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1.  Introduction 
 
The Dirac electron theory is unique in that it is 
relativistic invariant and that it predicts two states of 
matter having opposite charges [1-4].  In addition is the 
concept of a full vacuum; one in which positive energy 
states, such as those of a gamma ray, can activate 
electron-positron pair production in which an electron 
is kicked out of the Fermi-Dirac sea to a positive 
energy state, leaving an electron hole position in the 
negative energy sea.  The two sign solution lead to the 
postulate of antimatter which has been well identified.  
In the 1920’s when Dirac developed his mathematical 
description of the relativistic electron, the obtainment 
of an antielectron or positron solution, in addition to 
the electron solution, did not lead immediately to 
hypothesis of antimatter and appeared to be an 
anomalous solution. In 1932 Carl Anderson discovered 
the positron in cloud chamber photographs leading to a 
good example of prediction and confirmation.  With 
the advent of the prediction of the antiproton and its 
identification at the Berkeley Bevatron bubble chamber 

by Emilo Segre and Owen Chamberlain in 1958, the 
pairing of matter and antimatter lead the conundrum of 
why we observe more matter then antimatter in the 
Universe. Matter and antimatter when they collide 
produce massive amounts of energy, E = mc2 
producing high energy gamma rays through the 
annihilation process. 
 Further development of the theory led to the 
concept of a full vacuum termed the Fermi-Dirac sea.  
A gamma ray can impact heavy nuclei producing an 
electron-positron pair.  In the Fermi-Dirac sea model of 
the vacuum there are the normal positive energy states 
E > 0 and zero energy states E = 0 as the surface of the 
Sea and negative vertical energy electron states, E < 0.  
The energetic photon kicks out an electron into the 
positive energy states, leaving a hole in the Fermi-
Dirac sea.  This hole is the positron. 
 The Fermi-Dirac sea model has numerous 
applications from Feynman diagram techniques to 
modeling semiconductor substrates [5-7]. The presence 
of the full vacuum picture has been useful in describing 
many states of matter including particularly more 
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exotic state of matter such as plasmas. In plasmas, the 
energy of the ionized plasma gas, activates the 
electron-positron pair production by polarizing or 
biasing the vacuum. Using Feynman graphical 
techniques, one can definitely demonstrate the actual 
effects of the Fermi-Dirac energy sea on such plasma 
dielectric constant, conductivity and other properties in 
medium to high temperature plasmas.  The fit of these 
plasma parameters are to the formalism including the 
full vacuum picture, than just the classical or semi-
classical approach [7,8]. In this chapter, we solve the 
Dirac equation in the Complex Minkowski 8-Space and 
examine conditions in which the imaginary 
components of the complex 8-space contribute to small 
nonlinear terms in the Dirac equation. We also examine 
the spinor calculus and the Dirac string trick in their 
interpretations in M4 and C4 space. Historical 
interpretation of some of the major theories in the 
foundation of physics are examined. 
 
 
2 The Basic Structure of Physical Theories and 
Their Interrelation 
 
In the attempt to develop a unified theory the thorny 
issue of quantum mechanics and relativity arises as to 
the manner in which to find a quantum gravity 
formalism. The reconciliation of two distinctly 
structured theories, having different domains of 
applicability has been a conundrum to physicists for 
over seventy years. The basic structure of gravity, 
described by general relativity is a nonlinear tensor 
force and the basic formalism of the quantum theory is 
that of linear superposition. We examine this latter 
issue on the consideration of additional terms that 
introduce small nonlinear terms in the Schrödinger 
equation, which are formulated in terms of the complex 
8-space. One of us (EAR) believes this scenario may 
take us closer to a quantum gravity regime. Another of 
us (RLA) believes instead that a 3rd regime of Unified 
Field Mechanics (UFM) rather than a Quantum-GR 
correlation is the arena of integration; and for this 
reason 4-Space gravitational waves are not detectable. 
(see Feynman quotation on next page) The RLA UFM 
model represents a paradigm shift to a nilpotent 
complex 12D space-antispace with correspondence to 
dual Calabi-Yau 3-tori mirror symmetry based more on 
parameters of the original hadronic form of String 
Theory rather than added restrictions to the current M-
Theoretic incarnation and is beyond the scope of this 
paper [36-38]. 
 The reconciliation of the formalism of gravity and 
quantum mechanics is essential to developing a 
unification of the forces and processes of nature as a 

“theory of everything” (TOE). Historically the 
development of these two uniquely different theories 
has their roots in the classical Hamilton-Jacobi theory. 
A major link between quantum and relativistic theories 
is the Dirac equation [9]. Figure 1 represents the 
development of physics from the past; the top of Fig. 1 
current time and the bottom of Fig. 1 the concept of 
canonically conjugate or paired variables obeying an 
Abelian algebra as developed in Hamilton-Jacobi 
classical mechanics as the (p,q) phase space variables, 
where p is momentum and q is a spatial dimension, x 
[9].  This structure is fundamental to the non-Abelian 
algebras of the quantum theory, exemplified by the 
Heisenberg uncertainty principle, p   . Bohr’s 
complementary principle is funda-mental to the dual 
paired variables (p, x) of the quantum theory.  The 
paired variables (E, t) for energy and the temporal 
dimension can also be considered for E t    . The 
relationship between the classical Hamilton-Jacobi 
theory and the quantum picture is Bohr’s 
correspondence principle. The structure of general 
relativity and quantum mechanics is fundamentally 
very distinct. The standard quantum picture involves 
linear superposition where as general relativity 
formulates non-inertial frames or gravity which is 
intrinsically nonlinear. Galileo’s law of fallowing 
bodies exemplifies the nonlinearity of gravity in a very 
cogent manner, that is the distance of fall, s to the time, 
t2 is given as s = ½(gt2) where g is the acceleration of 
Earth’s gravity. 
 The Hamiltonian equations are based on energy 
conservation H = T + V where T is the kinetic energy 
and V is the potential energy.  For the Lagrangian, L = 
T – V.  Then 

2 2
2
pH qm    so that the equation of 

motion is written as 0q q   where p is the 
momentum and q is the spatial variable for the 
canonically conjugate variables of phase space (p,q).  
then the Hamiltonian expressions apply,  

 
p Hp t q
                (1a) 

 
q Hq t p
               (1b) 

 
See [9-11]. 

The concept of energy conservation lies at the 
center of most major physics formulations. The 
conservation of total energy, E  is expressed as the 
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sum of the kinetic and potential energies respectively 
as E = E + V in classical mechanics. The 
conservations principle, as the first law of thermo-
dynamics, has applicability in many diverse fields of 
knowledge such as information theory. The 
Schrödinger equation is a basic expression of the 
quantum theory and is expressed in terms of the total 
energy Hamiltonian as the sum of the kinetic energy, E 
and potential energy, V written as H V     
where   is the eigenfunction and E is the 
eigenenergy. 
 Energy or energy-momentum conservation is 
essential to both the quantum theory and general 
relativity.  We examine, in detail the derivation of the 
Schrödinger equation from its classical origins [9]. We 
represent the origin on developments of the non-
relativistic quantum theory on the right of Fig. 1.  
 

  
Figure 1. A schematic representation of the history and 
structure of the fundamental equations of physics. 
Earlier time to present is represented from top to 
bottom of the Fig.. Gravity may not be quantized if the 
quantum regime ends in a way similar to the boundary 
between classical mechanics and quantum mechanics. 
 
