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The Second Structure of Constant Current 
 

Annotation 
Here we explore the structure of DC and the flow of 
electromagnetic energy in a wire. We show that the flow of 
electromagnetic energy is spreading inside the wire along a 
spiral. For a constant current value the density of spiral 
trajectory decreases with decreasing remaining load 
resistivity. 
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1. Introduction 
In [1-3] was shown that DC in the wire has a complex structure, 

and the flow of electromagnetic energy is spreading inside the wire. Also 
the electromagnetic flow  

 directed along the wire axis, 

 spreads along the wire axis, 

 spreads inside the wire,  

 compensates the heat losses of the axis component of the 
current.  

Rn

A B C

D

J

J
 

Fig. 1. 
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In [1-3] a mathematical model of the current and the flow has 
been. The model was built exclusively on base of Maxwell equations. 

Only one question remained unclear. The electric current J ток and the 

flow of electromagnetic energy S are spreading inside the wire ABCD 
and it is passing through the load Rn. In this load a certain amount of 
strength P is spent. Therefore the energy flow on the segment AB should 
be larger than the energy flow on the segment CD. More accurate, 

Sab=Scd+P. But the current strength after passing the load did not 
change.  сила тока после прохождения нагрузки не изменилась. How 
must the current structure change so that еhe electromagnetic energy 
decreased correspondingly?   

Below we shall consider a mathematical model more general than 
the model (compared to [1-3]) and allowing to clear also this question. 
This mathematical model is also built solely on the base of Maxwell 
equations. In [4] describes an experiment which was carried out in 2008. 
In [5] it is shown that this experiment can be explained on the basis of 
non-linear structure of constant current in the wire and can serve as an 
experimental proof of the existence of such a structure.  

 

2. Mathematical Model 
In building this model we shall be using the cylindrical coordinates 

zr ,,   considering  

 the main current
oJ , 

 the additional currents zr JJJ ,,  , 

 magnetic intensities zr HHH ,,  , 

 electrical intensities E , 

 electrical resistivity  . 

The current in the wire is usually considered as average electrons flow. 
The mechanical interactions of electrons with the atoms are considered 
equivalent to electrical resistivity. Evidently, 

JE   .       (1) 

The main current of density 
oJ  creates additional currents with 

densities zr JJJ ,,   and magnetic fields with intensities zr HHH ,,  . 

They must satisfy the Maxwell equations. These equations for magnetic 
intensities and currents in a stationary magnetic field are as follows;   

  0div H ,      (2) 

Jrot(H) ,      (3) 
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Besides that, the currents must satisfy the continuity condition  

0)(div J .      (4) 

The equations (2-4) for cylindrical coordinates have the following form: 
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For the sake of brevity further we shall use the following notations:   

)cos( zco   ,     (10) 

)sin( zsi   ,      (11) 

where  ,  – are certain constants. In the Appendix 1 it is shown that 

there exists a solution of the following form:  

 corjJ rr . ,      (12) 

sirjJ )(.   ,      (13) 

sirjJ zz )(.  ,      (14) 

 corhH rr . ,      (15) 

2)(. rJsirhH o  ,     (16) 

sirhH zz )(.  ,      (17) 

where )(),( rhrj - certain function of the coordinate r .  

It can be assumed that the average speed of electrical charges 
doesn't depend on the current direction. In particular, for a fixed radius 
the way passed by the charge around a circle and the way passed by it 
along a vertical will be equal. Consequently, for a fixed radius it can be 

assumed that z . Based on this assumption we can build the 

trajectory of the charge motion according to the functions (10, 11). 

The figure 2 shows three spiral lines for z , described by 

functions (10, 11) of the current: the thick line for 8.0,2   , the 

average line for 2,5.0    and a thin line for 

линия 6.1,2   .  
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Рис. 2. 

