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Abstract

Dempster Shafer evidence theory (D-S theory) is more and more exten-

sively applied to information fusion for the advantage dealing with un-

certain information. However, the results opposite to common sense are

often obtained when combining the different evidence using the Demp-

ster’s combination rules. How to measure the divergence between dif-

ferent evidence is still an open issue. In this paper, a new relative entropy

named as Deng relative entropy is proposed in order to measure the diver-

gence between different basic probability assignments (BPAs). The Deng

relative entropy is the generalization of Kullback-Leibler Divergence be-

cause when the BPA is degenerated as probability, Deng relative entropy

is equal to Kullback-Leibler Divergence. Numerical examples are used to

illustrate the effectiveness of the proposed Deng relative entropy.
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1. Introduction

Dempster-Shafer evidence theory (D-S theory) [1, 2] has attracted the

extensive attention of researchers with its great advantage to handle and

combine uncertain information. This theory is widely used in object clas-

sification [3, 4], decision making [3, 5, 6, 7, 8, 9, 10, 11, 12], risk assessmen-

t [13], information fusion [14, 15]. However, the counter-intuitive con-

ditions often occur when fusing the high conflicting evidence using the

Dempster’s combination rules [16, 17]. This kind of counter-intuitive re-

sults have a serious influence for the accuracy of evidence fusion.

It is so necessary and significant for researchers to remedy this weak-

ness of Dempster’s [1] combination rules. To improve this shortcoming, a

series of alternative combination rules are presented [15, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28, 29, 30, 31] currently. Generally speaking, there exist t-

wo categories of methods to deal with this problem. One is to improve the

Dempster’s combination rules and to reallocate the conflict. For example,

in [18, 19], Lefevre used the part of the conflicting evidence and distributed

the conflict into the focal element sets of all the evidence proportionally. In

[24], the conflict of evidence is abandoned to utilize because Yager believe

it is useless and distribute them into the universal set. However, some-

times it enlarges the uncertainty of evidence and gets the unreasonable

fusion results. And the other one is to modify the conflicting evidences
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before the fusion. Schubert [15] and Han [28] proposed the modified algo-

rithms to obtain the weights of evidence. In [20], Deng proposed a method

about the evidence support based on the Jousselme distance function and

determine a weighted average of all the evidence. In [26], Murphy pre-

sented a problem, the failure to balance multiple evidence, then illustrated

the proposed solutions and described their limitations.

All of these methods can improve the fusion results in part and make

up some weakness of D-S theory from a different perspective. Howev-

er, some essence is ignored to figure out this problem for a long time. To

resolve the problem in essence, in this paper, a new relative entropy is

proposed named Deng relative entropy which is a generalized relative en-

tropy to measure divergence between BPAs.

The remainder of this paper is constituted as follows. Section 2 in-

troduces the D-S theory and its basic rules and some necessary related

concepts about relative entropy. The proposed method of Deng relative

entropy is presented in Section 3. Section 4 presented and analyzed the

experimental results. Conclusion is given in Section 5.

2. Preliminaries

2.1. Dempster-Shafer evidence theory

Dempster-Shafer evidence theory (D-S theory) is proposed by Demp-

ster [1] and developed later by Shafer[2]. This theory extends the elemen-

tary event space in probability theory to its power set named as frame of

discernment and constructs the basic probability assignment(BPA) on it.
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In addition, there is a combination rule presented by Dempster to fuse d-

ifferent BPAs. In particular, D-S theory can definitely degenerate to the

probability theory if the belief is only assigned to single elements. The

basic definitions about D-S theory is shown as follows:

2.1.1. Frame of discernment

D-S theory supposes the definition of a set of elementary hypotheses

called the frame of discernment, defined as:

θ = {H1, H2, ..., HN} (1)

That is, θ is a set of mutually exclusive and collectively exhaustive

events. Let us denote 2θ the power set of θ.

2.1.2. Mass functions

When the frame of discernment is determined, a mass function m is

defined as follows.

m : 2θ → [0, 1] (2)

which satisfies the following conditions:

m(φ) = 0 (3)

∑
A∈2θ

m(A) = 1 (4)

In D-S theory, a mass function is also called a basic probability assign-

ment (BPA).
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2.1.3. Dempster’s rule of combination

In a real system, there may be many evidence originating from different

sensors, so we can get different BPAs. Dempster [1] proposed orthogonal

sum to combine these BPAs. Suppose m1 and m2 are two mass functions.

The Dempster’s rule of combination denoted by m = m1
⊕

m2 is defined

as follows:

m(A) =
∑B

⋂
C=A m1(B)m2(C)

1 − K
(5)

with

K = ∑
B
⋂

C=φ

m1(B)m2(C) (6)

Note that the Dempster’s rule of combination is only applicable to such

two BPAs which satisfy the condition K < 1.

2.2. Kullback-Leibler Divergence

In probability theory and information theory, the Kullback-Leibler di-

vergence [32, 33] (also information divergence, information gain, relative

entropy, or KLIC) is a non-symmetric measure of the difference between

two probability distributions P and Q. KL measures the expected number

of extra bits required to code samples from P when using a code based on

Q, rather than using a code based on P. Typically P represents the ”true”

distribution of data, observations, or a precisely calculated theoretical dis-

tribution. The measure Q typically represents a theory, model, description,

or approximation of P. And its definition is shown as follows:
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DKL(P||Q) = ∑
i

P(i) log
P(i)

Q(i)
(7)

where P and Q are the probability distributions and usually have the

same type.

