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           Abstract 
  The author considers the optimization problem named ‗the impulse regime‘, when the control can have 

for a short time an instantaneous infinity value and the phase variables have gaps. In mathematics these 

mean: the variables are not continuous, not differentiable. The variable calculation and Pontryagin 

principle are not applicable. These problems are in space trajectories, theory of corrections, nuclear 

physics, economics, advertising and other real control tasks. We need a special theory and special 

methods for solution of these problems. 

  Author offers the following  method, which simplifies and solves these tasks. 

 

                                             Introduction 
   Optimization methos are widely used in solving of technical problems. However, there are important 

classes of problems where they have great difficulties in the application.  For example, in problems of 

space travel. The fact that the operational time of conventional rocket liquid  propulsion is small 

(minutes), while the passive time of the interplanetary flight is large (months). In the result, we can 

consider  the rocket work as an impulse, the speed as a jump which must expend  minimum fuel. In 

mathematics, this means: the control is at an infinity value, the phase variables have a gap, and the 

variables are not continuous, not differentiable. The variable culculation and the Pontryagin principle are 

not applicable. 

   In 1968 the author offered the special methods [1] (see also [2 – 3]) for solution of the difference cases 

the impulse regime. In book [4] he applied this method to aerospace problems. Authors of work [5] 

developed the impulse theory for a particular case (linear version of control) using the theory of δ-

functions. But his solutions are very complex and not acceptable in many practical problems. 

  In the given article the author offers a simpler method for solution of these problems: he shows the 

known impulse problems can be reduced to the special Pontryagin problem. Their solution can be 

simpler than existing methods.  

 

                                 Statement of the problem 

 

   
1. Statement of the conventional Optimization Problem.  Assume the state of system is described 

by conventional differential equations: 
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where I is  the objective function, x is n – dimentinal continuous piece-difference function of phase 

coordinates; u is r – dimentional piece-continuous,  piece-diffrence functions of control, iii bua  , i = 

1,2,…,r ,  a,b = const;
 
t is time. End values of x(t1), x(t2)  are given or mobile. F is function of the end 

values x(t). 

   We must find the control u, which gives the minumum the objective function I.  

  In our case (impulse problem) the control (or some its components) is at infinity (a very short time), the 

some (or all) phase variables have the gaps, and the variables are not continuous, not differentiable. The 

variable calculation and Pontryagin principle are not applicable. 

 

2. Impulse Optimization Problem. Method of Solution. 
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  The author offer the following method for solution of impulse problems.   

We enter the special constants (unknown limited values) of impulses  

    mivi ,...,2,1 .      (2) 

These values may be binded the contions 
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where 

ii xx , are xi is phase coordinate on left and on right from point of impulse (gap),  2,1, , ii cc are 

consts. In particule, v can be unknown constant or zero. 

The optimal problem is written in fo 
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Where v are unknown limited impulses (gaps). End values of x(t1), x(t2) are given or mobile. 
   According [2], [3], we can write the generalized functionality introdused in form  

, IJ
      (6) 

where J - the generalized functionality introduced in [2],[3] p. 42, α is so named α – function introduced 

in [2],[3] (function equals zero on acceptable set, for example, on curves satisfying the equations (1) – 

(4)). 

In our case we take  
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Where λ(t,x) is an unknown vector function. 

We can re-write (6) as (see [3] p.42) 
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where (for brevity repeated indices are summed): 
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From Theorem 3.8 [3] we get: if we find at least one solution of particular equation about  λ 
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for the end condition inf A, we get optimal solution.  

 Note, the B (9) is different from the well-known Gamiltonian. If we will take the different function 

λ(t,x), we will get the different conjugated system of equations ∂B/∂x = 0. 

   In particular, if we will get λ(t) ONLY as function t, we get the conventional Pontryagin principle of 

maximum 
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and equations 
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The equations 
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are used only in the open area. λi are unknown multipliers. 

  Equations  (11) - (16) gives the optimal trajectoris (minimum of I) of the system (5). We also must 

solve the boundary value problem – find such  λi(t1)  that to get the given xi(t2) . 

 

  The gap time tθ and gap ν inside interval (t1< tθ <t2) we can also find the next way. Write the objective 

function in form 
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where Φ is additional condition in tθ (if they are given). 

  Write the general function as the sum of two functions in (t1, tθ ) and  (t1<tθ<t2) 
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In tθ the minimal condition are 
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Here up ―-― and ―+‖ are values from left and right from point tθ. . 

 

Notes:  

1. We can find in form (3) ONLY the phase coordinates which we can aproximate as the impulse (in 

short time we can change a large value – for example, the speed in long flight, agle of trajectory, laser 

excitation of atom and so on). We cannot pukes space, distance, time.  

2. The λi of corresponding  coorditate has a gap/jump in moment of impulse. The moment (time) of gap 

or new λi (at right side) we can find (in open area) from the second equation (16). We must also to 

check up the ends of the intersal [t1,t2]. 

3. In some cases, the optimal value of gap we can find by the selection of  ν.  

4. The λi of fi are functions of t, the λi of φi are constants.  

 

                                                                Example 
   Let us to consider the typical problem of space travel - transfer from one space orbit to other. Assume 
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the space ship has circular Earth orbit having the radius r1 and speed V0 . We want to reach the ecliptic 

orbit having the maximal radius r2 > r1 and spend the minimum of fuel. The liquid rocket engine works 

some seconds, the space flight is some months. That way we can consider the rocket flight as pulse 

mode which instant change speed (gap the speed). Our task is to find minimal gap of speed (minimal 

inpulse) v = ΔV , because the minimal gap of speed is equivalent of the minimal expenditure of the 

rocket fuel.                     

  Our objective function  

                                                  
t

VdtI
0

      (20) 

  The variables (speed V and radius r) of free space flight in the Earth gravitation field is binded by the 

Law of energy conservation (kinetic + potencial energy equils constant c): 
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   Where m is mass space ship (satellite) mass, kg; r0 is initial radius, m; µ is gravity constant. For Earth 

µ = 3.9802
.
10

14
 m

3
/s

2
 , for Sun   µ = 1,3276

.
10

20
 m

3
/s

2
. That is elliptic orbite, r1 is the radius of perigee; 

r2 is the radius of apogee. We want to arrive from the circular orbite having V0 , the radius r0 = r1 (the 

point of perigee) to point of apology r2. 

                                                          
                                                   Fig.1. Orbite transver. 

 

  For elliptic orbits, the equation (21) may be re-writen in form: 
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where; V0 is speed on circular orbite having the radius r1. The speed of circular orbit is 
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Here V2 is speed in r2. Last equation in (23) is Law of momentum conservation free flight in the central 

gravitation field. 

  Let us the write the function B (13) for left end in right side of point t1 . 
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From equation (16) we have 
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The  equaetion (25) together with the equations (22),(23) allow to find the λ and the speed gap V : 
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Here V2 is speed in apogee, Va is average speed. 

We reached the request r2 by the first impulse. That way we don‘t need the additional impulse and 

reseach. 

  The formula (26) for computation V is known as transfer in Gohman ellipse [6]. New is proof of 

optimization. 

  The reader can solve same way the more complex inpulse (gap) problems [4]. 
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