 
In Appendix 1 it is shown that the functions satisfy the following 

equations:  

,0)( rhz
       (20) 

 
  0
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

r

rh
rh

r

rh
r

r ,    (21) 

 ,)( rjrh r 
      (22) 

  )(rjrhr   ,      (23) 

  )(
1

)(
)(

rjrh
r

rh
r

rh
zr  


.   (24) 

This equations system is underdetermined – there are 4 equations 

(21-24) for 5 variables  hhjjj rzr ,,,, . It is important to note that 

.0)( rhz
 If one of the variables is known, then the remaining ones are 

determined by differentiating this equations system. For example, for a 

known function )(rh  we can find: 
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

r

rh

r

rh
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r
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 ,     (25) 

  ,)(  rhrjr        (26) 

  ,)(  rhrj r ,      (27) 
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  .
1

)(
)(

)( 


rh

r
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r
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rj rz  .   (28) 

Example 1. Let, for example, be  110)( 11000  rerh . Fig. 3 shows 

the graphs of functions )(),(),(),(),(),( rhrhrhrjrjrj zrzr  . These 

functions are calculated for 11104,1.0   , the wire radius 

001.0R  and initial condition 0)0( rj . The first column shows the 

functions )(),(),( rjrjrj zr  , the second column shows 

functions )(),(),( rhrhrh zr  , and the functions shown in the third 

column will be considered further. Here and further all numerical data is 

shown in CI system. The x-axis shows the values )1000( r . 
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Example 2. Beside a solid wire we can consider also a tubular 

conductor. In this example  110)( 11000  rerh . Fig. 4 shows the 

graphs of functions )(),(),(),(),(),( rhrhrhrjrjrj zrzr  . These 

functions are calculated for 11104,1.0   . The main difference 

is in the fact that the region of integration is limited: RrR 1 , while 

RRR  2.0,005.0 1 , and the initial condition is 0)( 1 Rjr . 



 

 6 

0 5
0

0.5

1

h
r

0 5
-10

-9.9999

-9.9998

h
f

0 5
-1

0

1

h
z

0 5
-4

-4

-3.9999
x 10

12

jr

0 5
0

2

4
x 10

11

jf

0 5
-2

-1

0
x 10

4
jz

Fig.4. TokPotok33.m, mode=3

0 5
-10

-5

0
x 10

4

S
r

0 5
-4000

-2000

0

S
f

0 5
3.96

3.98

4
x 10

13

S
z

 
 

3. Energy Flows 
The density of electromagnetic flow is Pointing vector  

HES  .      (1) 

The currents are being corresponded by eponymous electrical intensities, 
i.e. 

JE   ,       (2) 

where   is electrical resistivity. Combining (1, 2), we get: 

HJS   .      (3) 

In cylindrical coordinates zr ,,   the density flow of electromagnetic 

energy has three components zr SSS ,,  , directed along вдоль the axis 

accordingly. They are determined by the formula 
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Fig. 3 and Fig. 4 shows the functions 
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From (4), as is shown in Appendix 2, it follows that 

     
r

zz drrSS )(4cos1
4


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.    (7) 
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r

drrSS )(4cos1
4

 

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  
r

rr drrSS )( .      (9) 

This values is independent of zt ,,   and this corresponds to the 

law of conservation of energy. 

The full energy flow is equal to power P , transmitted by the wire, 
i.e. 

PS  ,       (10) 

where  

222 4 oH

r

oH JRRdrdJRP 
















   ,   (11) 

where HR  is the load resistivity.  

 
Example 3. For the conditions of Example 1 and special resistivity 

of copper wire 6100175.0   further we find the value of energy flow 

for 1000zS . The power 1000P  equal to this value is consumed in 

the resistivity 110HR  for main current density 610oJ . It is 

important to note that the energy flow along the wire significantly 
exceeds the energy flows by the radius and by the circle. In our example 

75 105,10,1000   SSS rz . 

 
Example 4. 
In the conditions of Example 3 we shall now change one of the 

values  , , leaving the other one unchanged. Table 1 shows the values 

of  ,  and the power Р, and Fig. 5 shows the corresponding graphs. 
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Table 1. 

Variant 1.0   11
104   Р 

41 1 1 1000 

43 1 0.8 830 

44 1 1.2 1240 

45 1.5 1 1300 

46 0.5 1 580 
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Fig. 5. 
 

