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Abstract

The G8;2 Geometric Algebra, also called the Double Conformal / Darboux Cyclide
Geometric Algebra (DCGA), has entities that represent conic sections. DCGA also
has entities that represent planar sections of Darboux cyclides, which are called
cyclidic sections in this paper. This paper presents these entities and many opera-
tions on them. Operations include re�ection, projection, rejection, and intersection
with respect to spheres and planes. Other operations include rotation, translation,
and dilation. Possible applications are introduced that include orthographic and
perspective projections of conic sections onto view planes, which may be of interest
in computer graphics or other computational geometry subjects.

Keywords: conformal geometric algebra, conic sections, perspective projection

A.M.S. subject classi�cation: 15A66 68U05 51A05 51N25

1 Introduction

The G8;2 Geometric Algebra, called the Double Conformal / Darboux Cyclide Geometric
Algebra (DCGA), is introduced in [1]. This paper1 presents some additional results in
DCGA for representing conic and cyclidic sections and for operating on conic and cyclidic
sections in DCGA.

The following sections of this paper elaborate on the conic and cyclidic sections with
many illustrative �gures produced using the Geometric Algebra Computing software
called the Geometric Algebra ALgorithms Optimizer Gallop that is introduced in [2].
In [1], it is explained how to use the Gaalop Visualizer to visualize DCGA entities. The
Gaalop Visualizer is introduced in [4]. At the time of writing this paper, Gaalop appeared
to be a very unique software for its ability to render visualizations of the DCGA conic
and cyclidic section entities.

2 DCGA GIPNS section

The concepts and de�nitions of geometric inner product null space (GIPNS) and geo-

1. Revised version v2, July 22, 2016 , uploaded to viXra.org.
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metric outer product null space (GOPNS) entities are introduced by Perwass in [3]. In
this paper, all geometric entities are DCGA GIPNS entities.

The DCGA GIPNS 2-vector 2D-surface entity� is de�ned in [1] as generally being an
instance of the DCGA GIPNS 2-vector Darboux cyclide surface entity 
 or an instance of
a degenerate form of 
. The �rst degenerate forms are the DCGA GIPNS 2-vector Dupin
cyclide surface entity � and the DCGA 2-vector horned Dupin cyclide surface entity ¡.
The next degenerate form is the DCGA GIPNS 2-vector parabolic cyclide surface entity
	. Further degenerates of the parabolic cyclide entity 	 are the DCGA 2-vector quadric
surface entities. The Darboux cyclide 
 and Dupin cyclide �; ¡ entities are generally
quartic surfaces. The parabolic cyclide 	 entity is generally a cubic surface.

All of the DCGA GIPNS 2D-surface entities � can be intersected with a standard
DCGA GIPNS 2-vector plane entity� or with a standard DCGA GIPNS 2-vector sphere
entity S. The DCGA GIPNS 4-vector intersection 1D-surface entity �^� can also be
called a DCGA GIPNS section entity  =�^�. A 1D-surface on a plane is also called
a plane curve. The degree of a plane curve or section  depends on the degree of the 2D-
surface � it is cut from. A section of a quartic surface �=
;� or ¡ is a quartic plane
curve. A section of a cubic surface, such as a parabolic cyclide �=	, is a cubic plane
curve. A section of a quadric surface, such as a cone K, is a quadratic plane curve, also
called a conic section.

A DCGA GIPNS 4-vector section 1D-surface plane-curve entity  is de�ned as the
intersection

 = �^� (1)

of a DCGA GIPNS 2-vector 2D-surface entity � and a standard DCGA GIPNS 2-vector
plane entity �.

If� is a Darboux cyclide 
 or Dupin cyclide �, then  is generally a cyclidic section
that is a quartic plane curve. If � is a parabolic cyclide 	, then  is generally a cyclidic
section that is a cubic plane curve. If � is a degenerate parabolic cyclide or quadric
surface, then  is generally a conic section that is a quadratic plane curve.

