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It is shown here that the incidence of sonic waves on a solid can reduce its gravitational 
mass.  This effect is more relevant in the case of the Aerogels, in which it is possible 
strongly reduce their gravitational masses by using sonic waves of low frequency. 
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         The quantization of gravity showed that 
the gravitational mass mg and the inertial 
mass mi are correlated by means of the 
following factor [1]: 
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where  is the rest inertial mass of the 
particle and  is the variation in the 
particle’s kinetic momentum;  is the speed of 
light.            
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pΔ
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        When an electromagnetic wave strikes 
an atom, it interacts electromagnetically with 
the atom, acting simultaneously on all its 
structure. Unlike a sonic wave that strikes the 
internal particles of the atom isolatedly, 
interacting mechanically with them. Thus, if a 
lamina of monoatomic material, with 
thickness equal toξ  contains  atoms/mn 3, 

then the number of atoms per area unit is ξn . 
Thus, if the sonic wave with frequency  
incides perpendicularly on an area  of the 
lamina it reaches 

f
S

ξnS  atoms. Consequently, 
the wave strikes on ξZnS  orbital electrons* 
( Z is the atomic number of the atoms). 
Therefore, if it incides on the total area of the 
lamina, , then the total number of  
electrons reached by the radiation is 

fS

ξfZnSN = .   
  

                                           
* Assuming that, all of them are reached by the sonic 
wave.  

 
         The number of atoms per unit of 
volume, , is given by n

( )20

A
N

n
ρ

=

where  is the 
Avogadro’s number; 

kmoleatomsN /1002.6 26
0 ×=

ρ  is the matter density 
of the lamina (in kg/m3) and A is the molar 
mass(kg/kmole).                
          When the sonic wave incides on the 
lamina, it incides  front electrons, where fN

( ) eff SZnN φ≅  , eφ  is the “diameter” of the 
electron inside an atom†, which is 

 [me
13104.1 −×=φ 2].  Thus, the sonic wave 

incides effectively on an area  , where ef SNS =
2

4
1

eeS πφ=  is the cross section area of one atom. 
After these collisions, it carries out  
with the other orbital electrons (See Fig.1).   
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Fig. 1 – Collisions inside the lamina.   
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Thus, the total number of collisions in the 
volume ξS  is 

                                           
† The diameter of the electron and protons depends on 
the region where it is placed.   
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The power density, , of the sonic radiation 
on the lamina can be expressed by 

D

( )4
ef SN

P
S
PD ==

           We can express the total mean number 
of collisions in each orbital electron, , by 
means of the following equation  

1n

 

( )51 N
Nn

n collisionsphononstotal=

 
Since in each collision a momentum λh  ‡ is 
transferred to the atom, then the total 
momentum transferred to the lamina will be 

( ) λhNnp 1=Δ . Therefore, in accordance 
with Eq. (1), we can write that  
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Since Eq. (3) gives ξSnN lcollisions = , we get 
 

( ) (72 ξSn
hf
PNn lcollisionsphononstotal ⎟⎟
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Substitution of Eq. (7) into Eq. (6) yields 
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‡ Phonon is a quantum of vibrational energy. The 
phonon energy is given by hf== ωε h , and its 
velocity is fv λ=  (λ is the wavelength). Thus, the 
momentum carried out by a phonon is 

λλε hfhfvp === . Thus, the expression of 
the momentum carried out by the phonon is similar to 
the expression for the momentum carried out by the 
photon [3].  

Substitution of P given by Eq. (4) into Eq. (8) 
gives 
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Substitution of ( ) eflf SnZN φ≅  and   into 
Eq. (9) results 

ef SNS =
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where ( ) ( ) ( )llli Vm ρ=0 .  
          The speed of the sound, v , as a function 
of frequency, , and wavelength,f λ , is given 
by fv λ= , (phase velocity) [4]. When the 
sonic wave propagates itself through the 
lamina its velocity is modified and becomes 

( ) ( )lrlr nfnvv λ==mod , where  is the 
sonic refractive index  of the lamina, which 
can be expressed by the following equation: 

( )lrn

( ) alaairlr vvn min= . Since fv modmod λ= , where 

modλ  is the modified wavelength, then we can 
write that 
 

( ) ( )
( )11mod

lrlr n
fv

n
==

λλ            

 
Substitution of λ  by modλ  into Eq. (10) yields     
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Considering that ( ) ( ) ξρ αSm lli =0 , we obtain 
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For αSS f =  we obtain 
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Since  

( )15
2

2

v
PD
ρ

=

 
where P  is the pressure of the sonic radiation 
[5], then substitution of Eq. (15) into Eq. (14) 
gives 
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This equation, deduced for phonons, is only 
valid for solids§, unlike the correspondent 
equation deduced for photons, which is valid 
for solid, liquid and gases.  
          The speed of the sound for pressure 
waves in solid materials is given by 
 