 Essentially the development of a quantum gravity 
theory, which forms a synergy of these two pillars of 
physics is fundamental to developing a unified theory; 
see Chap.13. Supersymmetry theories, GUT and TOE 
theories incorporating superstring theories are 
approaches and attempts to unify the four force fields 
of the strong force, electromagnetic force, weak force 
(electroweak force) and gravity. We have considered 
the efforts of adding small nonlinear terms arising from 

the complexified 8D Minkowski space into the 
quantum picture.  In Chap. 10, we examined the 
consequences of this approach for the structure and 
solutions to the Schrödinger equation.  In this paper, 
we examine a similar approach to complexification the 
Dirac equation. 
 In the left vertical history in Fig. 1 we represent the 
evolution of the structure of the general relativistic 
field equations from the Poisson equation. In the 
structure of these basic theories, conditions are 
required such as covariance which is basic to relativity 
or a relativistic quantum theory. The condition of 
covariance means that the equations that describe the 
system are constant so far as the quantities on both 
sides of the equation transform in the same manner 
covariantly. For example, the expressions of both sides 
of the equations must be scalars, vectors or tensors. We 
consider the origin of Einstein’s field equations from 
classical mechanics, represented on the left of Fig. 1. 
 As suggested in Fig. 1, if there is a limit to the 
quantum regime in the same way quantum theory 
makes correspondence to the limit of classical 
mechanics; there may be no quantum gravity in the 
manner currently sought because the quantum regime 
may end before the regime of the unified field. Indeed, 
Feynman said: 
 

...maybe we should not try to quantize gravity. Is it 
possible that gravity is not quantized and all the rest 
of the world is?...Now the postulate defining 
quantum mechanical behavior is that there is an 
amplitude for different processes. It cannot be that a 
particle which is described by an amplitude, 
such as an electron, has an interaction which is not 
described by an amplitude but by a probability...it 
seems that it should be impossible to destroy the 
quantum nature of fields. In spite of these 
arguments, we should like to keep an open mind. It 
is still possible that quantum theory does not 
absolutely guarantee that gravity has to be 
quantized. From Feynman, 1962, Lectures on 
Gravitation. 

 
Gauge Theory is an approximation, which could mean 
there is no spin 2 graviton detectible in Minkowski 
space, no Higgs’ mechanism, no super-partners or 
sparticles and why no magnetic monopole has been 
detected. What is looked for instead are complex HD 
topological parameters (topological charges in Calabi-
Yau cavities) where brane boundary conditions handle 
these properties in a new way as Feynman suggests.  

Basic to the classical formalism of 
electromagnetism and relativistic physics is the Poisson 
equation of the form 2 4    where the 
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divergence 2  of the potential field   is proportional 
to the energy (or energy mass) density,   in the space 
considered. The Laplace equation, 2 0   is written 
for a density free space. 
 From classical mechanics, we can describe the 
gravitational field by Poisson’s equation 
 

  2 4 G         (2) 
 

Where   is the gravitational potential and   is the 
matter density for   and   are scalars.  We can 
generalize this equation in the linearized theory to  
 

16 ( )G Tc
          (3) 

 
Where   describes the gravitational field,   
corresponds to non-gravitational sources and the T   
term expresses the fact that the gravitational field can 
act as its own source.  The 416 /G c  term assures 
that the classical limit obeys the Poisson equation. Also 
F = c4/G is the universal force [11].  In deriving 
Einstein’s field equations, we first examine the non-
relativistic limit of the linearized field equations. 
Assuming static conditions then T00 = mc2 the only 
component of the energy-momentum tensor.  
Neglecting t  for now, we have  
 

   
2 00 00

4
00 2

16
2 16 /

G
c

Gm cF

  


    
  


  (4) 

 
where T00 is a scalar and m is the mass having mass 
density  . To convert back into Poisson’s equation, 
we must have 00 24 / c    where   is the 
Newton’s potential and 00 is a scalar.  The 8  and 
16  term correspond to the relativistic and non-
relativistic terms, for 2 212 orE mv E mc  . 
 We can describe the gravitational field by Poisson’s 
equation of classical mechanics 2 4 G    where   is the gravitational potential and   is the matter 
density.  A more general form of this equation is 
expressed including the continuity equation (for 
energy, mass and charge conservation) as 

2 24 ( 3 / )G p c      where p is momentum. 
 The generalized form for the above equation is 
given in Eq. (4) where  describes the gravitational 
field and -2 /F insures the proper dimensionality.  We 
now consider the solutions to Eq. (3) to demonstrate 
that the Poisson equation leads to Einstein’s field 
equation solutions, we proceed as follows again 
utilizing Poisson’s equation and the continuity 
equation. For 
 

          
2 24 ( 3 / )G p c          (5)  

  
dv
dt             (6a) 

 
 then we have  
 

2)( /v p ct
               (6b) 

 
for  0v S   where S is arbitrary term within a 
constant multiplication factor which depends on the 
time chosen so that S(t0)=1. If we define 

12( )( ) R tS t Cc  then 
12

0( ) CS t c  where R(t) is 
the curvature of space and C is a constant.  Using the 
equations for 2 , dv

dt  and t

  or Eqs. (5, 6a and 

6b) or acceleration, then we have 
2 28

3
GS S C    and the relationship for S(t) 

then 2 2 28
3
GR R kc    where 0, 1k    

which is one of the solutions to Einstein’s field 
equations. 
 It is clear that it is essential to examine the structure 
of the basic equations of physics that describe the 
micro and macro domains.  Their origins from the 
classical Hamilton-Jacobi theory and classical concepts 
in general give us clues as to the manner in which to 
reconcile these theories and develop an approach to a 
unified theory. The Dirac equation stands unique in 
that it is relativistically Lorentz invariant. See Table 1 
for force field type range and possible velocity of 
propagation. 

Table 1 lists some types of physical phenomena, 
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relevant forces involved and their velocity domain, v = 
0. v = c and possibly orv v c    in complex 8-
space as well as their theoretical speculative range. Six 
branches of physics are given with their forces and 
range. In The three domains of signal propagation as 

related to five branches of physics. These modes of 
signal propagation are manifest in other branches of 
physics also. We compare this to the signal propagation 
velocity associated with local and nonlocal phenomena. 

 
 

TABLE 1 
 

DOMAINS FOR  0,v v c   AND v    AND BRANCHES OF PHYSICS 
 Branch of Physics Domain Type of Force Theoretical Range  

                             Hamilton-Jacobi         0v             Mechanical                        
                           Mechanics 
 

                            Electromagnetism        v c         Electromagnetic          
 
                            General Relativity        v c            Gravitational       

                           Cosmology 
 

                            Superconductivity        v                      ?      ? 
                       Macro-Quantum 
 

                          Young’s Double Slit   v             Electromagnetic    Finite 
                    Quantum Mechanics    
 

                            Bell’s Nonlocality         v            Electromagnetic       Infinite ? 
      and Atomic 
 
 
3. The Basis and Structure of the Dirac Equation 
 
The Dirac equation obeys the proper relativistic 
invariant conditions so it comprises a quantum theory 
that obeys relativistic constraints on the lightcone. A 
geometry defines a space which is an idealization of 
the physical 4D space of objects and momentum and 
locations. The lightcone with its hyperbolic topology is 
a covariant representation of spacetime regions.  A Lie 
group is a topological group. For the relativistic form 
of the Dirac equation we use 2 2 2 4( )xE p c m c   
where E is the relativistic energy and xp  is the 
momentum in the x direction.  We start from E = mc2 
and  px  = mvx  so that m = E/c2.  We have px/m = v x = 
px/(E/c2)= 

2
xp c
E .  For the relativistic form of the 

energy  
                                     

2 2
2 2 21 1 /x

mc mcE v c   .
   (7) 

 
Then eliminating vx between vx=

2
cp c
E  and Eq. (7) in 

the form of  
 

 
2 2 21 /x

mc v cE       (8) 
 
and then taking the inverse relation,  
 

2 2
2 21 xvE

mc c
      ,

     (9) 
 
so that vx is given by  
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2 22

2 4 2 2( 1) 1x
E Ev c cm c m c    

.   
 (10) 

 
 Then eliminating vx from Eq. (10) and vx = px2c2/E  
 
so we have 

2 4 2
2 4x

m c Ep c E m c
     (11) 

 
Then 2 2 2 4 2p c m c E   so that 

2 2 2 4
xE p c m c    so we have the usual 

relativistic energy equation  
 

 
2 2 2 4E p c m c  .     (12) 

 
For the three components of the momentum, 

         
2 2 2 2 2

x y zE c p p p m c     .   (13) 
 

  To derive the Dirac equation based on the two 
operators xopp i x

 
  and opE i t

  
  so that   

 
2
2

2 22 2 4
2 2xc n ci t y z 


          

  (14) 
 

 where   is the wave function solution. The 
Hamiltonian is written as  
   12 4 2 2 2H m c p c        (15) 

 
having two solutions which are given in terms of the 
energy equation  
 

   
2 4 2 2E m c p c         (16)  

 
which is the basic energy equation for the relativistic 
Dirac equation.  Also other Hamiltonian forms can be 
written for a charged particle in an electromagnetic 
field as, 
 

    12 2 2 2[H m c cp eA e        (17)  
 

where A is the vector potential and   is the scalar 
potential. Because we are dealing with a first order 
equation in space and time dependence, we have a 
square root giving two solutions, one is for the usual 
electron and the second is for a positive electron or 
positron. Dirac stuck to his two charge solution 
prediction which was later verified and led to the whole 
concept and discovery of antimatter [13]. 
 
