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Abstract 

   A novel protocol of quantum cryptography, called genuine quantum secure communication (GQSC), 

is proposed by using a new method for local quantum measurement discrimination (LQMD). After 

secure quantum channel being established, the transmission of secret messages in the GQSC protocol 

does not require classical channel. Compared with the previous protocols of quantum secure direct 

communication, the advantage of the present protocol is not only more security, but also higher covert. 
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1. Inteoduction 

   Quantum cryptography [1] is commonly considered as one the most striking progress of quantum 

information theory, which enables two legitimate partners communicate in privacy, and use quantum 

mechanics to guarantee the security of communication. An important application of quantum 

cryptography is quantum key distribution (QKD) [2]. In a QKD scheme, two communicators firstly 

establish a shared secret key through the transmission of quantum signals and use this key to encrypt 

(decrypt) the secret messages. The non-cloning theorem [3] ensures the unconditional security of QKD 

as an eavesdropper Eve cannot eavesdrop the communication without leaving a trace in the results. 

Since Bennett and Brassard presented the standard BB84 QKD protocol [2] in 1984, a variety of QKD 

protocols have been proposed, such as Einstein-Podolsky-Rosen (EPR) protocol [4], two-state protocol 

[5], and six-state protocol [6], etc. 

   In recent years, a new concept in quantum cryptography, quantum secure direct communication 

(QSDC) has been proposed [7-9]. Different from QKD [2] whose object is to generate a private key 

between two remote partied, QSDC can transmit the secret messages directly without creating a key to 

encrypt them beforehand, so it is more demanding on security. Since then, the QSDC has attracted a 

great deal of attention (e.g. Refs. [10-19]). However, in the existing QSDC protocols the classical 

channel is indispensable, because to complete the transmission of secret massages the sender must 

transmit her measurement results to the receiver over a classical communication channel. 

   In the past few decades, one of the central problems of quantum information theory is quantum 

state discrimination [20]. It is well-known that two pure states cannot be perfectly discriminated unless 
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they are orthogonal. An object closely related to quantum state discrimination is the discrimination of 

quantum operation, including unitary operations, quantum channels, and quantum measurements, etc. 

Several researchers [21-24] have reported that the local quantum operation can be distinguished with 

certainty despite their uncertain nature. For two separated parties, however, in the existing researches, it 

has been pointed [22-25] that, since the operations employed by the other distant party, the no-signaling 

constraint holds that entanglement cannot be used for nonlocal discrimination of quantum operations 

without help of classical information. In recent work [29], we have shown that local quantum 

measurement discrimination (LQMD) can be completed via selective projective measurements and 

numerous seven-qubit GHZ states without help of classical communication. In the present paper, we 

proposed a novel protocol of quantum cryptography, called genuine quantum secure communication 

(GQSC), which enables the sender to transmit secret massages without classical channel. In this GQSC 

protocol, the receiver can extract the secret messages of the sender by using the LQMD without help of 

classical communication. 

    

2. Local Quantum Measurement Discrimination with Eight-Qubit GHZ States 

To ensure the result of measurements in the LQMD more reliable, here an eight-qubit GHZ state is 

employed. Now let us consider two observers, Alice and Bob, who share an eight-qubit GHZ state 

                
1 2 3 4 5 6 7

1
00000000 11111111

2 A A A A A A A B
G     ,                 (1) 

where qubits 1A , 2A , …, 7A  belong to Alice and B  to Bob, respectively. Assume that Alice and 

Bob agreed in advance that Alice should measure her qubits before an appointed time. Now, let Alice 

employ two different kinds of measurement on the state G . In the first kind of measurement, Alice 

performs in turn common projective measurements (CPMs) on the qubits 1A , 2A , …,and 7A  under 

the basis ,  , where  
1

0 1
2

    ,  
1

0 1
2

   . It is easy found that, 

after Alice’s measurements, 64 possible final collapsed states of the qubit B  will always be 

1

8 2
B

  or 
1

8 2
B

  . Now let us turn to the second kind of measurement. To complete the 

LQMD, Alice will employ a novel kind of projective measurements, which we refer to as selective 

projective measurements (SPMs), with a series of single-qubit correlative measuring basis, on her 

qubits. Firstly, Alice measures the qubit 1A  in the state G  under the basis  ,  
, where 