( )17
ρ
Yvsolid =  

 
where Y is the Young’s modulus.  
          Aerogels are solids with high porosity 
(<100 nm), with ultra low density (~3 Kg/m3 
or less) and with ultra low sound speed 
(~110m/s) [6,7,8]. We can take Eq. (16) for a 
hypothetic aerogel   with    the     following    
characteristics: Debye speed of 
sound ; 1.110 −= smv

( ) 1.3110343 === vvn airlr ; ; ( )
3.3 −= mkglρ

( )
329

0 /101 matomsANn solidsolidsolidl ×≅= ρ
( solidρ  is neither the bulk density nor the 
skeletal density it is the specific mass of the 
part solid) ; 2262 106.14 mS ee

−×== πφ ; 
; . By substitution of 

these values into Eq. (16), we get 
me

13104.1 −×=φ 10≅Z

 
                                           
§ Since a phonon is a mechanical excitation that 
propagates itself through the crystalline network of a 
solid.   
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Note that for ,  and 

, (Loudest human voice at 
1 inch reach  ; Jet engine at 1 m 
reach  [

21mS ≅α Hzf 20=
2/120 mNP =

2/110 mN
2/632 mN 9].),  the  Eq. (18) tells us 

that 
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This shows that under these conditions, the 
weight of the lamina ( )( )gm lg  will have its 
direction inverted. For  ; 

and 

2/600 mNP =
21mS ≅α Hzf 20=  the result is  
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In this case, the weight of the lamina besides 
to be inverted, it is intensified 85.2 times.  
          Thus, by controlling the magnitude of 
the gravitational mass is then possible to 
control the gravitational energy, gravity, etc. 
 

∴ 
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         The quantization of gravity showed that the gravitational mass mg and the inertial mass mi are correlated by means of the following factor [1]:
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        When an electromagnetic wave strikes an atom, it interacts electromagnetically with the atom, acting simultaneously on all its structure. Unlike a sonic wave that strikes the internal particles of the atom isolatedly, interacting mechanically with them. Thus, if a lamina of monoatomic material, with thickness equal to
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is the atomic number of the atoms). Therefore, if it incides on the total area of the lamina,
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         The number of atoms per unit of volume, 
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 is the Avogadro’s number; 
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 is the matter density of the lamina (in kg/m3) and A is the molar mass(kg/kmole).               

          When the sonic wave incides on the lamina, it incides 
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 is the cross section area of one atom. After these collisions, it carries out 
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[image: image26.emf]                    Fig. 1   –  Collisions inside the   lamina .     
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Thus, the total number of collisions in the volume
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The power density,
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, of the sonic radiation on the lamina can be expressed by
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           We can express the total mean number of collisions in each orbital electron,
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, by means of the following equation 
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Since in each collision a momentum 
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 is transferred to the atom, then the total momentum transferred to the lamina will be 
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. Therefore, in accordance with Eq. (1), we can write that 
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Since Eq. (3) gives 
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Substitution of Eq. (7) into Eq. (6) yields
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Substitution of 
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given by Eq. (4) into Eq. (8) gives
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Substitution of
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          The speed of the sound,
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, as a function of frequency,
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Substitution of 
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 by 
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Considering that
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Since 
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where 
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 is the pressure of the sonic radiation [5], then substitution of Eq. (15) into Eq. (14) gives
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This equation, deduced for phonons, is only valid for solids
, unlike the correspondent equation deduced for photons, which is valid for solid, liquid and gases. 

          The speed of the sound for pressure waves in solid materials is given by
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where 
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is the Young’s modulus. 


          Aerogels are solids with high porosity (<100 nm), with ultra low density (~3 Kg/m3 or less) and with ultra low sound speed (~110m/s) [6,7,8]. We can take Eq. (16) for a hypothetic aerogel   with    the     following    characteristics: Debye speed of sound
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Note that for 
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 [9].),  the  Eq. (18) tells us that
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This shows that under these conditions, the weight of the lamina 
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In this case, the weight of the lamina besides to be inverted, it is intensified 85.2 times. 


          Thus, by controlling the magnitude of the gravitational mass is then possible to control the gravitational energy, gravity, etc.
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� Assuming that, all of them are reached by the sonic wave. 



� The diameter of the electron and protons depends on the region where it is placed.  



� Phonon is a quantum of vibrational energy. The phonon energy is given by � EMBED Equation.3  ���, and its velocity is � EMBED Equation.3  ��� (� EMBED Equation.3  ���is the wavelength). Thus, the momentum carried out by a phonon is � EMBED Equation.3  ���. Thus, the expression of the momentum carried out by the phonon is similar to the expression for the momentum carried out by the photon [� HYPERLINK  \l "q3" ��3�]. 



� Since a phonon is a mechanical excitation that propagates itself through the crystalline network of a solid.  
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Fig. 1 – Collisions inside the lamina.  
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