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In fluid mechanics, a lot of authors have been executing their researches to obtain the 

analytical solutions of Navier-Stokes equations, even for 3D case of compressible gas 

flow. But there is an essential deficiency of non-stationary solutions indeed. 

In our derivation, we explore the case of non-stationary helical flow of the Navier-

Stokes equations for incompressible fluids at any given initial conditions for velocity 

fields (it means an open choice for the space part of a solution). 
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1. Introduction, the Navier-Stokes system of equations. 

 

In accordance with [1-3], the Navier-Stokes system of equations for incompressible 

flow of Newtonian fluids should be presented in the Cartesian coordinates as below 

(under the proper initial conditions): 

 

- where u is the flow velocity, a vector field; ρ is the fluid density, p is the pressure,  is 

the kinematic viscosity, and F represents external force (per unit of mass in a volume) 

acting on the fluid. Let us also choose the Ox axis coincides to the main direction of 

flow propagation; notation u or       means a vector field. 

 

Besides, we assume here external force F above to be the force, which has a potential  

represented by F = -∇  . 

 

 

2. The originating system of PDE for Navier-Stokes Eqs. 

 

Using the identity (u∇)u = (1/2)∇(u2
) – u×(∇×u), we could present the Navier-Stokes 

equations (1.1)-(1.2) for incompressible inviscid flow u = {u₁, u₂, u₃} as below [4-5]: 

 

- here we denote the curl field w, a pseudovector time-dependent field [6]; besides, let 

us denote:  - {(∇  p/) + ∇  } = {fx, fy, fz}. 
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Vorticity, associated with the curl field, is assumed to be arising due to the proper 

sources of vorticity in the flow of fluids [4-5]. For example, such a sources could be 

associated with the solid surface or pressure gradient in case of non-barotropic 

compressible fluids, influence of viscous forces, Coriolis forces (when one’s reference 

frame is rotating rigidly) or curving shock fronts when speed is supersonic. 

 

 

3. The presentation of time-dependent solution. 

 

Let us search for solutions of the system (2.1) in a form of helical flow below: 

 

 

- here  is the constant coefficient, given by the initial conditions (  0). 
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Appendix 

 

Let us explore the fixed (stationary) points of ABC-flow dynamical system [4-5], which 

could be associated with the local stability of the dynamical trajectories for such a 

system. It means that there are valid appropriate conditions dx/dt = dy/dt = dz/dt = 0; so, 

we obtain from the equations of ABC-flow dynamical system [4-5]: 

 

 

 

System of Eqs. (A.1) yields three types of solutions, depending on the meanings of 

parameters {A, B, C}, as presented below 

 

 

 

For solution of a type (A.2) we could obtain from the system Eqs. (A.1) as below 
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If we assume A = B = 1, the last expressions for x, z could be simplified as below  

 

 

 

Solutions (A.2), (A.6) could be substituted under assumptions A = B = 1 to the system 

(A.1) for checking of such a solution. 

 

So, if there exists a fixed (stationary) point of ABC-flow dynamical system [4-5] (for 

the case A = B = 1), the condition below should be valid for the range of meanings of 

parameter C: 

 

- which is obviously valid for C = 0 for example (with the sign “-” in a left part of 

expression above), or for C = 1 (with the resulting sign “-” in a left part of expression 

above). 

 

In general case (A.5), if there exist a fixed (stationary) points of ABC-flow dynamical 

system [4-5], the condition below should be valid for the appropriate ranges of 

meanings of parameters {A, B, C}: 
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