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Abstract

Casimir’s celebrated result that the conducting plates of an unpowered rectangular cavity attract each
other with a pressure inversely proportional to the fourth power of their separation entails an unphysical
unbounded pressure as the plate separation goes to zero. An unphysical result isn’t surprising in light of
Casimir’s unphysical assumption of perfectly conducting plates that zero out electric fields regardless of
their frequency, which he sought to counteract via a physically foundationless discarding of the pressure
between the cavity plates when they are sufficiently widely separated. Casimir himself, however, empha-
sized that real metal plates are transparent to sufficiently high electromagnetic frequencies, which makes
removal of the frequency cutoff that he inserted unjustifiable at any stage of his calculation. Therefore
his physically groundless discarding of the large-separation pressure isn’t even needed, and when it is
left out a constant attractive pressure between cavity plates exists when their separation is substantially
larger than the cutoff wavelength. The intact cutoff furthermore implies zero pressure between cavity
plates when their separation is zero, and also that Casimir’s pressure is merely the subsidiary lowest-order
correction term to the constant attractive pressure between cavity plates that is dominant when their
separation substantially exceeds the cutoff wavelength.

Introduction

H. B. G. Casimir’s groundbreaking 1948 presentation “On the attraction between two perfectly conducting
plates” [1] is a fascinating chronicle of his strivings to extract theoretical physics sense from the ostensi-
bly infinite electromagnetic-field ground-state energy 1> hiw that is captured in standing waves within a
conducting rectangular cavity whose dimensions are L1 X Ly X a.

The method for “taming” this supposedly infinite energy which gained traction in Casimir’s mind was to
subtract from 1 > hiw at any arbitrary value of the separation a between the cavity’s two L1 X Lo plates that
sum’s value at a sufficiently large value of that two-plate separation a. To be sure, the difference between
two ostensibly infinite energy sums is ill-defined, but Casimir’s plan to overcome that difficulty was to cut off
both of the infinite-valued sums that are involved in precisely the same way, and then to remowve that cutoff
after the subtraction of the sum having a sufficiently large value of a from the sum having an arbitrary value
of a is safely accomplished. Casimir of course hoped that this recipe would produce a result which is both
finite and unique, and it turns out that for “reasonable” cutoffs Casimir’s hope is actually fulfilled—we shall
have much more to say below about how the criterion for a “reasonable” cutoff was entwined in Casimir’s
thinking with the response of real conducting metals to arbitrarily high-frequency electromagnetic fields,
and about how continuing to think along those physical lines makes it obvious that the ostensibly “infinite”
energy sums which bedeviled Casimir are wholly unphysical.

Before we delve further into that matter, however, it is important to underline a crucial elementary
consequence of Casimir’s above-described subtraction procedure which Casimir himself failed to notice: the
results obtained from his subtraction procedure obviously cannot possibly properly describe the ground-state
electromagnetic energy content of rectangular cavities which have sufficiently large values of the L1 X Lo
plate separation distance a because part of that energy content has, of course, been subtracted away. As
a consequence, Casimir’s results are inherently incapable of describing the pressure between cavity plates
which are separated by a distance a that is sufficiently large. Indeed, Casimir’s pressure results necessarily
exhibit short-range character as a function of a that is a pure unphysical artifact.

To get a feeling for the artificiality which Casimir’s subtraction procedure injects into his results, we
note that his “subtracted energy” §E(Lq,L2,a) for the “perfectly conducting” rectangular cavity whose
dimensions are Ly X Ly X a with L; and Lo sufficiently large and a (ostensibly) arbitrary is [1],

5E(L1,L2,a) = —hc(7r2/720)L1L2/a3, (1&)
which exhibits a drastically different dependence on a than it has on Li and Lo in the case where all three

of these cavity dimensions are arbitrarily large. We see that 6 E(Ly, Lo, a) is very long-range in Ly and Lo
but short-range in a, the latter being an unphysical pure artifact of Casimir’s subtraction procedure.
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The celebrated Casimir pressure result between the two L; x Ly plates of this “perfectly conducting”
L; x Ly X a rectangular cavity is of course given by [1],

a

— (2L} (1, L)~ = —rhe/(2400%), ()

which not only is short-range in a, but also is unphysically unbounded as the separation a between the two
Ly x Ly plates goes to zero! Likewise, Casimir’s “subtracted energy” of Eq. (1a) is unphysically unbounded
as the separation a between the two Li X Lo plates goes to zero. Thus there is a second pathology intrinsic
to Casimir’s celebrated pressure result, one which is the consequence of the wholly unphysical “perfect
conductivity” of Casimir’s cavity even notwithstanding the finite and unique nature of Casimir’s “subtracted
energy” result 0E(Ly, Lo, a) of Eq. (1a)—the mere finite uniqueness of Casimir’s “subtracted energy” result
of course does not per se imply that that result is physically correct or sound!

