Jay R. Yablon

Half-Integer Fractional Dirac Magnetic M onopole Char ges without
Observable Singularitiesfor Tidally-L ocked Electron
Wavefunctions

Jay R. Yablon
910 Northumberland Drive
Schenectady, New York 12309-2814
jyablon@nycap.rr.com

November 17, 2015
Abstract:
PACS: 11.15.-q; 14.80.Hv

It has long been believed that to avoid unphysibakervable string singularities, Dirac monopoles
must be quantized in whole integers according éddirac Quantization Condition 2eg=n, where
e and g are the electric and magnetic charge stitengespectively, and n is an integer. Thisis in
fact true if the electron wavefunction is not re@while it traverses a single complete@rcuit
about the monopole. But it is also well-known tiwaen a spinor undergoes a rotation through
2r, the sign of that spinor is reversed yielding @pasite “version” of that spinor, and that the
original sign and version are only restored aftefiadouble rotation. Consequently, it is shown
here that when an electron wavefunction is rotated tidal lock with the monopole during a
single Z circuit, and specifically due to the version charthat occurs because of this tidally-
locked rotation, to avoid unphysical singularitiée Dirac condition must change from the usual
whole integer condition to a half-integer conditidag=n-Y%.
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1. I ntroduction

In 1931 Paul Dirac [1] discovered that if magnatitarges with strengty were to
hypothetically exist, this would imply that the elec charge strengté must be quantized. The
relationship he found, often written g = n wheren is a positive or negative integer or zero,
has since come to be known as the Dirac Quantiz&ondition (DQC). The electric charge
strengthe in this relationship is the same one which isteglato the “running” fine structure
coupling viaa =€/ 4rhc which at low probe energy asymptotically approacthe numerical
value a =€® / 4rm:.c01/137.03¢, see, e.g., equation [1] in Dirac’s [1] (which si€gaussian units)
and Witten’s [2], pages 27 and 28.

In the mid-1970s, to remediate the fiction of Disathodal lines” which subsequently
became known as Dirac strings, Wu and Yang [3],déyeloped an approach which achieves
completely equivalent results “without strings.’helonly difference is that this approach is cast
in the more-modern language of fiber bundles.hinWu Yang approach, one uses d¢{bauge
theory to obtain the differential equatien” d&" = 2 eg@ (to be derived at (4.2) infra) where
is the gauge (really, phase) angle afds the geometric azimuth about the z-axis in tired
dimensional physical space of the rotation groug33OThis equation is easily seen to be solved
for constant electric and magnetic charge strengiis dg=0 by exp(iA) = exdi Bgg) (as

seen at (4.3) infra).

It has long been believed that the only Wu-Yangitsmh which is free of unphysical
observable singularities iseg= n of the standard DQC (to be derived at (4.7) infr@jis is in
fact true if the electron wavefunctia#t is not rotated while — to use Dirac’s languagé “gaes
round a closed curve” oPrr on the SO(3) space about the monopole. Howevethei
wavefunction is also rotated in a “tidal lock” withe monopole while traversing thisr circuit
and so itself undergoes 2rr rotation during this circuit, then its “version”illwreverse sign
following the completion of this circuit, as taughtsection 41.5 of Misner, Thorne and Wheeler’s
(MTW) definitive work [5]. Consequently, as wilebshown in section 5 here, in order to avert
observable singularities, these tidally-locked wit€ must have the half-integer charges
2eg= n—3 derived in (5.14) infra to compensate for thissien sign reversal, rather than the

usual integer chargese@= n of the standard DQC.

The only known circumstance in nature under whial-imteger charges are observed, is
at ultra-low temperatures near OK in connectiorhwhie Fractional Quantum Hall Effect (FQHE).
In this environment, fractional fill factons =n/2 are in fact experimentally observed, see e.g.,
[6], [7] for v=1/2, [8] for v=3/2, [9] for v=5/2 and [10] forv=7/2. Consequently, the
question is raised whether the half-integer fratitound here for wavefunctions tidally-locked
to Dirac monopoles might have some connectionaedlobserved half-integer FQHE fractions.
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2. L ocal U(1)em Gauge Transformations, in General

We begin by considering a first electron wavefunety, (x*) which is related to a second
electron wavefunctiony_(x*) by the local U(1dw gauge transformation (throughout, except in
certain particular circumstances, we shall emplatyral unitsz =c =1):

@, -y, =exp(iN)g, =y, (2.1)

where phase angl&(x*) varies locally as a function of the spacetime dowmtesx” as do the
wavefunctionsy/(x“). The transformation (2.1) is often written simplyy — ¢' =exp(iN)y,

but by placing the labefy, on ¢ and theny_ on ¢_=¢., we lay the foundation for easily
introducing the “north” and “south” gauge patchssdito study monopoles starting in section 3.