 
4. The Relativistic Dirac Equation  
Proceeding from the Schrödinger equation, we express 
the Hamiltonian in spherical coordinates as  
 

22
2

1 ( )2 r
LH p V rm r

      ,         (18) 
 

where pr is the radial momentum ( )mr and L the 
angular momentum vector.  As is well known, the three 
components of angular momentum, derived from each 
other by cyclic permutation, are ,z y xL xp yp   ,x z yL yp zp   y x zL zp xp   and L r    
where the total angular momentum, 

2 2 2 2
x y zL L L L    has commutation rules 

L L i L    [14-16].   
 The SO(3) rotation generators 1 2,l l  and 3l  satisfy 

1 2 2 1 3,l l l l l   2 3 3 2 1,l l l l l   3 1 1 3 2l l l l l  ; related 
quantum mechanically to angular momentum 
components 1 2 3, ,L L L  with 1 2,x yL i l L i l    

3and zL i l   about Cartesian axes giving 
commutation rules ,x y y x zL L L L i L    

y z z y xL L L L i L    and z x x z yL L L L i L   . 
 Angular momentum refers to intrinsic spin about a 
massive particles center of mass and its magnetic 
moment obeys SO(3) Lie algebra which is non-Abelian 
acting on two component spinor wave functions 

0 1{ ( ), ( )} Ax x    ; but by the uncertainty 
relation, x      only one set of these operators 
may commute at a time.  Non-relativistic Fermi spin 1/ 2 , or simply spin ½, particles with spin angular 
momentum operator 1/ 2s    can be expressed as 
the three anticommuting Pauli 2 x 2 spin matrices Eq. 
(19) satisfying x y y x zi        as derived 
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empirically from the Stern-Gerlach experiments [13-
18]  
 

0 1 ,1 02
0 ,02
1 0
0 12

x x

y y

z z

L
iL i

L





     
     

     







     (19)  

 
where the total spin operator is given as “total spin” 
operator, 2 2 2 2

x y zJ L L L     commutes with all three 
components of L in 3D. 
 Spinor space and spin spaces, such as hypercharge 
are developed in independent topological spaces. 
Spinors and spin space can be complexified and 
occupy a hyperspace continuum. For example, the 
special unitary Lie groups, which are topological 
groups having infinitesimal elements of the Lie 
algebras, are utilized to represent the symmetry 
operations in particle physics and in infinitesimal 
Lorentz transformations. For example, the generators 
of the special unitary SU2 group is composed of the 
three isospin operators, I as I+, I- and Iz having 
commutation relations [ , ] zI I iI   .  The generators 
of SU3 are the three components of I, isospin, and 
hypercharge Y, and for other quantities which involve Y 
and electric charge Q. Thus, there are 8 independent 
generators for the traceless 3 x 3 matrices of SU3.  The 

3O group of rotations is homomorphic to the SU3 
group.  Just as in the conformal group on Minkowski 
space, spin space forms a two-valued representation of 
the Lorentz group.  Note that SU2 is the four value 
covering group of C(1,2), the conformal group of 
Minkowski space.  The element of a four dimensional 
space can be carried over to the complex 8-space. 
 For spin, n the Dirac spinor space is a covering 
group of SOn where this cohomology theory will allow 
us to admit spin structure and can be related to the SU2 Lie group. Now let us consider the spin conditions 
associated with the Dirac equation and further 
formulate the manner in which the Dirac “string trick” 
relates to the electron path having chirality [13,16,18]. 
See Chap. 11.  

Relativistic spin 1/2   particles are described by 
Dirac’s formalism for the wave equation which has 
been expressed by a number of notations such as 

2( ) 0E c p mc         

or                 
 

2 0i i c mct
               (20) 

 
for 1c   and for the time dependent equation, which 
is first order in space and time with fermion particle 
mass, m 
 

2 0ii c mcx t


           


. (21) 
 

We express the 4 x 4 Dirac   and   matrices as, 
0 ,   which are Hermitian and are expressed in 

terms of the 2 x 2 Pauli matrices,   for example 
 

      

0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0
0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

x
x

x

 

 

        
    

      

       (22a) 

            




































0010
0001
1000

0100

000
000
000

000
zy

i
i

i
i

   (22b) 

In the case where m = 0  or at very high energies, E 
where a particle of mass, m behaves like zero mass, 
only three anticommuting matrices instead of four are 
required. In this case the Pauli matrices are sufficient 
and the spinors require only 2 components which relate 
to the chiral representation [24]. The  ’s satisfy the 
equation x y y x zi       .  In general, we can 
write, of 2 x 2 matrices,  
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x y y x zi           (23a) 

y z z y xi                 (23a) 

z x x z yi                 (23c) 
2 2 2 1x y z                    (23d) 

 
Where s s is   and 2i    . 
 The Pauli spin matrices are unitary 1

x x   . See 
Eq. (12, 19) for the 2 x 2 Dirac matrices. The Klein-
Gordon equation is a 4D form where the wave function 
depends on (x,y,z,t) and is written as 

2 2 0m   


 where 2  is the D’Alembertian 

operator, 
22 2 22

2 2 2 2 2
1z

x y t c t
           and m is 

the mass of the particle under consideration.  Note that 
this equation is second order in space and time as is the 
classical wave equation whereas the Schrödinger 
equation is second order in space and first order in time 
in part the reason for the 1i    term in the 
equation. The first order in time term requires the I 
term in it. 
 We now write the Dirac equation in terms of the   
matrices. For a spin, s= ½  particle, the spin vector u(p) 
is written as 1

0
     and 0

1
     for spin up and spin down 

respectively where p is momentum. For a particle with 
mass we have 1c  . For the independent form of Eq. 
(21), 

2 0i c mcx


               (24) 
 

for the time independent equation, and we can divide 
Eq. (24) by i c  and have,  
 

0mc
x


       
        (25) 

 
Where 0 0/ or /k p k mc    and 

i c    where indices   run 0 to 3.  The 

dependent Dirac equation is given in Eq. (21). 
 Consider spinors as basic geometrical entities that 
apply at a deeper level of spacetime. Spinors are 
complex and have real fields and real manifolds have 
on underlying complex nature. An essential description 
of nature involves complex numbers and holomorphic 
functions. Spinors can be mapped to twisters and vice 
versa. Spinors are two component entities involving the 
isomorphism of the conformal group and SU(2,2) 
which can be related to the Yang-Mills theory. The 
solution to the Dirac equation is in terms of spin u(p) as  
 

( ) ( )iu p e p x Et   
    

    (26)  
 

the Dirac spin matrices i c    . The spinor 
calculus is related to the twistor algebra, which relates 
a 2-space to an associated complex 8-space (see 
reference [25]). 
 An example of the usefulness of spinors is in the 
Dirac equation. For example, we have the Dirac spin 
matrices, 0

0 ki
 

 
       where terms 

such as 5(1 )  come into the electroweak vector-
axial vector formalism. The three Dirac spinors are 
given as,  

0 1 ,1 02

0 ,02

1 0
0 12

x x

y y

z z

L

iL i

L







     
     

     







.    (27) 

 
Then 0 1 2 3

5 0 1 2 3i i           for 0   is 
given as 

           