This second pathology in Casimir’s celebrated pressure result focuses our attention on Casimir’s own
comment that any “reasonable” cutoff of 1 3" hiw which is to be applied before his subtraction procedure and
his subsequent removal of that cutoff is undertaken must adequately model the fact that real conducting metals
are transparent to sufficiently high-frequency electromagnetic fields. Casimir’s recipe for a “reasonable” cutoff
of asum 1 > hiw incorporates that feature Vla the replacement of such a sum by 1 > hwf(w/(ck)), where f(z)
has the salient characteristics of e~ or e=2" for z > 0, namely f(z) is positive and decreases monotonically
from its value of unity at * = 0 in such a way that f(1) = e~! and f(x) tends very strongly to zero as
x — 4o00. Therefore if Casimir had not been so intensely preoccupied with actually carrying through his
programme of cutoff, subtraction and finally removal of the cutoff, it surely would have dawned on him that
the physical nature of real conducting metals forbids the removal at any stage whatsoever in his calculation
of the just-described cutoff which he inserts into it. Given that Casimir’s cutoff is physically required to be
permanently in place, it also would have dawned on Casimir that the entire raison d’étre of his (in fact
physically counterproductive) subtraction procedure simply falls away. (It might even then have dawned on
Casimir just how physically counterproductive the effect of his subtraction procedure on his result actually

In the following section we therefore redo Casimir’s calculation of 1 " hwf(w/(ck)), leaving f(w/(ck))
permanently in place—we specifically choose f(x) = e~ because that choice is calculationally advantageous.
Of course we entirely omit Casimir’s counterproductive subtraction procedure.

A simple model of the attraction between two real metal cavity walls

We use Casimir’s techniques to model and calculate the standing-wave electromagnetic-field ground-state
energy 1 > hwexp(—w/(ck)) captured by an L; X Lo X a rectangular real metal cavity under the assumption
that Ly > 1/k and Ly > 1/k, but without making any assumption about the relation of a to x. Taking
account of the field polarizations in the way that Casimir does [1] produces,

E(Ly, Ly, a; k) def 1> hwexp(—w/(ck)) = i
e [ [ am s ((22) +<@>Z)%—(<m>ﬂ<zﬂs>g>z
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We change the two integration variables to u; = (wm1)/(kL1) and ue = (wms)/(kL2), and also take
advantage of the fact that the integrand is an even function of those integration variables to obtain,

1
%6 (u1+u2) 2

E(Ly,Ly,a;k) = hcgf)gh/ dul/ duy | 3 (u? +u3)
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(2b)

We switch to polar coordinates, i.e., u = (u} + u3)%, and are able to immediately integrate over the polar
angle to obtain,

o0 > i n
E(Ly, Ly, a; k) = (hc’ﬁ%) / 2udu [;ue“ + Z <u2 + (%)2) * (v (22)")
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We now carry out one elementary integration, and then under the summation sign we change the integration
variable to z = 42 to obtain,

E(Ly, Ly, a; ) = (hesilale) (2d)

2+§_O:1/Ooodx (z+ (z2))

In order to perform the integration in Eq. (2d) we carry out one last change of integration variable to
w = (z + ((7n)/(ka))?)2, which implies that dz = 2wdw and yields,

143 /( M)dww%-w] (o)
n=1 ka

where after the second equal sign in Eq. (2e) we have introduced the convenient abbreviation « e (7/(ka)).

