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In fluid mechanics, a lot of authors have been executing their researches to obtain the 

analytical solutions of Navier-Stokes equations, even for 3D case of compressible gas 

flow. But there is an essential deficiency of non-stationary solutions indeed. 

In our derivation, we explore the case of non-stationary helical flow of the Navier-

Stokes equations for incompressible fluids at any given initial conditions for velocity 

fields (it means an open choice for the space part of a solution). 

Such a non-stationary helical flow is proved to be decreasing exponentially in regard to 

the time-parameter, the extent of time-dependent exponential component is given by 

the coefficient of kinematic viscosity, multiplied by the square of the coefficient of 

proportionality between the vorticity and velocity field. 
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1. Introduction, the Navier-Stokes system of equations. 

 

In accordance with [1-3], the Navier-Stokes system of equations for incompressible 

flow of Newtonian fluids should be presented in the Cartesian coordinates as below 

(under the proper initial conditions): 

 

- where u is the flow velocity, a vector field; ρ is the fluid density, p is the pressure,  is 

the kinematic viscosity, and F represents external force (per unit of mass in a volume) 

acting on the fluid. Let us also choose the Ox axis coincides to the main direction of 

flow propagation; notation u or       means a vector field. 

 

Besides, we assume here external force F above to be the force, which has a potential  

represented by F = -∇  . 

 

 

2. The originating system of PDE for Navier-Stokes Eqs. 

 

Using the identity (u∇)u = (1/2)∇(u2
) – u×(∇×u), we could present the Navier-Stokes 

equations (1.1)-(1.2) for incompressible viscous flow u = {u₁, u₂, u₃} as below [4-5]: 

 

- here we denote the curl field w, a pseudovector time-dependent field [6]; besides, let 

us denote:  - {(∇  p/) + ∇  } = {fx, fy, fz}. 

u


 1.1,0 u


 2.1,)( 2 Fu
p

uu
t

u 

































p
uuwu

t

u

u

)(
2

1

)1.2(

,0

22 






3 

 

Vorticity, associated with the curl field, is assumed to be arising due to the proper 

sources of vorticity in the flow of fluids [4-5]. For example, such a sources could be 

associated with the solid surface or pressure gradient in case of non-barotropic 

compressible fluids, influence of viscous forces, Coriolis forces (when one’s reference 

frame is rotating rigidly) or curving shock fronts when speed is supersonic. 

 

 

3. The presentation of time-dependent solution. 

 

Let us search for solutions of the system (2.1) in a form of helical flow below: 

 

 

- here  is the constant coefficient, given by the initial conditions (  0). 

 

Then we should obtain from (2.1) and expression for curl [6] the proper system of PDE: 

 

 

 

- besides, the continuity equation (1.1) should be satisfied due to the special form (3.1) 

of helical flow solution. Also taking into consideration the expression for curl [6], we 

obtain: 
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Let us differentiate the 3-rd equation of system (3.2) in regard to variable y, additionaly 

differentiate the 2-nd equation (3.2) in regard to variable z, then subtract it one from 

each other: 

 

- where from expression for curl [6] we determine as 

 

- so, each equations of the system (3.2) should be transformed as below 

 

 

 

System of equations (3.3) could be presented as 
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 - thus, finally we obtain 

 

- here u₁(t₀), u₂(t₀), u₃(t₀) are the set of functions, depending on variables {x, y, z} 

(which are given by the initial conditions). 

 

As for the components of pressure gradient field, according to [7] and Eqs. (2.1), it 

could be presented for such a type of helical flows as below: 

 

 

 

4. Discussion. 

 

There exists a well known helical steady solution, the Arnold-Beltrami-Childres flow 

[8-9], which is the particular simple case of helical flow (3.1). The last is also known as 

Beltrami flow, i.e. a fluid motion in which the vorticity vector is parallel to the velocity 

vector at every point of the fluid. For stationary case (3.4), the space part of such an 

ABC-flow should be presented as below (A, B, C = const): 

 

If we remember the originating of denotation for the components of velocity field: 
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- it should yield a system of ordinary differential equations as below 

 

 

 

- which is proved to have not an analytical solutions, but moreover it reveals a 

dynamical chaos among the trajectories of appropriate solutions of such a system [8-9].  

 

The ansatz in this derivation let us generalize the idea of extending such a steady helical 

solutions to the viscous unsteady case at any given initial conditions for velocity fields 

(it means an open choice for the space part of a solution); so, it let us obtain for the 

space part, corresponding to the steady case of ABC-flow (4.1)-(4.2), as below: 

 

 

 

Should the system (4.3) also yield a dynamical chaos for the trajectories of the non-

stationary solutions? 
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To answer, we should comment first this important particular case, i.e. the Arnold-

Beltrami-Childres flow. 

The ABC flow, a three-parameter velocity field that provides a simple stationary 

solution of Euler's equations in three dimensions for incompressible, inviscid fluid 

flows, can be considered to be a prototype for the study of turbulence - the ABC-flow 

provides a simple example of dynamical chaos, in spite of the simple analytical 

expression for each of the components of a solution [8]. 

 

In our case (3.4)-(3.5), it means that we need some boundary conditions that preserve 

helical the solution inside of the limited domain: indeed, the space part of the 

components of pressure gradient field (3.5) should strongly depend on the space part of 

the initial conditions for the components (3.4) of velocity u₁(t₀), u₂(t₀), u₃(t₀). 

Nevertheless, the possible existence of a dynamical chaos for the solutions of (4.3) 

could mean that such a solutions could be considered as unstable with respect to a small 

perturbation at the meanings of the boundary conditions. 

Also we should note that since the fluid is incompressible for the development above, 

there is a strong link between boundary conditions and the solution inside. Due to this 

link, at least for the small values of time-parameter t, the space part of a solution (3.4) 

or (4.3) should strongly depend on the boundary conditions. 

 

 

 

5. Conclusion. 

 

In fluid mechanics, a lot of authors have been executing their researches to obtain the 

analytical solutions of Navier-Stokes equations [10], even for 3D case of compressible 

gas flow [11]. But there is an essential deficiency of non-stationary solutions indeed. 

In our presentation, we explore the case of non-stationary helical flow (where vorticity 

is proportional to the flow velocity) of the Navier-Stokes equations for incompressible 

fluids at any given initial conditions for velocity fields (it means an open choice for the 

space part of a solution). 
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Such a non-stationary helical flow is proved to be decreasing exponentially in regard to 

the time-parameter (3.4), the extent of time-dependent exponential component is given 

by the coefficient of kinematic viscosity, multiplied by the square of the coefficient of 

proportionality between the vorticity and velocity field. 

As we know, ABC-ansatz [8-9] was published as a solution of the steady problem. In 

their work, they never realized that its extension is possible also to the non-stationary 

problem. It was extended for the first time in [12] to the non-stationary problem as a 

time-kinematic viscosity decaying solution; also we should mention the comprehensive 

article [7] in regard to the non-stationary helical flows with the special kind of the 

space part for the velocity fields as well as the appropriate pressure gradient field. 
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