0 1x y   , 0 1y x     , x  and y  are real, 
2 2 1x y  , and let 6 / 3x  , 

3 / 3y  . Assume that Bob knows the coefficients x  and y . If the result of Alice’s measurement 

is
1A

 , the qubits 2A , 3A , …, 7A  and B  will be collapsed into the state 
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                  
2 3 4 5 6 7

1

1
0000000 1111111

2 A A A A A A B
x y   ,                 (2) 

she can measure the qubits 2A , 3A , …, 7A under the basis ,  , successively. After that, the 

qubit B  will be in the state 
1

8 B


or 
1

8 B


 , here   
1

0 1
2

x y     

and  
1

0 1
2

x y    . If Alice’s measurement outcome is
1A

 
, the state of the qubits 2A , 

3A , …, 6A  and B  will be 

                  
2 3 4 5 6 7

1

1
0000000 1111111

2 A A A A A A B
y x     .                (3) 

Then Alice measures the qubit 2A  under the basis 1 1, 
, which is given by 

                 1

2

1
0 1

x y

F y x


 
  

 
 ,                                     

                 1

2

1
0 1

y x

F x y
  

  
 

 ,                                   (4) 

where    
1/ 2

2 2

2 / /F x y y x  
 

. Corresponding to Alice’s measurement outcome 
2

1 A
  

or
2

1 A


 , the qubits 3A , … , 7A  and B  will be collapsed into the state 2  or 
2   with 

probability 1/2 each, which are given by 

                   
3 4 5 6 7

2

2

1
000000 111111

2 A A A A A B
x y

F
    , 

                  

3 4 5 6 7

2 2

2

2

1
000000 111111

2
A A A A A B

y x

x yF


 
   

 
.             (5) 

As mentioned above, one can easily see that the goal of our SPMs is as much as possible to make 

the qubit B  collapsed into the state 
1

R


 or 
1

R


 after all, where R  is a constant or a 

coefficient related to x  and y . To present the SPMs more clearly, by described above, we can 

generalize the general approach of the SPMs as follows: 

If the qubits 1nA  , 2nA  , …, mA  and B  are collapsed into the state 
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1 2

1 1

1
00 00 11 11

2

n n

n n

n n m

p p

n p p

n A A A B

y x

x yT


 

 



 
     

 
  ,       (6) 

where 1,2, ,n   m ,  1 2n nT F F F  , 
12n

np  ，    
1

2/ /n np p

nF x y y x  
 

, and let 

1 1F  , Alice should employ a new single-qubit projective measurement on the qubit 1nA   under the 

basis ,n n 
, which is given by 

            

1

1
0 1

n n
p p

n

n

x y

F y x




    
     

    

 ,                    

              

1

1
0 1

nn
pp

n

n

y x

F x y




   
    

    

 .                        (7) 

If the result of Alice’s measurement is n , the qubits 2nA  , 3nA  ,…, mA  and B  will be 

collapsed into the state 1n   , which is given by  

                   
2 3

1

1

1
00 00 11 11

2 n n m
n A A A B

n

x y
T


 

 


     ,          (8) 

she can measure the qubits 2nA  , 3nA  , …, mA  under the basis  ,   successively, the 

qubit B  will be collapsed into the state 

1

1

2d

nT




 or 

1

1

2d

nT




, here  1 / 2d m n   . 

If the outcome of Alice’s measurement is n


, the qubits 2nA  , 3nA  , …, mA  and B  will be 

collapsed into the state 
1n 
 , which is given by  

               
1 1

1 1

2 3

1 1 1

1

1
00 00 11 11

2

n n

n n

n n m

p p

n p p

n A A A B

y x

x yT


 

 

 

  

 

 
     

 
,     (9) 

she should repeat above similar approach, until the result of measurement 1
m

m A
  or 1

m
m A


  in 

the basis  1 1,m m 

   has been obtained, and the qubit B  has been collapsed into the state 

1

B
mT


 or 
1 1

1
0 1

2

m m

m m

p p

p p

m B

y x

x yT
 

 
 

 
 after all. 