 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 
        

   (28) 
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for trace 0tr  , that is Eqs. (21) and (28) can be 
written as,  
 

2
0

2

0
0
I

I                     (29) 
 

where we have the 2 x 2 spin matrix as 2
1 0
0 1I  for 

trace I2 = 2. The Dirac spinors are the standard 
generators of the Lie algebra of SU2. The commutation 
relations of the Dirac spin matrices is given as  
 

          
{ , } ig I                    (30) 

 
 
where I is the identity element and 
det det g    where g  is the metric tensor. 
The Dirac spin matrices come into use in the 
electroweak vector-axial vector model as 5(1 )   
for 5  as,   
 

  0 1 2 3
5 0 1 2 3i i                     (31) 

 
where indices run 0 to 3.  We can also write,  
 

  55 ( )( , ) n inx
n

x x x e   


     (32) 
 

which expresses some of the properties of the 5D 
Kaluza-Klein space, having 0 1 2 3, , ,     and 5 . See 
Chap. 4. 
 As before stated 4 x 4 the  matrices are 
Hermitian, *    and          where 
   and 2 1  . The form of the Dirac equation in 
Eq. (25) is the covariant form of the wave equation. 
The 4-vector form for spin ½ fermions for s = ½ and me = m, the mass of the electron.  The   matrices are 4 x 
4 matrices with 16 elements which obey the following 
relations  , 2x                where 

 is the Kronecker delta function. The Dirac spin 
matrices obey Fermi-Dirac statistics, where particles 

such as photons obey Bose-Einstein statistics. 
 The 5 matrix is associated with a 5D metric 
tensor. See Chap. 11. This 5D space passes exactly one 
geodesic curve which returns to the same point with a 
continuous direction.  Note that this is a similar 
formalism to that of the Dirac string trick 720o path. A 
connection can also be made to the electromagnetic 
potential and the metric of the Kaluza-Klein geometry. 
We can express 5  in terms of a potential   so that  
 

5 2k              (33) 
 

Where 8 /k F  and where 4 /F c G  or the 
quantized cosmological force [8-10] (also see Eq. 
(14)). Then we have a 5-space 3-vector as, 
  

5

0
0
0 .
0
1


         

                         (34) 

 
Through this approach, we can relate covariance and 
gauge invariance. See section 2 and Chaps. 5 and 6. 
 For the covariant equation of motion in terms of  

  
    

* * *
0 0mc

x t


        
     (35) 

 
Then 0*    and *

0   and using Eqs. (21), 
(22), and (32) we can write the matrix for   as the 
complex conjugate of *  for two spin states of 
electrons. The corresponding wave function can be 
written as the bispinor or  4-spinor. The 4-component 
function transform under rotations in exactly the same 
manner as the Pauli spinors. The wavefunction,   is 
four rows and one column, 4 x 1 vector matrix. 
 

1
2
3
4

,u


   


              


      (36) 
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31
2 4

,u   
         

 .      (37) 
 

Where the indices u and   correspond to upper and 
lower respectively and  
are each 2-component spinors. 
 The 5  matrices are utilized in the formulation of 
the electroweak theory.  The weak interaction 
Hamiltonian is formed in analogy to QED in which the 
Hamiltonian H is given as,  
 

( )e m i jH ie A     .       (38) 
 

Where i is the Hermitian conjugate of j  which are 
the eigenfunctions of the Hamiltonian and A  is the 
electromagnetic potential. In analogy to Eq. (38), the 
weak interaction Hamiltonian 
 

weak 5 5(1 )H u u           (39)  
 

where 5 u   is the axial vector part and the wave 
function is u. 
 
 
5. The Dirac Equation in Complex 8-Space 
 
We examine the formalism for the Dirac equation in 
the complex 8D space where the additional nonlinear 
terms arise from the imaginary components of the 8D 
space. The approach here is similar to that which we 
performed for the Schrödinger equation solved in 8D 
space; see Chap. 10. We proceed from the 
complexification of the Minkowski spacetime in which 
we formulated Maxwell’s equations, Chaps. 5 and 6 as 
well as the Schrödinger equation. We identify the 
spinors as acting in a spin space in which spin is a 
conserved quantum number. Such a picture gives us 
understanding of the properties of spin but not its 
origin or source. This point is similar to that we made 
about charge. Physicists currently discuss the 
properties of charge as a conserved quantum number 
but the manner in which it arises is not addressed as we 
previously discussed. However, the origin of mass is 
formulated in terms of the elusive Higgs particle which 
may be an artifact of Gauge Theory being an 
approximation and might not exist. 
 

  
Figure 2. Through a 90o transformation Re  Im and 
180o Re -Re, for a 270o rotation Re - Im and for a 
360o rotation + Re comes back to +Re.  These comprise 
conditions in which the 360o case is relevant to the 0o 
case.  
 
 The complex conjugate of spin space can be made 
since the Dirac 2 x 2 and Pauli 4 x 4 matrices are real 
and imaginary; hence the matrices in Eqs. (21) and (22) 
and their commutation relations will be effected by 
Eqs. (23a), (23b), (23c) and (23d). The angular 
momentum space will also be effected by a 
transformation in complex L space; see Eq. (19).  
Essentially formulating the Dirac equation in complex 
space and time utilizes the complex Minkowski 
formalism presented in Chap. 2. We proceed along the 
approach we have taken in Chap. 10 for the 
Schrödinger equation.   
 
 
5.1  Complexifying Spin Space 
 
Complexifying spin spaces effects the Dirac spinor and 
Pauli matrices.  These are formulated in angular 
momentum space, see Eq. (19).  For example, the SU3 octet with the mass splitting of the p+ and N0 and octet 
is plotted in Y spin and I2 space.  For example from Eq. 
(19), the Pauli matrices x ix y iyi i      and 

z izi  which satisfy the commutation relations 
ix iy iy ix izi i i i i        for 1i    so that 

ix iy    iy ix iz      therefore 
ix iy iy ix iz       . This commutation relation 

for the imaginary components of the  ’s give a new 
commutation relation, that is, instead of zi  we have 

iz . The real components of the 2 x 2 matrices given 
in Eq. (19) become  
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0 0 1,0 1 0

0and 0

ix iy

iz

ii ii

ii i

 



          
    

       (40) 

 
so that now ix  and iz  become imaginary and iy  
becomes real as opposed to the expression in Eq. (19) 
where x  and z  are real and y  is imaginary. We 
can expand this approach to Eqs. (23a), (23), (23c) and 
(23d). 
 We can term the 4 x 4 Dirac matrices   and   
for Eqs. (21) and (22), as real and so is x  and z  but 

y  is imaginary. These matrices comprise the real 
components of the complex 8D space. For Di i   
then 
 

0 0 0
0 0 0
0 0 0
0 0 0

i
ii i

i


        
.           (41) 

 
Where the trace, 0tri   is the real form of  . 
For the imaginary part of the 4 x 4   matrices, from 
Eq. (22) we have, 
 

0 0 0
0 0 0
0 0 0

0 0 0
ix

i
ii i

i


        
,          

 
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

iyi
        

,     (42) 

 

0 0 0
0 0 0

0 0 0
0 0 0

iz

i
ii i

i


        
      

 
Note that none of the matrix in Eq. (28) or Eq. (30) 

are the same as Eq. (19) or Eqs. (21) and (22). The 
notation for the imaginary part of ixi  is the same as 

ximi , etc. [20]. Consider Eq. (30), for 5 , we chose 
the imaginary components of the   matrices so that,  

 
5Imi  0 2 3i    0 1 2 3i         (43) 

 
In which 5Re 5Im   . From Eq. (34) we have the 
imaginary component as   
  

        5

0
0
0 .
0

i

i


         

        (44) 

 
The imaginary components of the   matrices remain 
covariant under the transformation to the imaginary 
light cone. 
 Writing out the components of the   matrices in 
the Dirac equation, we have 
 

1 2 3 0 0i mc
x y z t                   

   (45) 
 

for the time dependent form. Equation (45) is first 
order in space and time.  If we consider the 
complexification of the bispinor space and spacetime, 
the imaginary forms of the  functions and the spatial 
and temporal derivatives remain the same under a 
transformation, however the mass term in Eq. (45) goes 
from mc


 to imc


. That is the signal becomes 

tachyonic. Complexification produces more changes in 
the Schrödinger equation because it is second order in 
space and first order in time but since the Klein-
Gordon equation and Dirac equation are the same order 
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in space and time so that only the mass terms are 
effected. This holds true for the linear approximation of 
these equations. Nonlinearized forms can lead to 
distinctly different results.  See next subsection and 
Chap. 10. 
 We can write the imaginary form of Eq. (45) as,  
 
 

1 2 3 0 0i imc
x y z t                    

   (46) 
 

for the tachyonic mass, im summing real and imaginary 
components yields a factor of 2 times the components 
of Eq. (46) except we have the sum of tardyon and 
tachyon mass terms as  
 

  m im c


        (47) 
 

and the interpretation of such a term requires further 
examination such as the imaginary component relating 
to the particle decay time of mass, m.  Electrons are 
stable but other fermions, such as electron, muon and 
tau neutrinos, muon and tau can decay. This approach 
will affect our solutions to the Dirac equation; see Eqs. 
(36) and (37). 
 