Next, we define a gauge potenti#,  (x“) to be an electromagnetic vector potential
corresponding with the wavefunctiapi,, and we then use this to define the gauge-covarian
derivative D, , =0, +ieA , wheree is the (running) electric charge strength, andrelke sign
of ieA , is positive in this derivative because we are gistn Minkowski metric tensor

diag(nw) = (1,— 1- 1~ ) versus the oppositely-signed convention. Apmthis derivative to
each side oexp(iA)y, in (2.1), we obtain:

D, , (exp(i/\)z/q) = (6# +ieA+#)( exp(i/\)gla)
=i0 Aexp(iN)y, + exiN)0 g, +HieA, , exfin)y, . (2.2)
=exp(in) (0,4, +[ieA,, +id A |y, )

Based on the inner square-bracketed expressioneidbattom line above, we define a second,
transformed gauge potentidl , = A , corresponding with the wavefunctigh =y, by:

eA,=eA, +J . (2.3)
Then, defining a second gauge-covariant derivabive=9d , +ieA , (2.2) simplifies to:
D, (exp(iA)w,) = ex(iA)[ 9, +ieA , [y, = exgin)D_up,. (2.4)

The foregoing represent a fundamental propositidoaal gauge theory: the local gauge
transformation (2.1) acting on a fermign must be compensated by the introduction of a gauge

fields A, transforming according to (2.3) in order to maimtayauge invariance of the
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electrodynamic Lagrangian and its related field a¢igmns. The logical consequence of this
proposition is Maxwell's electrodynamics.

The gauge transformation (2.3) may readily be @dithrough by and rewritten using
the mathematical identitid A =e™"9 ,&" as:

A,=A,+e0, & i (2.5)

Further, one may generally pack a vector potemi the differential one-formA= A)‘dX’.
Therefore (2.5) compacts and rearranges into:

A-A=e"dé&/ i (2.6)

This tells us that these two gauge fields and A, differ from one another by no more than a
generalized U(%), gauge transformation, which is apparent becalesetare just relabeled names

for the one-form#\ and A" transforming according té&\ = A+ € d&'/ ie. Therefore, these two
gauge fields are not observably-distinct.

3. A Coulomb M agnetic Field which isthe Curl of a Vector Potential, i.e.,
a U(1)em M agnetic M onopole

The electromagnetic field strength two-forf=3F, dx“dX where F,, is the field
strength tensor / bivector is generally relatetheovector potential one-fortaby F = dA and so
is a locally-exact two-form. The space compondfjts 9, A -0, A are related to the magnetic
field vectorB* =B = ( B, B, BZ) represented in Cartesian coordinates-py -, B, whereg;,
is the antisymmetric Levi-Civita tensor with,, = +1. Likewise, usingdiag(nw) =(1-1-1- )
to lower indexes inA* =(@,A) =(qo, A.A, A), and witho, =0 =(ax,ay,az), this means that
F, =-£,B“=0,A -0, A ,orB=0OxA. So whenever we have a field strengttr dA for a
given potential, the magnetic field will be the curl of the vector potentidl] x A .

Now, to begin a review of magnetic monopole physiesus define the two four-vector
potentials inA_ and A, of the last sectiosuch thathese are the potentials foCaulomb magnetic
field B which is the curl of the space components thestovg@otentials,B =0xA. That is, let
us now define the gauge potentials for a magnetinapole. We do this by simply postulating
the differential forms for these monopole potestidhen showing that these forms do in fact
reproduce a Coulomb magnetic field wigh=[xA .

We start by positing a (running) magnetic chargengjthg for such a monopole, and we
then postulate each of the potential one-forfnsand A, in a spherical coordinate basis to be:
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g(cosf- 3 dg

g(cosd+ ) dg (3-1)

A,
A

Confining our domain t®d< @< 77, A is “northerly” because it is defined everywhereeapt for

6@ =r1, i.e., except due south of the origin, whAe is a “southerly” potential defined everywhere
except ford=0, i.e., except due north of the origin. These tindd regions are the Dirac string
singularities. But the union of the regions in ethiA, are well-defined covers the entirety of the
SO(3) space oR*® about the monopole. Often these vector poterdia@seferred to as the north
and south gauge patche§, = A and A, = A. Making this identification, we see via (2.6)tha

these differ from one another simply by a gaugestia@mation and so are not observably-distinct.
We now show that these will indeed produce a Coblanagnetic field for which the curl

B =0OxA for both of the vector potentiala,, A _.