By above general approach, after Alice’s measurements, 128 possible final collapsed states of the 

qubit B  can be obtained. The relation of the results of Alice’s measurement and the possible final 
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collapsed states of the qubit B can be expressed as follows: 

      
1A

    →     1 64 
1

8 B
terms    

      
2

1 A
   →     2

2

32 
1

4 2 B
terms

T
     

      
3

2 A
   →     3

3

16 
1

4 B
terms

T
     

      
4

3 A
   →     4

4

8 
1

2 2 BT
terms     

      
5

4 A
   →     5

5

4 
1

2 B
terms

T
      

      
6

5 A
   →     6

6

2 
1

2 B
terms

T
     

      
7

6 A
 →

 

 

7

7

64 64

7 63 63

7

1

1
0 1

2

1 

1 

B

B

T

y x

term

term
x yT

 



 









      

    (10) 

Thus much Alice’s selective measurements have been completed. From Eq. (10), it is easy noted that, 

after Alice performing the SPMs on her all qubits, the states 
1

n ng T


 

(
 7 /2

2
n

ng


 , 1,2, ,7n   ) in all 128 collapsed states of the qubit B  accounted for 127, and the 

state 
7 B

 
 for 1. On the other hand, by simple claculation, one can find that, after Alice’s 

measurememts the probability of the qubit B  being in the state 
1

n ng T


 

(
 7 /2

2
n

ng


 , 1,2, ,7n   ) is 0.75, and in the state 
7 B

 
 is 0.25. It must be pointed out that it 

is just these measured results of the SPM that led to the realization of the LQMD.  

Clearly, after Alice performing the CPMs or SPMs on her qubits respectively, the final collapsed 

states of the qubit B  are obvious different. If Alice employs the CPMs on her qubits, after Alice’s 

measurement, 128 possible final collapsed states of the qubit B  will always be 
1

8 2
B

  or 

1

8 2
B

  . If Alice performs the SPMs on her qubits, after Alice’s measurement, 128 possible final 
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collapsed states of the qubit B can be given by Eq. (10). It must be emphasized that, whether Alice’s 

measurements are the CPMs or SPMs, since Alice and Bob agreed in advance that Alice should 

measure her qubits before an appointed time, one can know that the qubit B  must be collapsed into 

the state corresponded to one of Alice’s 128 results of measurement after Alice’s measurements. 

Now let us turn to depict the LQMD. Suppose that two spacelike separated observers, Alice and 

Bob, share 30 eight-qubit GHZ states, which are given by 

           
                   

5 71 2 3 4 6

1
00000000 11111111

2
k k k k k k k k

k

A A A A A A A B
G   ,           (11) 

where 1,2, ,30k   , and the qubits 
 
1

k
A , 

 
2

k
A , …, 

 
7

k
A  belong to Alice and 

 k
B  to Bob, 

respectively. Different from previous quantum operation discrimination schemes, we assume that there 

is no classical channel between Alice and Bob. In this case, before the agreed time t , Alice randomly 

performs two different kinds of measurements, CPMs or SPMs, on her qubits in the state
 k

G  

( 1,2, ,30k   ) respectively. If Alice employs the CPMs on her qubits, after Alice’s measurements, 

all qubits 
 k

B  will be in the states  

1

8 2
k

B
  or  

1

8 2
k

B
  . At the appointed time t , Bob 

measures his qubits 
 k

B  all in the basis  0 , 1 . After Bob’s measurements, by statistics theory, 

the probability of all qubits 
 k

B  in the state 0  or 1  will be in the ratio of one to one. If Alice’s 

measurements are the SPMs, by described above, after Alice’s selective measurements, the probability 

of all qubits 
 k

B  in the states 
1

n ng T


 or 
1

n ng T


  (
 7 /2

2
n

ng


 , 1,2, ,7n   )  is 

 
30

0.75 0.00018 , i.e., the probability of at least one qubit 
 k

B


 in the state 7 
 is 

 
30

1 0.75 0.99982  . This means that, after Alice’s SPMs, at least one qubit 
 'k

B will be 

collapsed into the state 7 
. Then, at the appointed time t , Bob measures the qubits 

 k
B  all in 

the basis 0 , 1 . One can see that, after measurements of Bob, the probability of the qubits 
 k

B  

in the state 0  or 1  will be different from the case Alice employed the CPMs. To illustrate this 

clearly, without loss of generality, we first discuss the case in which only one qubit 
 k

B


 in the state 

7 
 after Alice’s measurements. From the state 7 

 in Eq. (10), it is easily found that, after 

Bob’s measurements, the probability of the qubit 
 k

B


 in the state 0  or 1  will be in the ratio 
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of one to u  (