 
5.2 Nonlinear Formalism of the Dirac Equation 
 
In this subsection, we examine some of the properties 
of the Dirac equation by considering the introduction 
of a small nonlinear term arising from a projective 
geometry from the full complex 8-space, 4  into the 
4D Minkowski space, M4 such that the imaginary 
components of 4  are expressed in terms of a 
nonlinear term  2g    for the wave function   
[21]. The essential properties of the complex 8-space is 
nonlocality and by introducing the additional 
imaginary components of the 4  space, remote 
spacetime connections are allowed for microscopic 
connections (see Chaps. 4 and 10) and macroscopic 
phenomena such as in Chaps. 2,5,6 and 7. It is 
interesting to examine the Dirac equation in this light 
because it is a quantum expression which is 
relativistically invariant. 

We can write the equation of motion for a nonlinear 
system 

 

 2 0i m gx          .   (48) 
 

Where   and *  are the Hermitian and complex 
conjugate of   respectively;   is also used for 
Hermitian conjugate the nonlinear term is expressed as 
the coupling term g2. For the associated action variable, 
S, expressed in terms of a field  ,x t  and its 
conjugate  ',x t  , we write  

              S dt dx i H          (49) 
 
and where  , 'x x        and   and    are 
orthogonal to each other.  The Hamiltonian, H for this 
system is given in terms of our nonlinear term g2  
 

                   2H dx H dx gx x               (50) 
 
The solutions for this equation of motion, Eq. (48) are  
    , A , i tx t x t e          (51) 
    , A , i tx t x t e           (52) 

 
where A(x,t) is the wave amplitude.  

We form an expression for the Dirac equation for  2g    as a small additional term as,  
    2 0xi m g         (53) 

 
where we use the notation, /x x    . We can now 
write the charge density Hamiltonian as  
 

 2 2
2
gH i mx              (54) 

The Lagrangian for plane wave solution is given as 
 

   2 2
2x
gL i m          (55) 
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where the   Pauli spin matrices and  , density 
matrices .    Then the lowest energy plane 
wave solutions are expressed in terms of spinors  
 

    exp ui t v        ;            (56) 
 
where the spinors are u

v
    .     

For the case where the coupling constant g2 
small 0g  , the attractive force for nonlinear term and   is the quantized Fermi field. The small nonlinear 
term  2g    can be identified with the 
imaginary part of the mass, where in the linear 
approximation, mT = m = mRe + imIm where mT = m is 
the total mass.  In Eq. (48) we associate m with the real 
part of the mass, mRe and the additional imaginary 
component of the mass with mIm.  The imaginary 
component of mass may be associated with particle 
decay times for fermions in general. 
 We consider the solutions to two mass free coupled 
equations, where the coupling constant is expressed in 
terms of the nonlinear term g2 where g2 has two 
eigenvalues, g and  . For our coupled equation 
formalism, we have wave amplitude eigenfunctions u1 and u2. We have considered the coupled channel 
formalism in nuclear physics applications with good 
success [22-24]. 
 

1 1 2
u igu ig ux        (57a) 

 
 

2 2 1
u igu ig ux         (57b) 

 
The boundary conditions in the asymptotic limit on   
and    is given as   and 0, lim.x 

  
The solutions take the form of  

              ,
exp exp ( ) ( ) ( , )

x g
igx ig ds ig x s s s g


 


      (58) 

 
for 2 0g  , then we have,  
 

( ) igxa g e        (59a) 
 
 

( ) igxb g e               (59b) 
 

For the case where g small perturbation expansion can 
be made for g2 related to Jm = mJm = m*. There is 
much more to explore in the richness of the Dirac 
theory. The Fermi-Dirac model is significant in the 
considerations of nonlocal coherences in plasmas and 
other material media and the possible relation of the 
vacuum concept to advanced potentials and hidden 
variable theories related to nonlocality such as 
presented in Chap. 4. 
 
 
5.3  Generalized Wave Equations, Classical, 
Quantum, Nonrelativistic And Relativistic in Linear 
and Nonlinear Forms 
 
We present a detailed comparison of the form of a 
number of wave equations in linear and nonlinear 
forms and we demonstrate their interrelationship.  We 
summarize and discuss the structure of the 
Schrödinger, Klein-Gordon and Dirac equation. The 
uniqueness of the properties of spin and chirality of the 
Dirac string trick is presented, which is unique to the 
Dirac formalism [25-29]. The standard wave equation 
is second order in space and time 
 

  
2 2

2 2 2
1 ,d U d U

dx v dt        (60) 
 

 
where the amplitude, U  is a function of space and 
time, U(x,t), v  is the wave velocity and the amplitude, 
U is expressed in terms of oscillatory solutions. 
  The Klein-Gordon equation is also expressed as 
second order in space and time as 
 

2 2 0m  


       (61) 
 

where the D’Alembertian operator is given as   
 
 

2 2 2 22
2 2 2 2 2

1
x y z c t
         

  
  (62) 

 
We can write the wave mechanical treatment by 
revising the relativistic Klein-Gordon equation for the 
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zero rest mass of the photon, m = 0 so that 

22 2
2 0k t       . For 0m  , we have 

Re Imandm m m im   terms, which may add 
further to the understanding of the strong force [14]. 
Under the action of a potential goes as 1/r for a particle 
of mass, m such as the pion,   particle mass 

22 2 2
2 0k mt         then e cr

r       
which yields the Yukawa potential for nuclear forces. 
The key is the richness of the quantum theory approach 
and perhaps its universality as exemplified by the 
Heisenberg uncertainty or indeterminacy relations and 
the conditions of the EPR paradox. See Chap. 4. The 
Sommerfeld quantization condition pdq n   is to 
the Heisenberg relations and to phase space analysis in 
terms of (p,q). The duality of p and x and E and t both 
form phase spaces.  Note that we denote q generalized 
spatial parameter such as x and p as momentum. This 
phase space (p,q) approach leads to the Heisenberg 
indeterminacy or uncertainty principle. We may be 
able to relate the “phase spaces” such as (x,t), (p,E), 
and (x,p), (E,t), to multidimensional Fourier transforms 
and some physical processes [30]. 
 The Schrödinger hypergeometric equation is 
formulated in terms of the second order in space and 
first order in time as for the potential free case,  
 

       
2 1

2m i t
   

  .      (63) 
 
In the case where a potential of a force is present, we 
have 

             
2 1

2 2Vm t
    

       (64) 
 
where we have the potential, V and t


  is the time 

dependent term, where   is a function of the 
independent variable x,t as  (x,t). For the term 
1 0i t

  , then we have the time independent 
Schrödinger equation.  In general the time dependent 
solution is of the form 
 

 ( )i kx te  


      (65a) 
an 
 

  ( )* i kx te   


.       (65b) 
 

The quantum theory is formulated in terms of 
probabilities, *   but the equations of quantum 
mechanics are analytic. 
 The Dirac equation is formulated in terms of a first 
order in space and time.  We write the time 
independent Dirac equation as     
 