We now carry out the summation in Eq. (2e) by using the geometric series related formulas ) - " =
e(l—e) Y ne" =e(l—e)?and Y 2, n%" = (1 +¢)(1 —¢e)?, which are valid for |¢] < 1, and
thereby obtain,
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E(Lla L27a; H) = (hCH;frle)
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Since we have assumed that L; > 1/k and Ly > 1/k it is interesting to examine the special case that
a > 1/k, which implies that o < 1 and thereby causes Eq. (2f) to reduce to,

(L1, Ly, 0 ) = (Relala ) [§] = (Shenlfubaa) (28)
which is invariant under the interchange of any two of the three cavity dimensions L1, Ly and a, as of course
it must be. Casimir’s “subtracted energy” 6 E(L1, Lo, a) of Eq. (1a) however completely fails to manifest this
essential symmetry property. That, along with the fact that E (L1, Lo, a) is unbounded as a — 0, spotlights
the ineluctable failure of Casimir’s “subtracted energy” attempt to cope with his inherently unphysical
assumption that the cavity is perfectly conducting.

The pressure P(a; k) between the cavity’s two L; x Lo plates can be calculated using Eq. (2f), but
less algebraic effort is needed if Eq. (2e) is used in conjunction with the summation formula Y7 | n3
e(1+4e +€?)(1 — )%, which is of course valid for |¢| < 1. In any case the result is,

ETL —

P(a; :‘i) _ <8E(Lla,§2,a;n)) (Lng)_l _ hertate™(14+4e e %) B her? (24cosh(a)) (2h)

272 (1—e—)4 - 72((2/) sinh(a/2))%?
where, of course, o = (7/(ka)).

From Eq. (2h) it is apparent that the pressure P(a; k) between the two L1 x Lo plates is always attractive,
and that when a > 1/k (i.e., when o < 1), P(a;k) ~ —371~2hek*, which also follows immediately from
Eq. (2g). This large-separation attractive constant pressure is completely deleted from Casimir’s celebrated
pressure result —m2hc/(240a*) of Eq. (1b) by his physically counterproductive subtraction procedure.

Furthermore, it is clear from Eq. (2h) that as the plate separation a goes to zero (i.e., as @ — +00),
P(a;k) — 0. That physically sensible result stands in stark contrast to the fact that the magnitude of
Casimir’s pressure —m2hc/(240a*) increases rapidly and without bound as a — 0.

Notwithstanding these devastating observations about Casimir’s pressure —m2hc/(240a%), it does in fact
play a subsidiary physical role: it turns out to be the lowest-order correction in powers of « to the large-
separation constant attractive pressure —3m~2hck* between the two Ly x Lo plates.

To expand the pressure P(a; k) of Eq. (2h) in powers of a, we note that,

(2 + cosh(a)) = 3(1 + a?/6 + a*/72 + a5/2160 + - - -),
and also that,

((2/a) sinh(a/2))* = ((2/a2)(cosh(a) — 1)) = (2/a*)(cosh(2a) — 4 cosh(a) + 3)
= (1+ /6 + /80 + 17a5/30240 + - - ),

from which we obtain,

et s = 3(1+ /720 — a5/3024 + - --).
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From this expansion and Eq. (2h) the first two corrections in powers of a = (7/(ka)) to the large-separation
constant attractive pressure —37 2hck? come out as follows,

P(a; k) = =37 2hew* — m2he/(240a*) + (w2he/(1008a)) (7/(ka))? + - - . (21)

Thus the attractive Casimir pressure —m2hc/(240a?) is the lowest-order correction in powers of a = (7/(ka))
to the large-separation constant attractive pressure —3m~2hck*. This Casimir-pressure correction term under
no circumstance dominates P(a; k), however. Numerical study shows that the exact P(a;x) of Eq. (2h)
attains its minimum value of approximately —372hck? x (1.00723) at approximately a = 2.144 (i.e., at
approximately a = 1.4653/k), and from that minimum at a = 1.4653/k, P(a;k) increases monotonically
to zero as a — 0 (i.e., from that minimum at o = 2.144, P(a;k) increases monotonically toward zero as
a — +00). In other words, the Casimir-pressure correction term —m2fic/(240a*) of Eq. (2i) never perturbs
P(a; k) by as much as three quarters of a percent.

However, because the Casimir-pressure correction term —n2fic/(240a*) varies rapidly with the plate
separation a and corrects the constant pressure term —37 2hck* which doesn’t vary at all with the plate
separation a, the Casimir-pressure correction term ought to be discernible even notwithstanding that it is a
decidedly small correction.
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