First, although we must generally reggrds a running magnetic charge strength, for the
present analysis let us haldconstant,dg =0. That is, we shall not lgf run over the region of

spacetime under consideration, or more precisetysiall consider a region of spacetime within
which any running o may be neglected. Because differential forms ggpnieaches that the
exterior derivative of an exterior derivative igaedd =0 in general, and thuddg =0 in this

specific setting, this all means when we operaté3oh) withd that:
F=dA =dA = gdcosf &. (3.2)

Therefore, based on what was discussed in thepinstgraph of this section, for either potential
in (3.1) the magnetic field =[0xA, =[x A_ is the curl of the gauge potential, as desired.

Of course,dF = ddA = ddA =0 via the same identityld =0, which means thaf is

closed and locally exact. But it is not globallyaet. Specifically, if we integrate (3.2) over a
closed two-dimensional nonlocal surface wgtktill held constant, and if we also apply Gauss’ /
Stokes’ theorem, then:

deF :@5 F :@5 gdcosf dg = gjoﬂ dcoﬁjom @ = gco§|g¢|§”:— 7 (3.3)

The fact that the region of spacetime is positethe¢oone in which any running gf may be
neglected thug is constant andlg =0 is reflected by our having movegoutside the integral

after the third equal sign above. Now let us dp=dly pinpoint the magnetic field.

To do so, we consider the circumstance under whieglectricfields vanish, that is, under
which the electric field vectoF,, =-F,,=E=0. Here,gf:.f) F= gf:ﬁ% F,dx‘dX = gf;f)—; F dX dx.

Then, using this in (3.3) also in view of the earrinotedF, = -¢, B“, we find that:
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fpF=qpsF, dxdx =fp ,dx dk+fp B dk d+dp E dk de~{pBE@S=-47 . (3.4)
So from the final equality above, this means that:
@B@S:MTQ:,U, (3.5)

where i = 4mg is defined as the total magnetic field flux acrtss closed surface. Conversely,
the magnetic charge strength 1/ 41 represents the steradial density of magnetic dicnoss

the closed surface. This, of course, is Gauss’ftawnagnetism in integral form, but with a non-
zero magnetic fluxy across the closed surface. Consequently, thieeistegral formulation of

Gauss’ law for a non-vanishing magnetic monopdiecause this was arrived at usiagO in
(3.4), (3.5), there are relectricfields induced by this monopole, and as a re§BIg) describes
this magnetic monopole at rest.

Now, in general, Coulomb’s law cannot be deriviexhf Gauss’ law alone. However, if
the magnetic monopole is stationary — which it égduseE =0 in (3.4) and (3.5) — then the
magnetic fieldB in (3.5) will be exactly spherically symmetric. sAa result of this spherical
symmetry, only the radial componeBt of B will be non-zero, that is, in spherical coordirsate

we will have B=(B,,B,,B,)=(B,0,0). Also because of this spherical symmetry, we may

removeB from the integrand in (3.5). Thus, using a spimlsurfaceﬁ dS=4mr? centered about
the monopole, we may now write the above as:

@B@S:B@ds:a @’ =4mg=u. (3.6)

Finally, (3.6) is easily rearranged to yield:

" r? 4m?

This is indeed a Coulomb magnetic field which hgsanstant) magnetic charge strengtland
for which the total magnetic flux across any closedface isg=4mg. Furthermore, this

Coulomb magnetic field is the curl of the vectotaptials,B =[xA, =[1xA_ as demonstrated

at the start of this section. Consequently, weehaampleted our review of how the potentials
postulated in (3.1) do in fact specify a non-vaimghCoulomb magnetic field witlB =0 xA .

Now, we begin to examine what is required to endina this Coulomb magnetic
monopole withB =[0xA does not give rise to any observable singularities
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4, Conditions under which the U(1)em M agnetic M onopole has No
Observable Singularities: The Standard Dirac Quantization Condition

Returning to (3.1), we first find that the diffeic® between the north and south gauge
patches:

A-A=2gdp. (4.1)

Combining the above with the gauge transformatd:®)(then yields the Wu-Yang [3], [4]
differential equation:

e"de" | ie=2 ggp. (4.2)

This differential equation is solved for constarnd constan, i.e., forde=0 and dg =0 by:

exp(in) = exdi 2gg), (4.3)
as is easily seen by plugging (4.3) back into é¢fieHand side of (4.2) then reducing.