In words, it is the average of the logarithmic difference between the

probabilities P and Q, where the average is taken using the probabilities

P. The K-L divergence is only defined if P and Q both sum to 1 and if

Q(i) > 0 for any i such that P(i) > 0. If the quantity 0 × log(0) appears in

the formula, it is interpreted as zero.

There are some properties for the K-L divergence.

1. The KullbackCLeibler divergence is always non-negative,

DKL(P||Q) ≥ 0

a result known as Gibbs’ [34] inequality, with DKL(P||Q) zero if and

only if P = Q.

2. The Kullback-Leibler divergence is additive for independent distri-

butions in much the same way as Shannon entropy. If P1, P2 are indepen-

dent distributions, with the joint distribution P(x, y) = P1(x)P2(y), and Q,

Q1, Q2 likewise, then

DKL(P||Q) = DKL(P1||Q1) + DKL(P2||Q2)
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3. Deng relative entropy

There are some open issues in D-S theory still unresolved, and how to

measure the discrepancy and conflict of two evidence is the key step which

is very important for evidence fusion. It is obvious that D-S theory is

the generalization of probability theory, and combined with the Kullback-

Leibler Divergence mentioned above, A new relative entropy named Deng

relative entropy are defined as follows:

Dd(m1||m2) = ∑
i

m1(Fi) log
m1(Fi)

m2(Fi)
(8)

where Fi is a proposition in mass function m1 and m2, respectively. The

Deng relative entropy is similar with Kullback-Leibler Divergence in for-

m, but it uses mass functions instead of probability distribution functions.

Specially, the BPA will turn into probability if it’s only assigned to sin-

gle elements, and Deng relative entropy will also degenerate to Kullback-

Leibler at the same time. The same property can be reasoned out shown

as follows.

The Deng relative entropy is always non-negative,

Dd(m1||m2) ≥ 0

The Dd(m1||m2) zero if and only if m1 = m2, similarly.

7



4. Numerical examples and discussions

Example 4.1. Let us suppose a frame of discernment X={θ1,θ2,θ3},two evidence’s

mass function in three differen conditions as follows:

Condition 1: m1(θ1) = 0.4, m1(θ2) = 0.3, m1(θ3) = 0.3; m2(θ1) = 0.4,

m2(θ2) = 0.3, m2(θ3) = 0.3

Condition 2: m1(θ1, θ2) = 0.4, m1(θ1, θ3) = 0.6 ; m2(θ1, θ2) = 0.4, m2(θ1, θ3)

= 0.6

Condition 3: m1(θ1, θ2, θ3) = 1 ; m2(θ1, θ2, θ3) = 1

the calculation process of condition 1, 2 and 3 of Deng cross entropy as follows:

condition 1. Dd = 0.4 × log 0.4
0.4 + 0.3 × log 0.3

0.3 + 0.3 × log 0.3
0.3 = 0

condition 2. Dd = 0.6 × log 0.6
0.6 + 0.4 × log 0.4

0.4 = 0

condition 3. Dd = 1 × log 1
1 = 0

From the example 4.1, it can be seen that the Deng relative entropy is

zero for the same BPA.

Example 4.2. Let us suppose a frame of discernment X={θ1,θ2}, two evidence’s

mass function shown as follows:

m1(θ1) = a, m1(θ2) = 1-a, a ∈ [0, 1]; m2(θ1) = 0.5, m2(θ2) = 0.5

the result of Example 4.2 of Deng cross entropy is:Dd = a × log a
0.5 + (1-a) ×

log 1−a
0.5 .

The Deng relative entropy between m1 and m2 is shown in Figure 1

with the parameter a has changed. It is obvious that when the value of

a changes in the interval [0, 0.5], the divergence between m1 and m2 get-
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ting smaller and smaller, and their Deng relative entropy decreases corre-

spondingly. Then, the value of Deng relative entropy turns into 0 when m1

and m2 are exactly the same. Moreover, equally obvious is that when the

parameter a changes in the interval [0.5, 1], the divergence between m1 and

m2 is growing, and their Deng relative entropy increases correspondingly.
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Figure 1: Deng relative entropy with changing parameter a

5. Conclusion

Dempster Shafer evidence theory is very important in the field of infor-

mation fusion and applied widely in many processes because of its pow-

erful features to handle the uncertainty. However, the counter-intuitive
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results are often obtained if there exist the larger conflict between differ-

ent evidences. To resolve this serious problem effectively, in this paper, a

new relative entropy is proposed named Deng relative entropy which is

the generalization of Kullback-Leibler divergence, and the Deng relative

entropy will degenerate to the K-L divergence when all the belief are as-

signed to single elements. Numerical examples are used to illustrate the

efficiency of Deng relative entropy. The new relative entropy presents a

method to measure the divergence between BPAs. There are some prop-

erties about Deng relative entropy are discussed, but there still exist some

shortcomings have to be improved in the following works.
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