    0mc
x


       
 .        (66) 

 
The   matrices are expressed in terms of the Dirac 
matrices,   which are 2 x 2 matrices and the indices 
run 0 to 3 and the   matrices are 4 x 4 matrices.  The 
solution to the Dirac equation takes the form 

( ) exp (iu p px Etn      . The quantity u(p) is a 

spinor with components 1
0
    and  0

1
     for spin up 

and spin down respectively.  See Chap. 11.  Since we 
can express the P ’s in terms of the Pauli spin 
matrices,   which we can express in terms of the 
Dirac matrices,  , we then express the Dirac equation  
 

as 2 0i c mcx


         .      (67) 
 
The Pauli spin matrices,   are expressed in terms of 
the Dirac 2 x 2 matrices,   as  
                          
 

0 1 0 1 0, and1 0 0 0 1x y z
i

i         (68)
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TABLE 2.  
 LINEAR AND NONLINEAR WAVE EQUATIONS 

 
 Non-dispersive – Non-diffusive wave equations 0t x

     . 
 Dispersive wave equations, where the third order term has dispersive losses 

3
3t x x

         .   

 Diffusive wave equation where the second order term has diffusional losses 
2

2t x x
         

where ,   are constants.   
 Korteweg-deVries equation is nonlinear and is dispersive but not diffusive where the nonlinear 

term / x   overcomes dispersive losses 
3

3t x x
           and has soliton solutions.   

 Burger’s equation is nonlinear and diffusive but is not dispersive, where the nonlinear term 

t
 
  overcomes dispersive losses 

2
2t x x

         .   

 Nondispersive and nondiffusive, nonlinear wave equation 0t x
     . 

 
 If we express the Klein-Gordon equation in 
complex 8-space, the complexification of the spatial 
and temporal components remain unchanged.  Thus, 
the Klein-Gordon equation does not form extra 
imaginary components for the spatial and temporal 
second order derivatives [24]. The Dirac equation is 
first order in space and time. Essentially one can 
express the Klein-Gordon equation as a dual Dirac 
equation, except of course, the Dirac equation is 
expressed in terms of spinors, which the Klein-Gordon 
equation is not.  Because of the electron spin symmetry 
conditions or the Dirac string trick in which the 
rotation of the system must pass through a 270o 
rotation [25-27,30]. 
 The so termed Dirac string trick involves tracing 
the spin of an electron in space. The requirement for 
the electron spin and chirality to be aligned or anti-
aligned along the particles direction of motion requires 
a 720o twist or rotation.  If we rotate a 90o spin change 
we move from the real to imaginary axis so that a 
variable,   has a real and imaginary part, then 
 Re Im . Through a rotation of 180o then, Re  
comes back to real again and without chirality 
considerations, only a phase sign charge has occurred. 
In the case of the Dirac spinors, symmetry 
requirements lead to the 270o rotation so that Re  is 

now mapped into Im  as Re Im   and hence the 
Dirac equation does not remain uncharged under the 
transformation from real spacetime, xRe, tRe to 
imaginary spacetime, xIm, tIm. See Fig. 2. 
 In tables 3 and 4 we present a summary of structure 
of the major wave equations of physics. We enumerate 
a set of wave equations having classical properties. 
These are better linear and nonlinear equations and are 
classical in nature. These equations have various 
properties of dispersive and diffusive energy and 
information losses. Nonlinear terms can overcome 
these loss mechanisms and form coherent, non-
dispersive and non-diffusive states.  See Tbl. 2. 
 In Table 3, we enumerate types of time dependent, 
time independent classical, quantum and quantum 
relativistic equations. All these equations are linear. If 
we consider a small deviation from linearity, we 
formulate nonlinear equations that take forms that 
overcome dispersive and diffusive losses.  Essentially 
in the Everett-Graham-Wheeler Multiverse picture or 
in the infinite possible string theory vacuum solutions, 
the number of possibilities may be reduced, see Chaps. 
2 and 10 [6,23]. Selection of higher probability terms is 
made by inclusion of nonlinear terms in the wave 
equations, in some cases yielding solitary wave or 
soliton solutions (Chap. 10). 
 In Table 4 we present the nonlinear forms of the 
Schrödinger and Dirac equation for both time 
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dependent and time independent forms.    
 

TABLE 3.   
TYPES OF WAVE EQUATIONS:  

CLASSICAL, QUANTUM AND RELATIVISTIC 
 

 Time dependent classical wave equation in 1D 
2 2

2 2 2
1u u

x v t
    for wave amplitude solution u(x,t) 

and v is the classical velocity, v << c. 
 Time dependent Klein-Gordon equation [32-35] in 3D with 0m    2 2 0m  


 for 

2 2 2 22
2 2 2 2 2

1
x y t c t
          . 

 Time independent Dirac equation with 0m  . 0u
u

mc
x      

.   The time dependent Dirac 

equation with 0m  :  mc i
x t


         
 

  Time dependent Schrödinger equation  
2 2

2 Vm i t
       

   

or 
2 2 22
2 2 2x y z

         
 time independent Schrödinger equation for H E   where H = T + V  and  V is the 

potential energy. 
  

TABLE 4.  
NONLINEAR QUANTUM WAVE EQUATIONS 

 
 Nonrelativistic nonlinear time dependent Schrödinger equation  2 2 1

2 gm i t
      

  
where  2g    is the nonlinear term and    is the Hermitian conjugate of  . 

 Relativistic time independent Dirac equation  2 0i m gx           for the nonlinear 
term  2g   . 

 Relativistic time dependent Dirac equation  2
u

ii m gx t             
 

 
6.  The Nilpotent Quaternionic Representation of 
Fermions 
 
A particularly powerful method of quantum mechanics 
and quantum field theory, which also brings into focus 

the question of dimensionality, can be found by 
exploiting the fact that the gamma algebra is also a 
Clifford algebra and can be represented algebraically, 
without matrices, in a number of different ways: as a 
double vector algebra, a vector quaternion algebra, or a 
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complexified double quaternion algebra. In Clifford 
algebra, vectors are constructed from complexified 
quaternions, and also automatically include both 
complex numbers and quaternions as subalgebras. All 
three representations are significant in different ways. 
The vector quaternion algebra (which also includes real 
complex numbers as subalgebras) arises from a direct 
combination of the algebras of the four fundamental 
parameters in physics: space gives us vectors, charge 
quaternions, time complex numbers, and mass real 
numbers. The double vector algebra expresses the fact 
that the whole of physics, and in particular the 
representation of a point-like fermion, can be seen as a 
combination, and even a cancellation at a point, of two 
vector ‘spaces’: real space and the ‘antispace’ 
constructed out of the combination of charge, time and 
mass. The complexified double quaternion algebra can 
be seen as the basis of the representation of a physical 
object using the parameters space, charge, time and 
mass as a broken octonion, that is, as an octonion in 
which the parts that are antiassociative are also 
unphysical. [40-46] 

The origin of this approach lies in two fundamental 
propositions. One is that reality represents a 
fundamentally zero totality. The other is that this can 
be achieved through a fundamental symmetry between 
the parameters mass, time, charge and space. [40-
42,47-54] 
  mass    conserved       real            commutative  time      nonconserved imaginary   commutative   charge  conserved       imaginary  anticommutative   space   nonconserved  real          anticommutative 
 
The symmetry is obtained by placing ‘properties’ 
against ‘antiproperties’, which are their exact 
opposites. Group information about the universe is 
assumed to be absolutely exclusive. That is, there is no 
information about the universe, other than what comes 
from the parameter group. The properties and 
antiproperties are absolutely opposite in every respect, 
though the designation of which are properties (say, 
conserved, real and commutative) and which 
antiproperties (say, nonconserved, imaginary and 
anticommutative) is completely arbitrary. An 
investigation of the foundations of physics tells us that 
the properties and antiproperties are very exact, but not 
easily encompassed in a single word description. 