2 2
64 64

18

63 63
/ 6.15 10

x y
u

y x

   
     
   

), that is, the qubit 
 k

B


 will be always 

collapsed into the state 1 . As a special case, we also assume that all the other 29 qubits 
 k

B  are in 

the states 1 
 after Alice’s measurements and then all the 29 qubits are in the state 0  after Bob’s 

measurements. In this situation, one can easily find that the probability of the 30 qubits 
 k

B  in the 

state 0  or 1  will be in the ratio of 1 to 1.655 after Bob’s measurements. For general cases in 

which only one qubit 
 k

B


 in the state 7 
 and other 29 qubits 

 k
B  collapsed randomly into the 

states 
1

n ng T


 (
 7 /2

2
n

ng


 , n  1,2,…,7) after Alice’s measurements, it is easily found that 

the probability of the 30 qubits 
 k

B  in the state 0  or 1  will be in the ratio of one to 
 1w  

(
 1w  ＞ 1.655) after Bob’s measurements. Now we consider the case in which there are two qubits 

 k
B


 and 

 k
B


 in the state 7 

 after Alice’s measurements. Similar to the above described, one 

can find that the probability of the 30 qubits 
 k

B  in the state 0  or 1  will be in the ratio of one 

to 
 2

w  (
 2

w  ≥ 3.43) after Bob’s measurements. For the cases in which more qubits 
 1

B , 
 2

B , …, 

 l
B  ( 3,4, ,30l   ) collapsed into the state 7 

 after Alice’s measurements, the probability of 

the 30 qubits 
 k

B  in the state 0  or 1  will be in the ratio of one to 
 lw  (

 lw  ＞ 
 2

w , 

3,4, ,30l   ) after Bob’s measurements. As mentioned above, after Alice’s measurements, the 

probability of the 30 qubits 
 k

B  in the state 0  or 1  will be in the ratio of one to W  

( 1.655W  ) after Bob’s measurements. 

To ensure the result of Bob’s measurements more reliable, it can be further supposed that Alice 

and Bob share 20 entangled states groups (ESGs), each consisting of 30 eight-qubit GHZ states 

 k
G  (see Eq. (11)). If Alice’s measurements are the CPMs, it is easy found that, after Alice’s and 

Bob’s measurements, the probability of all qubits 
 k

B  of each ESG in the state 0  or 1  will be 

still in the ratio of one to one. If Alice’s measurements are the SPMs, by statistics theory, after Alice’s 

and Bob’s measurements, in all ESGs the probability of the qubits 
 k

B  of each ESG in the state 0  



 8 

or 1  will be in the ratio of one to W  (W ≥ 1.655). In accordance with these outcomes, Bob can 

discriminate that the measurements employed by Alice are CPMs or SPMs. Thus, the LQMD is 

completed successfully.  

 

3. Genuine quantum secure communication protocol 

 

Now we describe the details of our GQSC protocol by using the LQMD. Suppose there are two 

remote legitimate communicators, Alice and Bob. The sender Alice wants to transmit 0N  single-bit 

secret classical massages (say, 1001…) to receiver Bob. In order to encode the secret messages, Alice 

and Bob should agree that two different kinds of measurements, CPMs and SPMs, represent the secret 

messages 0 and 1 respectively. Then the protocol proceeds as follows: 

   (S1) Alice prepares a large enough number ( M ) of EPR pairs in  

                            
   1

1
00 11

2 p p
n A B

    ,                       (12) 

where 1,2, ,p M  , and takes one qubit from each EPR pair to form a qubit sequence 

     1 1 1 2 1
, , ,

M
A A A , call the A  sequence. The remaining qubits compose B  sequence 

     1 2
, , ,

M
B B B . Then, Alice stores the A  sequence and sends B  sequence to Bob. 

   (S2) To check if there eavesdropping in the line, Alice chooses a sufficiently large subset of qubits 

randomly in the A  sequence as a checking set, call the AC  set. The remaining qubits in A  

sequence are reformed 0N  ordered qubit sequences as encoding-decoding sets (EDSs) 

 
   

 
 
  1 , 1 , 1 ,

, , ,
k k k

i j i j i j
A A A , call the 

 i
AE  sets, where 01,2, ,i N  , 1,2, ,30k   , 

1,2, ,20j   . 

