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In fluid mechanics, a lot of authors have been executing their researches to obtain the
analytical solutions of Navier-Stokes equations, even for 3D case of compressible gas
flow. But there is an essential deficiency of non-stationary solutions indeed.

In our derivation, we explore the case of non-stationary helical flow of the Navier-
Stokes equations for incompressible fluids at any given initial conditions for velocity

fields (it means an open choice for the space part of a solution).
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1. Introduction, the Navier-Stokes system of equations.

In accordance with [1-3], the Navier-Stokes system of equations for incompressible
flow of Newtonian fluids should be presented in the Cartesian coordinates as below

(under the proper initial conditions):
V-i=0, (1.2)

a—u+(U-V)U:—ﬂ+v-VZU+ F, (1.2)
ot p

- where U is the flow velocity, a vector field; p is the fluid density, p is the pressure, vis
the kinematic viscosity, and F represents external force (per unit of mass in a volume)
acting on the fluid. Let us also choose the Ox axis coincides to the main direction of

flow propagation; notation U or U means a vector field.

Besides, we assume here external force F above to be the force, which has a potential ¢

represented by F = -V ¢.

2. The originating system of PDE for Navier-Stokes Eqgs.

Using the identity (u-V)u = (1/2)V(u? — ux(Vxu), we could present the Navier-Stokes

equations (1.1)-(1.2) for incompressible inviscid flow u = {u, Uz, us} as below [4-5]:

Vi =0,
2.1)

U e +v-v2i - [ Ev@) + Y2 4 v

ot 2 P

- here we denote the curl field w, a pseudovector time-dependent field [6]; besides, let

us denote: - {(V p/p) +V ¢} = {f, fy, f}.



Vorticity, associated with the curl field, is assumed to be arising due to the proper
sources of vorticity in the flow of fluids [4-5]. For example, such a sources could be
associated with the solid surface or pressure gradient in case of non-barotropic
compressible fluids, influence of viscous forces, Coriolis forces (when one’s reference

frame is rotating rigidly) or curving shock fronts when speed is supersonic.

3. The presentation of time-dependent solution.

Let us search for solutions of the system (2.1) in a form of helical flow below:

W=o-0 = UGxW=0, V20 = V(V-U) - Vx(Vxi)=—a?-U (3.1)

- here o is the constant coefficient, given by the initial conditions (o # 0).
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Appendix

Let us explore the fixed (stationary) points of ABC-flow dynamical system [4-5], which
could be associated with the local stability of the dynamical trajectories for such a
system. It means that there are valid appropriate conditions dx/dt = dy/dt = dz/dt = O; so,

we obtain from the equations of ABC-flow dynamical system [4-5]:

Ccosy =—Asinz,

Bsinx = —Acosz, (A)

Bcosx=-Csiny .

System of Egs. (A.1) yields three types of solutions, depending on the meanings of

parameters {A, B, C}, as presented below

2 2

C?(cos’y—sin’y)+B? = AZ:y——arccos[AczB ] ~C*<A*-B*<C? (A2)
B?-C?

A*(cos’z—sin’z) +C* =B? :z_—arcco{ e ) ~A*<B*-C?’<A* (A3)
C?-A?

B?(cos’x —sin?x) + A>=C? :x_—arcco{ 57 j ~B*<C?’-A’<B* (A4)

For solution of a type (A.2) we could obtain from the system Eqgs. (A.1) as below

Cc. (1 A’ -B? .| C 1 A? -B?
X = +arccos| ——sin| ~arccos| ——— |||, z=—arcsin| —cos| ~arccos| ——— (|| (AB)
B 2 C A 2 C



If we assume A = B = 1, the last expressions for x, z could be simplified as below

x=iarccos(—%), z:—arcsin(%) —J2<c<\2 (A.6)

Solutions (A.2), (A.6) could be substituted under assumptions A = B = 1 to the system

(A.1) for checking of such a solution.

So, if there exists a fixed (stationary) point of ABC-flow dynamical system [4-5] (for

the case A = B = 1), the condition below should be valid for the range of meanings of

oo 5]~ s )

- which is obviously valid for C = 0 for example (with the sign “-” in a left part of

parameter C:

expression above), or for C = 1 (with the resulting sign “-” in a left part of expression

above).

In general case (A.5), if there exist a fixed (stationary) points of ABC-flow dynamical
system [4-5], the condition below should be valid for the appropriate ranges of

meanings of parameters {A, B, C}:

) C . (1 A2 -B?2
+ Bsin| arcco§ ——sin| —arcco 5 =
B 2 C
2 _p2
= —Acos(arcsin[%cos(%arcco{ACzB DH (A7)