As a special case, if � is a standard DCGA GIPNS 2-vector sphere S or plane
�, then  = � ^ � is either a standard DCGA GIPNS 4-vector circle entity C or a
standard DCGA GIPNS 4-vector line entity L. These entities are special since they can
be intersected with each other, while other entities cannot be intersected with each other.
These are special conic sections of a standard sphere or plane.

2.1 DCGA GIPNS conic section

Conic sections are planar cuts through a quadric cone surface. A conic section is an
ellipse, parabola, hyperbola, line, non-parallel lines pair, or the cone vertex point. Planar
cuts through other quadric surfaces, such as ellipsoid, hyperboloid, and paraboloid, can
produce some of the conic section quadratic plane curves, but not all of them.

The DCGA GIPNS 4-vector conic section quadratic 1D-surface plane-curve entity �
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is de�ned as the intersection

� = K^� (2)

of a DCGA GIPNS 2-vector cone quadric 2D-surface entity K and a standard DCGA
GIPNS 2-vector plane entity �. The cone entity K is a degenerate form of the parabolic
cyclide entity 	.

ellipse parabola

lineshyperbola
� �

��

Figure 1. Conic sections: quadratic plane curves

Figure 1 shows some DCGA conic section entities �; �; � ;� rendered by the Gaalop
Visualizer. The conic section entities are intersections K^� of various standard DCGA
plane entities � with a DCGA cone entity K.

In [1], the ellipse �jjxy = Hjjz ^ �z=0, parabola �jjxy = Bjjz ^ �z=0, and hyperbola
� jjxy=Jjjz^�z=0 in the xy-plane (z=0) are de�ned as the intersection of the xy-plane
�z=0 with a z-axis aligned elliptic cylinder Hjjz, parabolic cylinder Bjjz, and hyperbolic
cylinder Jjjz, respectively.

2.2 DCGA GIPNS cyclidic section

Cyclidic sections are planar cuts through Darboux cyclide, Dupin cyclide, and parabolic
cyclide surfaces. Since quadric surfaces are degenerate cyclides, the cyclidic sections are
a generalization of the conic sections. Cyclidic sections through Darboux cyclides and
Dupin cyclides are quartic plane curves. Cyclidic sections through parabolic cyclides are
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cubic plane curves. Conic sections through degenerate parabolic cyclides are quadratic or
linear plane curves. The general cyclidic section can be represented by the intersection
of a Darboux cyclide and plane.

The DCGA GIPNS 4-vector cyclidic section quartic 1D-surface plane-curve entity !
is de�ned as the intersection

! = 
^� (3)

of a DCGA GIPNS 2-vector Darboux cyclide quartic 2D-surface entity 
 and a standard
DCGA GIPNS 2-vector plane entity �.

The entity 
 may be a degenerate form that includes Dupin cyclides �; ¡ and
parabolic cyclides	, but not degenerate parabolic cyclides or quadric surfaces. A cyclidic
section entity ! represents either a quartic or cubic plane curve. A quadratic or linear
plane curve is a conic section entity �, which may also be called a degenerate cyclidic
section.

�^�

ring Dupin cyclide � plane �

cyclidic section

Figure 2. Cyclidic section: quartic plane curve

Figure 2 shows an example of a cyclidic section that is a quartic plane curve. The
DCGA ring Dupin cyclide � (R = 3; r1 = 1; r2 = 2) is cut by a DCGA plane �i

(n= e3; d=0) that is rotated 25� around the x-axis e1 using a DCGA rotor R operation
as �=R�iR

�. The cyclidic section entity is the intersection entity !=�^�.
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O
toroid

S
sphere

�
plane

	^�
cyclidic section

	=SOS�

parabolic cyclide

Figure 3. Cyclidic section: cubic plane curve

Figure 3 shows an example of a cyclidic section that is a cubic plane curve. The DCGA
GIPNS 2-vector parabolic cyclide 	 = SOS� is the DCGA GIPNS 2-vector toroid O
(R=3; r=2) re�ected in the standard DCGA 2-vector sphere S (p=e1; r=2). The sphere
S center point PD=D(p) is on the toroid O surface, and the parabolic cyclide 	 is the
inversion of the toroid O in the sphere S. The cyclidic section 	^� is the intersection
of the parabolic cyclide 	 and a standard DCGA plane � (n= e3; d=0) that is rotated
25� around the x-axis e1.