   (S3) After verifying that Bob has received all qubits of B  sequence, Alice chooses randomly one 

of the two sets measuring bases (MBs), Z -MB  0 , 1  and X -MB  ,  , to measure the 

qubits in the AC  set. Then Alice publicly announces the AC  set and 
 i
AE  sets in A  sequence, 

MB she has chosen for each qubit in AC  set and the results of her measurement. 

   (S4) In accordance with Alice’s information, Bob takes the corresponding qubits in B  sequence 

to form checking set BC  and the EDSs 
 i
BE . The EPR pairs composed of qubits  

 
1 ,

k

i j
A  and  

 
,

k

i j
B  

can be expressed as 
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                  
   

 
 

 
 

1 , ,
,

1
00 11

2
k k

i j i j

k

i j A B
    ,                              (13) 

where 01,2, ,i N  , 1,2, ,30k   , and 1,2, ,20j   . Then Bob uses the same MB as Alice 

to measure the corresponding qubits in the BC  set and compares his measurement results with Alice’s 

to check the existence of eavesdropper Eve. If no eavesdropping exists, their measurement results 

should be completely correlated in an ideal condition. In this case, they continue to communication. 

Otherwise, they have to discard their communication. 

   Due to the method establishing quantum channel in our protocol is very similar to the previous 

protocols (e.g. , Ref. [9,10]), the discussions on the security analysis in Ref. [9,10] are suitable for the 

present protocol, so we do not repeat those discussions here further. It should be pointed out that Alice 

and Bob require the help of classical communication in above establishing secure quantum channel.  

   After insuring the security of the quantum channel, Alice should introduce six qubits 
 
 

,

k

r i j
A  

 2,3, ,7r    with the initial state 0  in each EPR pair 
 
 

,

k

i j
  (see Eq. (13)), and perform in 

turn C-NOT gates on the qubits 
 
 
1 ,

k

i j
A  and 

 
 

,

k

r i j
A   2,3, ,7r    with qubit 

 
 
1 ,

k

i j
A  as 

controlled qubit and 
 
 

,

k

r i j
A   2,3, ,7r    as target qubits. After that, the EPR pairs 

 
 

,

k

i j
  

will be transformed into the eight-qubit GHZ states, which are given by 

           
   

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

1 , 2 , 3 , 4 , 5 , 6 , 7 , ,
,

1
00000000 11111111

2
k k k k k k k k

i j i j i j i j i j i j i j i j

k

i j A A A A A A A B
E    ,   (14) 

where 01,2, ,i N  , 1,2, ,30k   , and 1,2, ,20j   . 

   Different from previous QSDC protocols [7-19], we suppose that, after established secure quantum 

channel, there is no classical channel in the following implementing quantum communication 

procedure. Hence, Alice and Bob need to pre-agree that Bob should check Alice’s secret messages at a 

certain time T  or at a certain time interval. Next, let us describe our GQSC protocol in the two cases 

in detail. 

   (Case 1) Assume Alice and Bob pre-agree at a certain time T , Bob should check Alice’s secret 

messages. Before the time T , according to her secret bit string (1001…), Alice first performs the 

SPMs on the EDS  
 

1,

k

n j
A  ( 1,2, ,7n   , 1,2, ,30k   , 1,2, ,20j   ), then performs CPMs 

on the  
 

2,

k

n j
A , …,successively. At the time T , Bob should check the states of qubits  

 
,

k

i j
B , that is, 

he measures in turn his qubits  
 

,

k

i j
B   01,2, ,i N   all in the basis  0 , 1 . After that, Bob 

can extract that Alice had employed the SPMs on the EDS  
 

1,

k

n j
A  and there extract the bit 1, similarly, 

he can extract other bits, then he can obtain Alice’s secret messages (1001…). Thus, the QSC has been 
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completed. 