We next employ this solution to operaten from the left, and combine this with (2.1),
which yields:

b, - =0 =explin)g, = exili 2ag)y, (@)

Clearly, for ¢ =0, this yieldsy_ (OF ¢, , using the notatio/(@) to denote the wavefunctions

at a particular azimuthal disposition. Now, foliony the course first charted by Dirac, let us move
this wavefunction through the Coulomb magneticdfief (3.7) around a closed curve in the
azimuthal direction, going fromp =0 to ¢ = 2. When this single circuit about the monopole is

complete, from (4.4) withyp = 27 we obtain:
W, - =y, =exp(iN)y, = ex{i BgO02)y, = expi #eg)y, (4.5)
This says thaty_(277) = exp(i éb‘eg)z/g. Now let’s turn to the question of observablgsiarities.

To avoid observable singularities, it is requitkdt the electron wavefunction #t= 277
be the same identical wavefunction as it is aigg@metrically identical azimuthh =0 on SO(3).
In other words, it is a requirement that the wawefion be defined so as to have the single value
@, (0) > ¢, (27) =y, (0 andnot have multiple values at the same azimuthalntaigon on

SO(3), see, for example, [11]. This requiremerik va satisfiedf and only if

W, > =y, =exp(iN)y, = exdi 4e9)y, = Wy, = expi an)y,, (4.6)
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where we make use of the identity exp(i 2m) for n=0,£1+2+ 3+ 4., i.e., for all positive or

negative integers or zero. Froewp(i 4®g)y, = exdi 2m)y, , we see that this will occifrand
only if 47reg= 27rn, or more simply:

2eg=n. (4.7)

In the language of fiber bundles, this all shows lhbe electromagnetic field is described by a 2-
form with integral periods, which is precisely ttrvature of a connection on a principal U(1)-
bundle, again, see, e.g., [11].

From (4.7), defining then =1 charge units ag, =1/29g and g, =1/ 2e, we see that the
respective electric and magnetic charge strengthsegiprocally quantized by:

e=n/29g= ng

) 4.8
g=n/2e= ng (48)

Now let’s examine the phase behavior. With the®condition2eg= n of (4.7) imposed,
(4.4) now becomes:

Y. -y =y, =exp(iN)y, = exing)y., (4.9)
which contains the implied quantized relationship:
N=ng (4.10)

between the phase angle and the azimuth anglg. Of course, aabsolutephase itself is not an
observable; all that may be observedébangen phase which we shall denote witlhasubscript
as/\,. So, we may ask, change in phase occurs aftevakefunction traverses an azimuthal

circuit from ¢ =0 to ¢ =2m? For this, we merely insest =277 into (4.10) to find that what
Dirac often refers to in [1] as the observalibdngein phase round” a “closed curve” is:

N, = 27m = 211, 47,67 ,87 ... (4.11)

Thus, if we start with a wavefunction g=0 in physical space and assign some
unobservable arbitrary angle to the phAsehen after traversing a single circuitgo= 277 which
has the same azimuthal orientation in physical sptte observable phase difference will be
N, =2rm. Thus the phase will likewise have returned tecgely the same angular orientation
in the phase spaozexp(i/\) = cogd\+i sin\ that it had at the start. Likewise, as impose@d),
there will be no observable singularities, becahsevavefunction will maintain the single value
@, (2m) =y, (0) at both of thep =0 and ¢ = 277 azimuthal orientations.

7
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Using the Dirac quantization condition (4.7) weynimally return to (3.1) to write the
monopole potentials as:

eA =1 n(cosfd-
A=in ) Ow. (4.12)
eA =1 n(cosf+ 1) dp
All of the foregoing summarizes the present-daglargtanding of U(k) magnetic
monopoles and the Dirac Quantization Conditideg= n of (4.7) which is understood to be

required if these monopoles are to exist withowgenbable singularities. A very good, parallel

review of the above can be studied at [12], whietves the beneficial purpose of clarifying and

detailing how the gauge field approach presentegeabelates to the modern mathematics of fiber
bundles. Note that thd, utilized in [12] employ an opposite sign conventfoom that used here.

Although the Dirac chargezeg = n of (4.7) are presently thought to be thrdy monopole

charges that can exist in the natural world withobservable singularity, we shall now
demonstrate that if the wavefunction in rotatedairtidal lock with the postulated magnetic
monopole while it traverses the monopole frgm 0 to ¢ =277, then in order to avoid observable

singularities, the Dirac charges must now posseffsirtteger rather than whole-integer charge
quanta.