3 Operations on DCGA GIPNS section entities

Operations on DCGA GIPNS section entities  include:

� re�ection of any section entity  in a sphere S or plane �

� projection of any section entity  onto a sphere S or plane �

� rejection of any section entity  from a sphere S or plane �
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� intersection of any section entity  with a sphere S or plane �

� and general rotation, translation, and dilation.

The re�ection in a sphere is also known as inversion in a sphere. Inversion of a curve
in a sphere produces the curve with points that are at an inverse displacement from the
sphere center point when the sphere radius is r=1, which is as expected. Re�ection of a
curve in a plane produces the re�ected image of the curve on the far side of the re�ection
plane, which is also as expected.

The projection is a spherical or orthographic projection onto a sphere or plane surface,
respectively. The inversion and projection of a curve point in and onto a sphere are
collinear, on a line from the center of the sphere to the curve point. A curve point projects
onto a sphere where the line through the curve point and its inverse point intersects the
sphere surface. The projection line also passes through the sphere center point. A curve
point projects onto a plane where the line through the curve point and its re�ected point
intersects the plane surface, and the projected point is midway between the curve point
and its re�ected point.

The rejection is a perpendicular projection of a curve or surface from a sphere or
plane, and it emerges at 90� or normal to the sphere or plane when the curve or surface
and the sphere or plane have an intersection. The rejection produces a projected curve
on the surface of a perpendicular plane or perpendicular sphere through intersection
points. The rejection of a surface from a plane or sphere produces a rejected surface that
is perpendicular. For example, an ellipsoid that intersects a plane can be rejected from
the plane to produce an elliptic cylinder representing the ellipse cut through the ellipsoid
by the plane.

The intersection of the section entities  with each other in general, not just with
standard DCGA planes, spheres, lines, and circles, would be a very useful operation but
unfortunately it does not work. The DCGA intersections rule and formula is given in [1],
which states that only a single entity that is not a standard DCGA plane �, sphere S,
line L, or circle C can be included in a wedge that forms an intersection entity. This rule
or limitation still applies when forming intersections that include a DCGA GIPNS section
entity  . This means that it is possible to intersect any section entity  =�^� with
other coplanar circles C= S ^� and lines L=�2^� as, for example, an intersection
entity such as�^S^�2^�, which is an 8-vector. When the common plane� is known,
it can be contracted out of entities, and the example intersection could be written as
( ��)^ (C ��)^ (L ��)^�.

Although the operations are limited to working against only spheres and planes, they
still allow for many interesting possibilities to produce transformed curves and surfaces
that may have scienti�c or artistic uses. The following subsections explore these opera-
tions in more detail, with many illustrative �gures rendered by the Gaalop Visualizer.

3.1 Re�ection

The re�ection  0 of a DCGA GIPNS 4-vector section 1D-surface plane-curve entity  
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in a standard DCGA GIPNS 2-vector plane entity � is de�ned as

 0 = � ��: (4)

The re�ection, also called the inversion,  0 of a DCGAGIPNS 4-vector section 1D-surface
plane-curve entity  in a standard DCGA GIPNS 2-vector sphere entity S is de�ned as

 0 = S S�: (5)

S
inversion
 0=S S�

sphere

ring Dupin cyclide
�

cyclidic section
 =�^�

plane
�

Figure 4. Re�ection (inversion) of cyclidic section in sphere

Figure 4 shows the re�ection (inversion) of a cyclidic section in a sphere. The Gaalop
Visualizer CLUscript for this �gure is:

:Green;:D=DupinCyclide(3,2,1);
:Black;:P=Plane(0,0,1/2,0);
:Blue;:S=Sphere(0,0,7/2,5/2);
:Black;:DP=D^P/16;
:Black;:R=S*DP*~S/1024;