   (Case 2) Assume Alice and Bob pre-agree at a certain time interval to implement the QSC. In order 

to determine the time T  for implementing quantum communication in the time interval (say, two 

weeks or one year), Alice and Bob should establish second secure quantum channel beforehand, called 

informing quantum channel (IQC), in which Alice can inform Bob if she had encoded her secret 

messages in the EDSs 
 i
AE . The IQC consists of a large enough number  m  of EDSs and each 

EDS is composed of 20 ED groups (EDGs), and each EDG consisting of 30 seven-qubit GHZ states, 

which are given by 

            
   

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

1 , 2 , 3 , 4 , 5 , 6 , 7 , ,
,

1
00000000 11111111

2
k k k k k k k k

l j l j l j l j l j l j l j l j

k

l j A A A A A A A B
I   ,    (15) 

where 1,2, ,l m  , 1,2, ,30k   , and 1,2, ,20j   . In the IQC, Alice possesses m  

ordered qubit sequences
 
   

 
   

  1, 2, , ,
, , , , ,

k k kk

n j n j n l j n m j
A A A A  , where 1,2, ,7n   , 

1,2, ,30k   , 1,2, ,20j   , as informing sets (call 
 l
AI  sets) and Bob possesses 

 l
BI  sets 

 
   

 
 
 

 
  1, 2, , ,

, , , , ,
k k k k

j j l j m j
B B B B   respectively. In the certain time interval, if there is not need to 

transfer secret messages, Alice can, from time to time (e.g. ten minutes), perform CPMs on the qubits 

 
 

,

k

n l j
A  in the 

 l
AI  set successively. When Alice wants to transmit her secret messages to Bob, she 

should first encode the secret messages by performed SPMs and CPMs on her qubits  
 

,

k

n i j
A  in the 

 i
AE  sets, then she continues to perform SPMs on the qubits  

 
,

k

n l j
A  in the 

 l
AI  set at twice (It is 

similar to the phone ringing in the classical communication). Meanwhile, Bob should check the partner 

qubits  
 

,

k

l j
B  in the 

 l
BI  set via the LQMD every ten minutes. If the results of Bob’s measurement 

show that Alice performs CPMs on her qubits  
 

,

k

n l j
A  in the 

 l
AI  set, this indicates Alice did not 

transmit the secret messages. When Bob found that Alice performs twice SPMs on the qubits  
 

,

k

n l j
A , 

he can check the qubits  
 

,

k

i j
B  in the 

 i
BE  set by using the LQMD immediately. Similar to Case 1, 

Bob can extract Alice’s secret messages. Thus our GQSC has been accomplished successfully. 

   Compared with previous QSDC protocols [7-19], there are several advantages in the present GQSC 

protocol. Firstly, as there is no classical communication in the present protocol, the speed of 

transmitting secret messages is no longer limited by the speed of light, but it depends on the speed of 

quantum state collapse (or speed of quantum information) [30]. In recent years, the results of some 

EPR experiments [30-33] set a lower bound on the speed of quantum information to 
4 710 10  times 

the speed of light. Obviously, if Alice and Bob are spaced far enough, the required time completed the 
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secret message transmission (including the time to complete measurement by the sender and the 

receiver) via the LQMD will be less than the required time by the classical communication. In other 

words, the present GQSC is a superluminal GQSC protocol. Secondly, transmission of secret messages 

in the present protocol is completed by the sender who measures her qubits of the EDSs in the quantum 

channel. As there is no transmission of qubits carrying the secret messages between the sender and the 

receiver, there is no chance for Eve to attack the secret messages in a perfect quantum channel is used. 

So our protocol is more secure. Finally, different from previous QSDC protocols, the transmission of 

secret messages in the present protocol does not require the help of classical channel. As there are no 

public information from classical communication as described in previous QSDC protocols [7-19], the 

outsider cannot know whether the quantum communication is in progress. Thus, the present protocol is 

more covert. As mentioned above, our GQSC is a genuine QSDC protocol. 

    

4. Summary 

 

In summary, a novel protocol of quantum cryptography, genuine quantum secure communication 

(GQSC), is presented. We have provided a detailed realization of the protocol by using a new method 

for local quantum measurement discrimination (LQMD). It is shown that, in this GQSC protocol, if 

both two observers (Alice and Bob) agreed in advance that one of them (e.g. Bob) should check Alice’s 

secret messages at an appointed time (or at a certain time interval), the GQSC can been accomplished 

successfully without help of classical communication. This means that the present GQSC is a 

superluminal quantum secure communication protocol. Furthermore, our GQSC protocol has the 

advantage of not only more secure, but also higher covert. At present, there has been experiment 

implementing the eight-qubit GHZ state [34]. Thus, we believe that the present GQSC protocol is 

worth researching into both theoretically and experimentally. 
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