5. Tidally-L ocked Electron Wavefunctions and Half-I nteger Fractional
M onopole Char ges

In the derivation of the Dirac Quantization Coratitjust reviewed, there is an unstated
assumption that the electron wavefunction, over dberse of traversing its circuit about the
monopole fromg =0 to ¢ =277, it not itself undergoing any rotation. But nogt Ls examine

what happens if the electron itself rotates iniddltlock” with the monopole as it traverses the
monopole, so that in the course of traversing frgm 0 to ¢ =2 about the monopole the

electron also rotates throudhr via the rotation group of SU(2) which is the umsed cover of
SO(3). This is analogous, albeit in the quantunldydo what the moon does when it traverses
the earth such that the far side of the moon ineisible from earth. As we shall now see, with
such a tidal lock, to avoid observable singulasitidie Dirac charge condition must now become
a half-integer rather than a whole-integer conditio

We begin with the three 2x2 Pauli matriagsof SU(2), posit three associated angées
in the physical space of spacetime, and form theices U, =exp(ig,@ /2) which are unitary,

U'U =1, given thato," = g, are Hermitian. Thesd, matrices are used to transform spinors, and

when projected via the two-to-one, double-coveredmomorphic, universal covering map
r:SU(2) - SO3)onto physical space, result in rotations througipeetive angle¢ =¢6,,6,,6,

about each of the x, y, z axes in the three-dinmeradiphysical SO(3) space often denoted®as
It is well-known how to make use of the seré(ix) = 1+ix -4 x> i x*+ 4 x* ... together with

8



Jay R. Yablon
the fact thatg,™ =1, aned

. and g,
detU, = 1, into:

=g, to flesh out these unitary matrices, each of wthels

u, = exp(iglﬁJ _[Cos(é’l 13 isin8, /g)j

2) \isin(6,/12) cog6, 12

u, =exp(i02iJ :[ cos(6, 12 sin(, /;)J

2) \-sin(6,/2) cog6, /2

6,\ _(cos(g, /+isin6, /12 0 - (5.1)
u3=exp(i0333j:[ e cog6, /3 ~i sif6, /;j
_(exp(i6, /2 0
_[ 0 exp(-i6, /2)}

Continuing with the natural unit8 =c =1 let us next consider an electron traveling with

velocity B =v along the z axis and thus the Lorentz contradtietor y =1/+/1-v* . As is often
done, we may then define the boost parametesby = )y and sinhy = 3, and write the Lorentz
transformation between the time coordinaa&d thez coordinate using the hyperbolic “rotation:

t t' h ' t
. _ C(.)S Y  sinhy . (5.2)
z Z sinhy coshy )\ z
Several of the points to now be developed are faniRlyder’s [13], amidst pages 36 to 42.

The electron wavefunctiog is a four-component Dirac spinor which we can derxy
Y :(.;(T,/f), whereé ands are each two-component spinors with all componiemésrelated

via Dirac’s equation(iy"aﬂ—m)z// =0. Under a transformation (5.2) defined by the Inbze

group SO(1,3), which includes a general bgpsind spatial rotation through on SO(1,3), these
spinor components will transform on SL(2,C) accogdio:

” :@ W :U;j :[exp(icfﬂg—ix) 12) exp(icEG00+ix) /3}@ , (5.3)

whereo =g, are the 2x2 Pauli matrices. So for a non-relsiiivielectron withy — 0 undergoing
simply a rotation without boost, this simplifies to

oo oo {H oot oo
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wherel ,, is a 2x2 identity matrix and the outer product bgi(] is used to compactly represent
that 1, Oexp(ic® /2 is a 4x4 matrix formed by placing the 2eXp(ic ® / 2) based on (5.1),
on the diagonal twice. For an azimuthal rotatlmotighé, = ¢ about the z axis only, this becomes
W -y =, 0expliog /Ay =1 ,0U g, for which the unitary matrixJ, is explicitly given
by the third relation in (5.1) witlg], replaced byg . Thus, for an azimuthal rotation only, for a
non-relativistic electron, thexp(i03¢ /2) term in (5.4) will operate identically upon eadttloe
two-spinorsé,n . So for the upper spingf; = ({A,fB), usingU, from (5.1), the transformation
in (5.4) will be:

gm£'=u35=exp(iasgj5=[cos(¢/Z)Bi s /3 COS(¢/3_?S"(¢ /J@j (5.5

For the lower spinon; =(17,,77;) the operation is a carbon copy of (5.5) but witk symbolé
replaced throughout by the symbgpl The requirement to maintain the two spingrsaand
together within the four-component Dirac wavefuoitiy’ :(.;(T,/f) arises because these are

interchanged — 77 under parity. But when the boost is removed terall ¢ as well as each
of & andn will transform in identical fashion and so maydaparately considered.