We can choose to represent the properties and 
antiproperties algebraically in a way that makes the 
zero totality even more explicit. 
 
 mass           x      y     z 
 time      –x   –y     z 

 charge  x   –y   –z 
 space      –x      y    –z  
 
The combination of property and antiproperty in each 
parameter is associated with a particular algebraic 
structure, which happens to be either the Clifford 
algebra of 3D space, also known as multivariate 
vectors, and isomorphic to Pauli matrices and 
complexified quaternions, or one of its 3 subalgebras: 
bivector (or pseudovector), trivector (or pseudoscalar) 
and scalar. The pseudovectors are also equivalent to the 
imaginary parts of a quaternion and the pseudoscalars 
to complexified scalars or the imaginary parts of 
complex algebra. The subalgebras can be seen either as 
decompositions of the full Clifford algebra of space, or 
as stages leading towards the complete algebra 
generated by a universal rewrite system. Space itself 
incorporates the 3 subalgebras as volume (trivector), 
area (bivector), and scalar magnitude.  
 The algebras of the other 3 parameters exist 
independently of those of space, and charge and time 
also incorporate scalar magnitude as subalgebras of 
their own pseudovectors and pseudoscalars. 
Commutative terms, however, can be combined by 
simple multiplication in a way that anticommutative 
ones cannot, and, in principle, there is a division in the 
parameter group between two 3-dimensional structures. 
We can combine the parameters in various ways, but 
the most suggestive would seem to be one which 
opposes space to an alternative space-type concept 
constructed from the units of the anticommuative 
charge with the commutative time and mass. We can 
describe this as an ‘antispace’, because, according to 
the principle of zero totality, the combination of space, 
charge, time and mass, or the combination of space 
with everything else yields a totality of zero. 
 
 Space      i  j  k   Charge    ii ij ik   Time        i     Mass       1            vector      complexified quaternion        bivector    pseudovector quaternion        trivector    pseudoscalar complexified scalar        scalar 

 
Since the two ‘spaces’ originate independently, 

though combining to a zero totality, it is convenient to 
represent the ‘ordinary space’ by the units i, j, k and 
the ‘antispace’ by the units I, J, K. Each of these 
spaces is described by a Clifford or geometrical algebra 
of 3 dimensions, with + and – versions of 8 base units. 
That is: 
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 i                 j  k    

ii           ij ik  
i    1  Vector              complexified quaternion Bivector    pseudovector  quaternion Trivector   pseudoscalar   complexified scalar scalar  
and: 
 
I            J  K  iI          iJ iK  
i    1     Vector                         complexified quaternion Bivector     pseudovector   quaternion Trivector    pseudoscalar   complexified scalar scalar  
 

The tensor product or commutative combination of 
the two spaces produces an algebra structured on 64 
units: 

 
     1               
   Ii Ij Ik  k ij    
   Ji Jj Jk  k ij   
   Ki Kj Kk  k ij   
 
  –1           
  –Ii –Ij –Ik –k –ij 
  –Ji –Jj –Jk –k –ij 
  –Ki –Kj –Kk –k –ij  
 
 
 
  i      
  iIi iIj iIk ik j  
  iJi iJj iJk ik j   
  iKi iKj iKk ik j    
  
  –i 
  –iIi –iIj –iIk –ik –j 
  –iJi –iJj –iJk –ik –j 
  –iKi –iKj –iKk –ik –j  

 
Notably, the set of 64 is made up of the 4 complex 
units and 12 pentads of very similar structure. Because 
we can exchange vectors for complexified quaternions, 
and quaternions for complexified vectors, an 
alternative version would be a vector-quaternion 
algebra of the form: 

 
    1               
  ii ij ik ik j  
  ji jj jk ii k  
  ki kj kk ij i  
  –1           
  –ii –ij –ik –ik –j 
  –ji –jj –jk –ii –k 
  –ki –kj –kk –ij –i 
 
   
 
  i     
  iii iij iik ik j  
  iji ijj ijk ii k  
 iki ikj ikk ij i  
 
 –i 
    –iii     –iij       –iik     –ik       –j 
    –iji     –ijj       –ijk     –ii        –k 
    –iki     –ikj       –ikk    –ij        –i 
 

This is isomorphic to the algebra of the Dirac 
equation, or the  matrices, doubling the algebra of the 
single vector space which is isomorphic that of the 
Pauli or  matrices. All possible versions of the  
matrices can, in fact, be derived from a commutative 
combination of two sets of  matrices, which we could 
write as  1,  2,  3 and 1, 2, 3. The very significant 
aspect of the algebra from the point of view of physics, 
however, is that only 5 generators are needed to 
produce the entire set of units. While it is possible to 
produce the units from something like i, i, j, i, j, all the 
sets of 5 which include the units of the two 3-
dimensional structures on an equivalent basis are 
structured exactly to the same plan as the pentads in 
these tables. A typical set might be of the form 

 
K     iIi   iIj    iIk      iJ 
 

which becomes 
 
  ik       ii      ij     ik       j 
 
in the vector-quaternion set. 

The creation of the pentads has a very significant 
physical consequence. If we take the base units of time, 
space, mass and charge, the pentads emerge if we 
incorporate the three units of charge onto the respective 
ones of time, space and mass. So 

 
Time    space mass    charge 
   i         i  j  k    1        i  j  k  
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becomes 
 
 i          i  j  k    1 
 k             i    j  
 
or 
 
 ik        ii  ij  ik    j 
 
exactly as in the pentad, which map directly onto the 
respective 0, 1, 2, 3 and 5 matrices, with which they 
are isomorphic. Physically, this incorporates both 
relativity and quantization and is equivalent to the 
creation of quantized energy, three components of 
quantized momentum, and rest mass. We simply define 
respective scalar values E, px, py, pz, and m, to be 
applied to the units of the pentad whose algebraic 
structures carry the defining characteristics of these 
quantities. Then, we restore the zero totality by 
defining a norm-zero package or nilpotent as 
containing the entire set of fundamental information 
constituting physics. That is, we define the 
‘fundamental unit’ or zero-singularity of physics as 
(KE + iIipx + iIjpy + iIkpz + iJm) or (ikE + iipx + ijpy + ikpz + jm) or (KE + iIipx + iIjpy + iIkpz + iJm). The 
nilpotent condition means that 
 
(KE + iIipx + iIjpy + iIkpz + iJm)2 = 0 
 
And 
 
(ikE + iipx + ijpy + ikpz + jm)2 = 0 
 
in line with the Einstein energy-momentum-mass 
equation 
 

E2 – p2 – m2 = 0. 
 

In more general terms, we can collect all the 
momentum components and use all the sign variations 
in energy and momentum to write 

 
(± ikE ± ip + jm) (± ikE ± ip + jm) = 0, 

 
with the four terms in the first bracket arranged as a 
row vector and the four terms in the second bracket as 
a column vector. Then, bringing in the nonconservation 
properties of space and time in an explicit fashion, a 
canonical quantization applied to the first bracket gives 
us the Dirac equation for a free particle: 
                                       

    0
 


 p.rp EtiemEimit jikjik  . 

 
Using the convention that E and p represent operators 
as well as amplitudes, we can also express this as 
 

(± ikE ± ip + jm) (± ikE ± ip + jm) e–i(Et – p.r) . 
 
The condition that must always be applied is that the 
amplitude is always nilpotent. The differential operator 
is a way of codifying the space and time variation of 
the fundamental physical singularity or fermionic 
nilpotent. The phase factor (in this case, e–i(Et – p.r) ) 
represents the decoding to produce the amplitude term 
(± ikE ± ip + jm). If the particle is not assumed to be 
free, we can replace E and p with covariant derivatives 
(e.g.  / t + e + ..., –  – eA + ...), or incorporate any 
number of field terms after the differential operators. 
The general expression  
 

 (± ikE ± ip + jm) (± ikE ± ip + jm)  0 
 
will still apply. The phase factor will no longer be a 
simple exponential, but we can assume that the 
amplitude will continue to be nilpotent and produce a 
norm zero amplitude. 

As a consequence, the entire relativistic quantum 
mechanics applicable to a fermion in any state, subject 
to any number of interactions, is derived simply by 
defining an operator of the form  

 
(± ikE ± ip + jm). 