4. Discussion 
Thus, the energy flow along the wire's axis zS  is created by the 

currents and intensities directed along the radius and the circles. This 

energy flow is equal to the power released in the load HR  and in the wire 

resistance. The currents flowing along the radius and the circle are also 

creating heat losses. Their powers are equal to the energy flows SSr , , 

directed along radius and circle. 
The question of the way by in which the electromagnetic energy 

creates current is considered in [8]. There it is shown that there exists a 
fourth electromagnetic induction created by a change in electromagnetic 
energy flow. Further we must find the dependence of emf of this 
induction from the electromagnetic flow density and from the wire 
parameters.  
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It is shown that direct current has a complex structure and extends 
inside the wire along a spiral. In the case of constant current the density 
of spiral trajectory decreases with the decrease of the remaining load 
resistance. There are two components of the current. The density of the 

first component 
oJ is permanent of the whole wire section. The density 

of the second component is changing along the wire section so that the 

current is spreading n a spiral. In cylindrical coordinates zr ,,  this 

second component has coordinates zr JJJ ,,  . They can be found as 

the solution of Maxwell equations.   
There is a known experiment which can serve as an experimental 

proof of this structure of direct current. 
With invariable density of the main current in a wire the power 

transmitted by it depends on the structure parameters ( ,  ) which 

influence the density of the turns of spiral trajectory. Thus, the same 
current in a wire can transmit various values of power (depending on the 
load). 

Let us again look at the Fig 1. On segment AB the wire transmits 

the load energy P. It is corresponded by a certain values of ( ,  ) and 

the density of coils of the current's spiral path. On the segment CD the 
wire transmits only small amount of energy. It corresponds to small value 
of    and small density of the coils of current's spiral path.  

Naturally, the resistivity of the wire itself is also a load. Thus, as the 
current flows within the wire, the spiral of the current's path straightens. 

The dependence of current density and intensity density was 
considered in detail in [2]. Generally, the mathematical model presented 
in [2] may be considered as a consequence of the described model 

for 0 . 

Thus, it is shown that there exists such a solution of Maxwell 
equations for a wire with constant current which corresponds to the idea of 

 law of energy preservation 

 spiral path of constant current in the wire,  

 energy transmission along and inside the wire,  

 the dependence of spiral path density on the transmitted strength. 

 
Appendix 1 
Let us consider the solution of equations (2.5-2.9) in the form of 

(2.12-2.17). Further the derivatives of r  will be designated by strokes. 
We rewrite the equations (2.5-2.9) in the form 
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We multiply (5) to   . Then we get: 
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Comparing (1) and (6), we see that they are the same, if  

 ,)( rjrh r 
      (7) 

  )(rjrhr   .      (8) 

It is important to note that this comparison is valid only for 0)( rjz . 

Equations (7, 8) coincide with (3, 4) for 0)( rhz . Consequently, if 

0)( rjz  and 0)( rhz  equation (1) can be eliminated and the system 

(1-5) is simplified and takes the form 
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Now consider the case when 0)( rjz . In this initial system will 

take the form: 
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Substituting (15, 16) in (13). Then we get: 
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Thus to calculate the three intensities obtain three equations (14, 17, 18). 

We exclude )(rh  from the (17, 18): 
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Thus, and when 0)( rjz  must comply with conditions 0)( rhz . 

Thus, the system of equations (9-12) is executed for any )(rjz . 

 

Appendix 2.  
In section 3 shows that the total energy flux passing in wire cross-

section, 
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In the point z = 0 of axis oz, taking into account (2.10, 2.11), we have: 
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Let us first consider the flow 
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r

zz drdrSS





2sin)(
2

   (4) 
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or 

     
r

zz drrSS )(4cos1
4





.    (5) 

Similarly, 

     
r

drrSS )(4cos1
4

 



,    (6) 

  
r

rr drrSS )( .      (7) 

Obviously, for any choice of the point z = 0 on the axis oz last 

relation is maintained. 
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