We finally consolidate the transformation (5.5) both &,7 into one expression by
representing the third 2x2 matrix (5.1) compactiyg = cos(¢ /i si{¢ /2= exfrig /}
while also using they, labelling of (2.1) to recasy = ¢, , and thus also recagt= ¢, and
n=n,, yielding:

&) (& i -
w+ :[,7+j N w+ :[,ﬂrj = |(2) ] eXp£|U3%)l/J+ =1 (2) 0y é/’+

:£c09(¢ /2):; sif(¢ /3 0 jfj:[ extig /P 0 );[ﬂ.(as)

cof¢ /i sifg /2)\n, 0 exgrig 1P\ 7,

In this compact notation, the signs denote the respective operations on eaclp@oent of
& =(é,0é.5) and 7. =(17,01.5). This is a more explicit form of (5.4) for an @withal

rotation withe ® = 0,8, = ¢, also adopting the labelling of (2.1).

Now, let us return to the gauge transformatign— ¢/, =exp(iA)y, of (2.1) and contrast

this against (5.6). As already noted, now quofdigac from page 63 of [1], “the value of [the

phase] at a particular point has no physical mepaimd only the difference between the values of
[the phase] at two different points is of any inpoce.” So, if we are comparing phases between
two different azimuthal points (for the non-relasiic electron presently under examination), then

10
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we should also inquire whether the electron has betated at all when moving from one such
point to the next. If the electron has not rotdietithe phase has changed, then the transformation

will be ¢, — ¢, =exp(iA)y, from (2.1). Conversely, if the electron has retiabut the phase
has not changed, then the transformation willlhe- ¢, =1, exp(i o0 /2)1//+ from (5.6). But,

if both the phase has changamtt the electron has rotated, then the complete wamsition will
be a combination of both operations (2.1) and (s&jnely:

W, -, =1, 0Uexp(iN)y, =1 ,0 ex;{i U3§J exp Ay, =I ,,0 ei{d3g+/\}l//+ (5.7)

With (5.7) we are now equipped to ask what happktise electron makes a complete circuit
“round a closed curve” about the monopole throughiraazimuthand simultaneously does so in
a tidal lock with the monopole thus also rotatihgough 277, all on SO(3).

To avoid observable singularities, as in sectiorwd, must still have a single-valued
wavefunction after the full 277 circuit is complete, that is, we must still impose
Y. =y, (2m =y, (0). But now, the condition required to avoid a siagity will be imposed by

defining ¢, =, when ¢ =277 using (5.7). So to impose the condition that tilelly-locked
wavefunction be single-valued after completin@z circuit, we simultaneously set =277 in
(5.7) and requirgy, =, =1, exp(i 2m)y, , which usesl=exp(i 2m) as before. By setting
@ =2, we are also now implicitly examining an obsereaphase difference as betwegr 0
and ¢ =277, which we again denote by replacing the absolbese/ with the phase difference
N, . Consequently, from (5.7), with these conditioms, obtain:

W, -, =1, 0expliogm) exding )y, =1 ,0 exp(agm+ Ay, =@, =1, exp & )y,.(5.8)

Now turning the =" used to designate the imposing of a single-valuadefunction into an equal
sign, this will be recognized as, and may be restined into, an eigenvalue equation:

(|(2) Oexpi (gm+Ay) =1 4 expi 2211))1//+ = ( (5.9)

for the phase differenca, that is introduced when going frogh=0 to ¢ =277. Now, we merely
need to solve this eigenvalue equation.

To simplify solving (5.9), we may use (5.1) to ded that wherd, =¢ =2 as it is in
(5.9), the 2x2 matri}J, = exp(io,) = ,,, which produces a sign reversal. So rather thiwes
(5.9) using explicit matrices form, we may use thisservation together with,, U1 , =1, to
directly simplify then reduce (5.8) to:

W, — . =—exp(in, )y, =y, . (5.10)
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Except for the sign reversal and the fact that reeraw using the notation, introduced at (4.11)

to represent that this is an observable pliiference this is the same as (4.6) from which we
obtained the standard DQC of (4.7). This sign r&ade which is a consequence of the rotation
from the tidal lock, is, however, not a trivial et because it changes the Dirac condition needed
to avert observable singularities. Let us see how:

Now, in lieu of 1=exp(i 2m) used in (4.6), we now use the mathematical identit
—1:exp(in(21— 1)) ie., we use the fact that the Euler formwap(i9)=-1 at angles

& =m3m,57..=( - 3 for which the coefficient of7 is an odd-integef2n-1)=1,3,5... So
now, flipping the signs in (5.10) and using thisntity for -1, we have:

exp(in, )y, =—y —EX[Z(IIT (2- ;L) (5.11)

As a result, for the tidally-locked electron, weynetract from (5.11) that after a single tidally-
locked 277 circuit “round a closed curve,” the change in ghadl be:

N, =(2n-1)77=7m,37,57, 77 .., (5.12)

which is likewise an odd-integer multiple af, contrast (4.11) which is an even-integer multiple
of 1.