 
The operator then uniquely determines the phase factor 
which makes the amplitude nilpotent. The coding 
requires a unique decoding. In fact, there is no need to 
define any equation at all. Everything can be expressed 
using the fact that 
 
 (operator acting on phase factor)2 
 = amplitude2 = 0. 
 

The nilpotent representation has immediate 
physical meaning as the realization of the Pauli 
exclusion principle. If two fermionic wavefunctions are 
identical, they will create a zero combination state. A 
huge number of important results become simple 
consequences of the algebra, and wholly new 
calculations become possible. We can, for example 
(using an appropriate sign convention), immediately 
specify the four amplitude states as derived from four 
creation operators: 
 
(ikE + ip + jm)     fermion spin up 
(ikE – ip + jm)     fermion spin down 
(–ikE + ip + jm)   antifermion spin down 
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(–ikE – ip + jm)    antifermion spin up 
 
The physical state which the fermion represents is 
specified by the first term in the column, and if both 
right- and left-handed helicity states are present (as 
with any massive particle), the first two terms in 
superposition determine the state. The other terms then 
represent the vacuum state for this particular fermion. 
If, say, the state represented was an antifermion with 
spin down, then (–ikE + ip + jm) would be the first 
term in the column and the other terms would be 
decided by making the same sign changes to E and p. 

The many results that have been determined for the 
nilpotent Dirac formalism can be sought in the 
appropriate technical publication. They include C, P 
and T transformations and the CPT theorem; the 
reduction of all information about any fermion state to 
the instantaneous direction of its spin vector; the 
specification of locality as occurring within the fermion 
bracket and nonlocality as outside it; full derivation of 
spin, helicity and zitterbewegung; the description of all 
known boson states (for the first time) in terms of 
fermion combinations, and the derivation of the SU(2) 
structure of the weak interaction; the first explicit 
representation of baryon wavefunctions, with the 
consequent explanation of baryon mass and the SU(3) 
structure of the strong interaction; the first explanation 
of vacuum as the dual structure to a fermion which 
maintains zero totality; the use of the quaternion 
operators to partition the vacuum into strong, weak and 
electric components; the first explanation of the 
symmetry-breaking between the three gauge forces; the 
proof that the only interactions which can emerge from 
a point source and obey the nilpotent condition are the 
three known gauge interactions; a Dirac equation 
structured for charges; a discrete version of the Dirac 
equation using commutators for differentials allowing a 
simple classical transition; a specification of 4-spinors 
in terms of a norm 0 Berwald-Moor metric; a complete 
specification of particle states based on nilpotent 
wavefunctions; a complete derivation of the 
interactions based on the nonlocal descriptions creation 
equivalent local ones; fermion and boson propagators 
with no infrared divergence; the automatic cancellation 
of the self-energy terms in renormalization; and 
intrinsic supersymmetry without extra particles. The 
calculations include the analytic derivation of the three 
gauge interactions referred to a point source, the strong 
and weak ones being calculated for the first time, and 
the Coulomb interaction by the most efficient known 
process (in just six lines); the derivation of QED from 
the nilpotent structure without second quantization; and 
electroweak interaction calculations derived directly 
from the bosonic states without using trace theorems. 

The nilpotent representation was not set up on the 
basis of any particular dimensionality, but it 
incorporates a number of different dimensionalities in 
different ways. The expression (ikE + iipx + ijpy + ikpz + jm) is clearly 5-dimensional in E, p and m (or, 
equivalently, in t, r and ), but there are also 5 
dimensions of charge in the structure. This is consonant 
with the 10 dimensions of string theory (11 if you 
include the commutative ‘space’ in which the 
nilpotents are embedded). Of course, there is here no 
‘string’ or ‘membrane’ structure because the object 
described is a point-singularity. It is interesting in this 
connection that several other ideas that are now 
fundamental components of string theory have been 
present in the fundamental symmetry of the parameter 
group from the beginning, including R, S and T 
dualities and gravity-gauge theory correspondence [40-
42,47-54]. The Kaluza-Klein connection is also 
apparent from the inclusion of the fifth term in the 
nilpotent, which, dually, represents invariant mass and 
electric charge. In addition, the gravitational aspects 
are close to the holographic principle, of which the 
nilpotent structure is a perfect expression, being 
equivalent to an ‘area’ enclosing the E and p terms 
(equivalent t and r), with the third term numerically 
redundant. Significantly, the idea of ‘4-dimensionality’ 
for energy-momentum or time-space has to be 
modified into a new 3-dimensional structure, 
represented by k, i and j, for energy-momentum-mass 
or time-space-proper time: (ikE + iipx + ijpy + ikpz), unlike (iE + ipx + jpy + kpz), is not a true 4-vector 
because k and i are different. 

If we take the dimensionality from the constituent 
parameters, then we have 4 of these; if we take it from 
their algebras, then we have 8. The fundamental 
symmetry-breaking in physics appears to be a matter of 
breaking the relatively perfect symmetry of 8 into the 
imperfect symmetry of 5, and the same has been 
observed also in key aspects of chemistry, biology, and 
information theory, where the same patterns are 
observed repeatedly at each successive level. [40-
42,55-58] In every case the combination of two 
‘spaces’ or equivalent to produce a ‘discrete’ state, or 
self-organizing system. The 6-fold perfection of the 
double space with units I, j, k, I, J, K becomes the 5-
fold imperfection of K, iIi, iIj, iIk, i, though nature 
prefers the imperfection because it is a more efficient 
packaging. As we have seen, the 5-fold structure means 
that the symmetry of one vector space is preserved 
(here, the one with the lower case symbols, i, j, k) 
while that of the other is broken (here, the upper case 
symbols, I, J, K) in precisely the same way. 
Physically, the space with the unbroken symmetry (i, j, 
k) is the parameter space as we know it, the space of 
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observation. The ‘space’ with the broken symmetry (I, 
J, K) is a dual space, the one we call vacuum space, 
which is unobservable, but which determines what 
happens in the observed space. The act of creating a 
zero-norm singularity by combining the two spaces 
determines that they are precisely dual and that each 
contains the same information as the other, though the 
methods of observation will differ.  

We can interpret the creation of the norm zero 
‘singularity’ state as indicating that the totality of the 
universe is zero, so that the creation of a fermion (with 
all its special energy conditions, potentials, etc.) as a 
singularity simultaneously creates a kind of ‘hole in 
nothing’, which we describe as vacuum, or the rest of 
the universe. Source and sink are created 
simultaneously, one point-like and localized, and the 
other diffused throughout the whole of space and 
delocalized. Effectively, this duality is the same as that 
between amplitude and phase. Though only the space 
related to the localized state can be observed directly, 
the asymmetry between the two spaces – unbroken and 
broken symmetries – can be seen as the origin of mass, 
both through zitterbewegung and through the vacuum 
asymmetry involved in the Higgs mechanism. If we 
need a physical analogy to understand how the 
combination of two spaces, one observed and one 
unobservable, produces the discrete singularities 
known as nilpotent fermions, we can see it as a kind of 
knot between two pieces of string, say colored red and 
blue, neither of which is aware of the other’s existence 
(which is effectively the meaning of commutativity). If 
we picture the universe from the point of view of one 
of them, say, the blue, the blue string will straight, and 
we need to devise some special contortion to create the 
state of the red string from the blue’s perspective. The 
spatial ‘double twist’ will be equivalent to a 
singularity, an additional structure within the space. 
Penrose has used twistor theory to examine something 
similar, but, though the twistor algebra has a family 
resemblance to the algebra of the dual space in that it is 
constructed of four real units and four imaginary. 
Visually, the effect can be represented in the Robinson 
congruence [59]. However, the distribution of these 
units is different and the twistor algebra, based on a 
reality of 4-dimensional space-time which is denied by 
the nilpotent construction, is unable to create fermion 
or other particle structures. The nilpotent theory 
suggests that the only way to do this is to base it upon 
the fundamental algebras of mass, time, charge and 
space [60-69]. 
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