3.2 Projection

The projection  0 of a DCGA GIPNS 4-vector section 1D-surface plane-curve entity  
onto a standard DCGA GIPNS 2-vector plane entity � is de�ned as

 0 = ( ��)�¡1=( ��)��: (6)

The projection  0 of a DCGA GIPNS 4-vector section 1D-surface plane-curve entity  
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onto a standard DCGA GIPNS 2-vector sphere entity S with radius r is de�ned as

 0 = ( �S)S¡1= 1
r4
( �S)S�: (7)

cyclidic section

projection
 0=( �S)S�

ring Dupin cyclide
�

 =�^�

�
plane

sphere S

Figure 5. Projection of cyclidic section onto sphere

Figure 5 shows the projection of a cyclidic section onto a sphere. The Gaalop Visu-
alizer CLUscript for this �gure is:

:Green;:D=DupinCyclide(3,2,1);
:Blue;:S=Sphere(1,1,7/2,5/2);
:Black;:P=Plane(0,0,1/2,0);
:Black;:DP=D^P/16;
:Black;:PRJ=(DP.S)*~S/2048;

3.3 Rejection

The rejection  0 of a DCGA GIPNS 4-vector section 1D-surface plane-curve entity  
from a standard DCGA GIPNS 2-vector plane entity � is de�ned as

 0 = ( ^�)�¡1=( ^�)��: (8)
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The rejection  0 of a DCGA GIPNS 4-vector section 1D-surface plane-curve entity  
from a standard DCGA GIPNS 2-vector sphere entity S with radius r is de�ned as

 0 = ( ^S)S¡1= 1
r4
( ^S)S�: (9)

rejection
ring Dupin cyclide
�

sphere
S

cyclidic section
 =�^�

plane�

circle
S^�

( ^S)S¡1

Figure 6. Rejection of cyclidic section from sphere

Figure 6 shows the rejection of a cyclidic section from a sphere. The Gaalop Visualizer
CLUscript for this �gure is:

:Green;:D=DupinCyclide(3,2,1);
:Blue;:S=Sphere(-1,-1,1,5/2);
:Black;:P=Plane(0,0,1/2,0);
:Black;:DP=D^P/16;
:Red;:REJ=(DP^S)*~S/1024;
:Black;:SP=S^P;

It may be di�cult to see from the �gure, but the rejection curve (red) intersects through
the sphere at a 90� angle to the surface.
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plane

�2

plane

�

cyclidic section
 =�^�

rejection
( ^�2)�2

¡1

�
ring Dupin cyclide

Figure 7. Rejection of cyclidic section from plane

Figure 7 shows the rejection of a cyclidic section from a plane. The Gaalop Visualizer
CLUscript for this �gure is:

:Blue;:D=DupinCyclide(3,2,1);
:Green;:P2=Plane(1,0,2,0);
:Black;:P=Plane(0,0,1/2,0);
:Black;:DP=D^P/16;
:Red;:REJ=(DP^P2)*~P2;

3.4 Commutator and anti-commutator projections

The geometric product AB can be written as the sum of the anti-symmetric commutator
product � and the symmetric anti-commutator product �� as

AB =
1
2
(AB¡BA)+ 1

2
(AB+BA) (10)

= A�B+A�� B: (11)

Given a cyclidic section  and a sphere S (or a plane), then

 =  SS¡1 (12)

=

�
1
2
( S¡S )+ 1

2
( S+S )

�
S¡1 (13)

= ( �S)S¡1+( �� S)S¡1: (14)

The commutator projection of  onto S can be de�ned as

 0 = ( �S)S¡1 (15)
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and the anti-commutator rejection of  from S can be de�ned as

 0 = ( �� S)S¡1: (16)

As an example, the next �gure looks at a parabola and its re�ection, projection, rejection,
commutator projection, and anti-commutator rejection with respect to a sphere.