Most importantly, if now combine (5.11) with the Wiang equation (4.4) also obtained
from a single2sr circuit about the monopole, that is, if we comb{sell) with (4.4) (with the
notation A\, for the phase difference) for the saghe 277 azimuthal circuit, we now obtain:

exp(in, )y, = ex;:(ln (2- ;L) = exfi &Py, = exp 7eg)y, . (5.13)

From exp(in( - ]))z//+ = exfi 4eg)y, above, we may finally extraet(2n-1) = 477eg which
reduces to:

I~

(5.14)

2eg=(2n9) /2= m3=3 3 %

N

for the positive integera=1,2,3,4,5... This is the charge condition required to avoid aliable
singularities when the wavefunction traverses tio@opole in a tidal lock Contrasting the usual
DQC 2eg= nof (4.7), we see that to avoid observable singfigarfor a tidally-locked electron

which rotates in synchronization with its circuiicaut the monopole, we must now have a Dirac
qguantization condition for which the charges badf-integer charge fractions that skip over the
whole integer charges

12
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Under this condition, using the charge quant&asl/2g and g, =1/ 2e defined after
(4.8), the electric and magnetic charge strengthsiaw reciprocally quantized according to:

e=(n-1)/2g=(n- | (5.15)
g=(n-3)/2e=(n-

Likewise, using (5.14) in (3.1), in contrast to gwlier (4.12), the vector potential one-forms are
now quantized according to:

(v
(n-

Now, let’s step back to gain some perspective batwas happened here to reveal these
half-integer Dirac charges.

)(cosg- 1) dy).
)(cosf+ 1) dp

eA

(5.16)
eA

1
2
1
2

6.  Why the Half-Integer Dirac Charges are Smply a Consequence of
Wavefunctions Changing their Version when Under going Rotations

In their classic exposition at section 41.5 of Misner, Thorne and Wheeler (MTW) teach
that a spinor will reverse sign after aByr =360 rotation, and will only regain its original sign
after adr= 720 rotation. A four-component Dirac wavefunctign houses two spinorg, 7,
and as reviewed in the last section, these twoospiand thus the overall wavefunction will
transform identically under rotations absent boosthus, the entire non-relativistic Dirac
wavefunction will exhibit this sign reversal after2/7 rotation. On close inspection, it will be
seen that the rotation reviewed in [41.48] thro[4gh50] of [5] when taken about the z-axis is the
same as that used in (5.5) here. We discussath@anfelectron by saying that the electron changes
to an oppositely-signed “version” after2ar rotation and only recovers its original versioteat
477 rotation. So if the electron is traversed throad@r azimuthal circuit about the hypothesized
magnetic monopole reviewed in section 3, andif fidally-locked to the monopole and thus has
a rotation synchronized to this traversal, thendleetron will return to its original azimuth with
its sign reversed. And this means that the wawiom at this azimuth isot single valued but is
double valuedvith a leading+ sign. This would give rise to an unphysical observableabi
string singularity if not compensated in some way.

MTW analogize this version change to the macroscand entirely classical “orientation-
entanglement” phenomenon wherein an object contdotés environment by a set of threads
will only regain its original state of entanglemexftter it is rotated twice ovedsr, but will have
an opposite entanglement following onl\2& rotation. But an electron is a quantum object not
a classical one, and it is not necessary hereg¢hiss macroscopic analogy. The angfke (5.1)
are rotation angles in physical space which arep@@pnto SO(3) through the homomorphic
double-covering projectiom: SU(2) - S{3), and when the complete Dirac theory is taken into
account, through the mapping:SL(2,C) - S{L,3). Numerically, this is encoded in the
denominator of 2 first appearing in (5.3). Thug spinor transformation (5.5) makes very clear

13
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that the sign of the electron wavefunction willemvfollowing a 277 rotation and only be restored
after 4rr. Specifically, when the rotation azimugh= 277 we haveé - &' =U,(2m)é =—-& which

will carry through to the entire non-relativisti@wefunctiony™ = (fT,nT), but wheng = 471 we

haveé - & =U,(4m)& =& which restores the sign to its original valuel d&tlthis is well-known

and well-settled physics. Indeed, this two-valdedersion sign is directly related to the double
covering of SO(3) by its universal cover SU(2But the question of what happens in Dirac
monopole theory when electron wavefunctions arallyidocked to a postulated magnetic
monopole and so undergo this well-known versiomgbkaafter executing & =27 circuit does

not appear to have been previously consideredariitarature.

