, gh(A−P )(ui) = constant, c1
(in particular, c1 = 1) for all ui ∈ U. This implies gh(A)−h(P )(ui) = c1 and hence
gB−h(P )(ui) = c1 for all ui ∈ U. Therefore, gB−h(P )(ui) = gB−h(P )(uj) for all
ui, uj ∈ U. Since h is consistent, any ei /∈ P, h(ei) /∈ h(P ) (otherwise, if ei is in
the reduction h(P ), then F (P ∪ {ei}) = U. Thus, P ∪ {ei} is a core equivalence
class and hence P ∪ {ei} is the subset of the normal parameter reduction). Thus,
B − h(P ) is a maximal subset of B such that gB−h(P )(ui) = gB−h(P )(uj) for all
ui, uj ∈ U. Therefore, gh(P )(ui) ̸= gh(P )(uj) for some ui, uj ∈ U. Hence h(P ) is a
normal parameter reduction of B.
Conversely, suppose h(P ) is a normal parameter reduction of (G,B). Then h(P ) is
a maximal subset of B such that gh(P )(ui) ̸= gh(P )(uj) for some ui, uj ∈ U and
gB−h(P )(ui) = gB−h(P )(uj) for all ui, uj ∈ U. That is, gB−h(P )(ui) = constant
(say, c). Since gB−h(P )(ui) = c,

∑
ei∈h−1(B−h(P )) f{ei}(ui) = c. This implies that∑

ei∈h−1(B)−h−1h(P ) f{ei}(ui) = c and hence fA−P (ui) = c for all ui ∈ U. Since h is

consistent, A − P is a maximal subset of A such that fA−P (ui) = fA−P (uj) for all
8
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ui, uj ∈ U. Since gh(P )(ui) ̸= gh(P )(uj) for some ui, uj ∈ U,
∑

ei∈h−1h(P ) f{ei}(ui) ̸=∑
ei∈h−1h(P ) f{ei}(uj) for some ui, uj ∈ U. That is, fP (ui) ̸= fP (uj) for some ui, uj ∈

U. Hence P is a normal parameter reduction of (F,A). □

Example 4.15. Consider the soft set (F,A) and i as in Example 4.6. By Example
4.10, i is a consistent map. That is, i satisfies all the conditions of the Theorem 4.14.
The normal parameter reduction of (F,A) is P = {e3, e6, e7}. Then h(P ) = {t3} is
the normal parameter reduction of (G,B).

The following Example 4.16 shows that consistency property in Theorem 4.14
cannot be dropped.

Example 4.16. Consider the universe U = {u1, u2, u3, u4, u5} and parameter sets
A = {e1, e2, e3, e4}, B = {t1, t2, t3}. Let (F,A) be a soft set defined by (F,A) =
{(e1, {u1, u3, u5}), (e2, {u1, u3}), (e3, {u3, u4}), (e4, {u2, u5})} and i be a mapping from
A to B which is defined by i(e1) = t1, i(e2) = t2, i(e3) = t2, i(e4) = t3. Then the
equivalence classes of A with respect to i is {e1}, {e2, e3}, {e4}. Therefore, the i
induced map h is given by h({e1}) = t1, h({e2, e3}) = t2, h({e4}) = t3. Also, the in-
duced soft set (G,B) of (F,A) is given by (G,B) = {(t1, {u1, u3, u5}), (t2, {u1, u3, u4}),
(t3, {u2, u5})}. Consider the equivalence class {e2, e3}. Clearly, F (e2) ∩ F (e3) =
{u3} ̸= ∅ and F (e2)∪ F (e3) ̸= U. Therefore, it is not a core equivalence class. Now
F (e4) − {u3} = {u2, u5}. Also, (F (e4) − {u3}) ∩ F (e2) = ∅ and (F (e4) − {u3}) ∩
F (e3) = ∅. Therefore, {e2, e3} is not a consistent equivalence class. Thus, i is not
a consistent map. Also, the normal parameter reduction of (F,A) is {e1, e2, e3, e4}
whereas the normal parameter reduction of (G,B) is {t1} = h({e1}). Thus, consis-
tency property cannot be dropped in the Theorem 4.14.

5. Conclusion

In this paper, we give the drawback in the reduct definition given by Wang et.
al and give some characterizations of normal parameter reduction of soft sets. Also,
we prove that the image and inverse image of normal parameter reduction is normal
parameter reduction using the concept of consistency.
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