re�ection
S�S�

sphere S
center

�=Bjjz^�z=0
parabola

rejection
(�^S)S¡1

anti-commutator rejection

�z=0
plane

(��� S)S¡1

projection
(� �S)S¡1

(��S)S¡1
commutator projection

Figure 8. Spherical operations on a parabola

Figure 8 shows spherical operations on a parabola. The sphere S, not rendered, is
enclosed in the green circle and is shaded magenta. The parabola � is constructed as
the intersection of a z-axis aligned parabolic cylinder Bjjz and the xy-plane �z=0. The
Gaalop Visualizer CLUscript for this �gure is:

:Cyan;:C=PCylinderZ(0,0,0,1,1,1);
:Green;:P=Plane(0,0,1,0);
:Magenta;:S=Sphere(-2,0,0,5/2);
:Yellow;:CP=C^P;
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:Black;:REF=S*CP*~S;
:Green;:PRJ=(CP.S)*~S;
:Red;:REJ=(CP^S)*~S;
:Orange;:COM=(CP*S-S*CP)*~S;
:Blue;:ACOM=(CP*S+S*CP)*~S;

If the plane�z=0 is contracted out of any of the projection or rejection plane curves, then
the result is a surface that contains the plane curve. For example, the anti-commutator
rejection plane curve can be turned into a DCGA GIPNS 2D-surface � as

� = �z=0 � ((��� S)S¡1) (17)
= �z=0c((��� S)S¡1): (18)

3.5 Intersection

As explained in [1], all DCGA entities can be intersected only with standard DCGA
spheres S and planes �. The standard DCGA line L =�2 ^ � and circle C = S ^ �
entities are constructed from standard sphere S and plane � entities. The set S=fS;�g
includes all instances of the standard bi-CGA GIPNS 2-vector entities , which are spheres
and planes. All of the plane-curve section entities  = � ^ � can be intersected with
coplanar lines L=�2^� and circles C=S^�, but not with any other types of coplanar
curves. Coplanar curves may intersect in four or less points in the plane �.

The DCGA GIPNS 6-vector intersection X of a DCGA GIPNS 4-vector section 1D-
surface plane-curve entity  =� ^� and a coplanar standard DCGA GIPNS 4-vector
line L=�2^� in the plane � is de�ned as

X = ( ��)^ (L ��)^� (19)
' �^�2^�: (20)

The DCGA GIPNS 6-vector intersection X of a DCGA GIPNS 4-vector section 1D-
surface plane-curve entity  =� ^� and a coplanar standard DCGA GIPNS 4-vector
circle C=S^� in the plane � is de�ned as

X = ( ��)^ (C ��)^� (21)
' �^S^�: (22)

If 
1=(B12S)^� and 
2=(B22S)^� are standard DCGA GIPNS 4-vector circle C
or line L entities in the plane �, then their DCGA GIPNS 8-vector intersection X with
a coplanar DCGA GIPNS 4-vector section 1D-surface plane-curve entity  =�^� can
be de�ned as

X = ( ��)^ (
1 ��)^ (
2 ��)^� (23)
' �^B1^B2^�: (24)
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4 Applications

4.1 Orthographic projection of a conic section

The orthographic projection �ortho of a DCGA GIPNS 4-vector conic section entity �=
K^�� onto a standard DCGA GIPNS 2-vector plane � is de�ned as

�ortho = (� ��)�¡1: (25)

orthographic projectionview plane
�=�z=0 �ortho=(� ��)�¡1

�= �
ellipse

x

z

y

Figure 9. Orthographic projection of ellipse

Figure 9 shows an orthographic projection �ortho of an ellipse �=� onto a view plane
� =�z=0. The ellipse �, which is constructed as the intersection of an ellipsoid and a
plane, is rotated by 45� around the y-axis. The Gaalop Visualizer CLUscript for this
�gure is:

E=Ellipsoid(0,0,-2,3,2,1)^Plane(0,0,-1,2);
:Blue;:ER=Rotor(0,1,0,45)*E*~Rotor(0,1,0,45);
:Black;:P=Plane(0,0,1,0);
:Black;:ORTHO=(ER.P)*~P;

4.2 Perspective projection of a conic section

The perspective projection �persp of a DCGA GIPNS 4-vector conic section entity �=K^
�� onto a standard DCGA GIPNS 2-vector plane � from the view point p=xe1+ ye2+
ze3 represented by a standard DCGA GIPNS 2-vector sphere S with center PD=D(p)
can be de�ned as