Because a version charge is simply a sign chaihgemay be encoded in the identity
-1= exp(in( 4 - 1)) which represents the primitive square root ofyunsing Euler’s formula

exp(id)=-1 at angles# =37, 57..=( h- I which are oriented at the Euler angle

J=m=180C and at angles differing from this simply by integaultiples of2/7. Indeed, the two
signs of the wavefunction versions taught by MTWynte illustratively represented in the
simplest and most transparent form by writing ttpgase roots of unity as:

P=+1= {ZZ((:Z(( 2;)2 ) (6.1)

So to maintain the single-valued wavefunctigh=, (277) =, (0) required to avoid observable

string singularities, we need to compensate far $ign change that occurs when there is a version
change. When calculated through, this compensasioeflected and absorbed into the phase

difference A\, = (2n—1) 7T of (5.13) for a tidally-locked electron. Thisimscontrast to the phase
difference A, =27m of (4.11) required when there is no tidal lock ahds no version change.
And this, in turn, finally cascades through to thquirement that the Dirac condition for tidally-
locked wavefunctions must be the half-inte@eg = (2n—]) /2= n—3 found in (5.14), rather than
the customary whole-integ&deg= n of (4.7).

There is a related way to look at all of this whiocuses on the phase difference rather
than the charge fraction. The result in (5.12Fbes that the phase difference for a tidally-locked

wavefunction after traversing # =27 azimuth must beA, =(2n-1)77=7,37,57.., which
means that the wavefunction orientation becod®® out of phase after this single azimuthal
circuit in the complex phase space e)’(p(i/\): cod\ +i simM\ used to perform the gauge
transformationy, — ¢, = exp(i/\)z//+ =y _ of (2.1) on the electron wavefunction. So, what s

of azimuthal traversal is required to restore thgioal phase orientation of the wavefunction? If
we traverse a firszr azimuth and then a seco2dr azimuth for a totakd/z circuit usingn, and

n, to denote the characteristic integerérom the first and second traversals, then thespha
differences will add together in the form 6§, =(2n -1) 7+(2n, - ) 7= 27(n+ n,- 3= 271,
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where in the final step we simply renamgt n,-1=r1 to another integer. So afterge= 477
azimuthal traversal — but not after onl2& traversal —the phase difference becomgs= 7m’ 2

like that in (4.11), and so the phase returnsstoiiginal orientation. This means that in general
the phasefor a tidally-locked electron will return to itgiginal orientation only after circuits of
@ =4r/m, andnot after only @ =27m circuits —just like the wavefunction version itself.

So, stepping back from the mathematical detailweg summarize all of this by saying
that to avoid singularities for an electron wavetion traversing a magnetic monopotage
wavefunction phase orientation must be synchronizedhe wavefunction version If the
wavefunction does not rotate in a tidal lock dureng = 277 circuit, then both the version and the
phase will be restored to their original orientatefter the2sr circuit is complete. However, if
the wavefunctiordoesrotate in a tidal lock during this circuit, thenae the circuit is complete,
the version will have an opposite sign, hence oppasientation from what it had at the outset,
and synchronized to this, the phase will also leavepposite orientation in the phase space. Here,
both the phase and the version — synchronized ¢oaonther — will only revert to their original
orientations after traversing =47m circuits, which is an extension of the teaching#esner,
Thorne and Wheeler in section 41.5 of [5] to the-Wang analysis [3], [4] of Dirac monopoles.
The wavefunctions themselves remain single-valyed= ¢, (277) =y, (0) after eachg =2/m

circuit which is required to avoid observable sirgingularities, and the resulting Dirac monopole
charges are the half-integ2eg= n—-1 when there is a tidal lock, and the standard wimteger

2eg = nwhen the is no tidal lock.

7. Conclusion

Just as Dirac’s finding at page 68 of [1] of theagtization condition2eg= n of (4.7)
raised the question whether this might providettis®retical explanation for why electric charge
is quantized, the finding at (5.14) here that aefanction tidally locked to a magnetic monopole
obeys the half-integer conditia?eg= n—% of (5.14) raises the question whether this mightte

theoretical reason why half-integer FQHE chargetioas are observed in conductive materials
at ultra-low temperatures near absolute OK whely gémong perpendicular magnetic fields are
applied.

It is left for future study to examine whether Bu physical connection can in fact be
established between the half-integer charge frastiound here and the half-integer charge
fractions found in the FQHE. But it is importantand of itself to recognize, using the Wu-Yang
analysis for maintaining a single-valued wavefumttio avoid observable string singularities, that
when an electron wavefunction is rotated in a tidlatk as it traverses a circuit about a
hypothesized magnetic monopole, the Dirac conditimnmerely admits, but indeed requires, the
existence of half-integer charge fractions
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