�persp = (((� �S)S¡1) �S)^� (26)
= (Sc((� �S)S¡1))^� (27)
= Kp^�: (28)

The conic section � is projected onto the sphere S as �0 = (� � S)S¡1. The sphere S is
contracted out of �0 to form a cone Kp = �0 � S = Sc�0. The cone Kp has vertex point
PD =D(p) and it contains both curves � and �0. The cone Kp is intersected with any
view plane� to form the perspective projection. The radius r=/ 0 of sphere S is arbitrary,
but r=1 could be assumed.

Applications 13

13



It is also possible to use the re�ection S�S¡1 and de�ne �persp as

�persp = ((S�S¡1) �S)^� (29)
= (Sc(S�S¡1))^� (30)
= Kp^�: (31)

view plane

parabola
�= �=Bjjz^�z=¡2

sphere S
view point PD=D(p)

�0=(� �S)S¡1
spherical projection

Kp=Sc�0
cone�z=¡1

�persp=Kp^�z=¡1

perspective projection

z

y

x

Figure 10. Perspective projection of parabola

Figure 10 shows a perspective projection �persp of a parabola � = � onto a view
plane �z=¡1 from a view point (or eye point) p= e1+ e2+ e3 at the center PD=D(p)
of a sphere S. The sphere S, not rendered, is shaded. The parabola � is constructed as
the intersection of a z-axis aligned parabolic cylinder Bjjz and the xy-plane �z=¡2. The
Gaalop Visualizer CLUscript for this �gure is:

:Red;:C=PCylinderZ(1,-2,-2,2,5,1)^Plane(0,0,-1,2)/8;
:Blue;:S=Sphere(1,1,1,1);
:Red;:PRJS=(C.S)*~S;
:Green;:K=PRJS.S;
:Black;:P=Plane(0,0,-1,1);
:Black;:PERSP=K^P;
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sphere
S

cone
Kp=�0 �S

view plane
�z=¡1

perspective projection
�persp=Kp^�z=¡1

�= �=E^�z=¡2
ellipse

re�ection
�0=S�S¡1

Figure 11. Perspective projection of ellipse using re�ection

Figure 11 shows a perspective projection �persp of an ellipse �= � onto a view plane
�z=¡1 from a view point (or eye point) p = e1 + e2 + e3 at the center PD = D(p) of a
sphere S with radius r=2. The ellipse � is constructed as the intersection of an ellipsoid
E and plane �z=¡2. The ellipse � = � is re�ected in the sphere S as �0 = S�S¡1. The
cone Kp is formed by contraction as Kp=�0 �S=Sc�0. The cone Kp is intersected with
a view plane �z=¡1 to form the perspective projection �persp=Kp^�z=¡1. The Gaalop
Visualizer CLUscript for this �gure is:

:Red;:E=Ellipsoid(1,-2,-2,3,2,1)^Plane(0,0,-1,2)/8;
:Blue;:S=Sphere(1,1,1,2);
:Red;:REFS=S*E*~S;
:Green;:K=REFS.S;
:Black;:P=Plane(0,0,-1,1);
:Black;:PERSP=K^P;

5 Conclusion

This paper has presented the DCGA conic section and DCGA cyclidic section entities,
which are generally called DCGA section entities. The section entities are quartic, cubic,
quadratic, or linear plane curves formed as the intersection of a DCGA plane with another
DCGA surface, which can generally be any Darboux cyclide surface. This paper also
presented many of the operations that are available on the DCGA section entities. The
operations include re�ections, projections, rejections, and intersections against spheres
and planes. The DCGA operations for rotation, translation, and dilation on all DCGA
entities are also valid on the DCGA section entities. As possible applications, ortho-
graphic and perspective projections of conic sections were presented.
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This paper has presented, or introduced, only some of the most basic results on the
DCGA section entities. Much additional research could be done on these entities to
develop many more results and applications that could be discussed in future papers and
books.
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