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Abstract 

This paper starts from the idea that physical reality implements a network of a small number of 

mathematical structures. Only in that way can be explained that observations of physical reality fit so 

well with mathematical methods.  

The mathematical structures do not contain mechanisms that ensure coherence. Thus apart from the 

network of mathematical structures a model of physical reality must contain mechanisms that 

manage coherence such that dynamical chaos is prevented. 

Reducing complexity appears to be the general strategy. The structures appear in chains that start 

with a foundation. The strategy asks that especially in the lower levels, the subsequent members of 

the chain emerge with inescapable self-evidence from the previous member. The chains are 

interrelated and in this way they enforce mutual restrictions.  

As a consequence the lowest levels of a corresponding mathematical model of physical reality are 

rather simple and can easily be comprehended by skilled mathematicians. 

In order to explain the claimed setup of physical reality, this paper investigates the foundation of the 

major chain. That foundation is a skeleton relational structure and it was already discovered and 

introduced in 1936. 

The paper does not touch more than the first development levels. The base model that is reached in 

this way puts already very strong restrictions to more extensive models.  

The paper uses a special version of the generalized Stokes theorem in order to establish a dynamic 

model of the whole universe. 

As part of the investigation the paper compares two sets of differential equations that both give a 

description of the behavior of physical fields. These sets represent two different space-progression 

models. Both sets of equations and both models appear to be equally valid. 

Some of the features of the base model are investigated and compared with results of contemporary 

physics. 
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If the mathematical model introduces new science, then it has fulfilled its purpose.  
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1 Introduction 
Physical reality is that what physicists try to model in their theories. It appears that observations of 

features and phenomena of physical reality can often be explained by mathematical structures and 

mathematical methods. This is not strange, because these mathematical structures and methods are 

often designed by using examples that are obtained by carefully observing reality as a guidance.  

This leads to the unorthodox idea that physical reality itself incorporates a small set of mathematical 

structures. In that case physical reality will show the features and phenomena of these structures.  

In humanly developed mathematics, mathematical structures appear in chains that start from a 

foundation and subsequent members of the chain emerge with inescapable self-evidence from the 

previous member. The chains are often interrelated and impose then mutual restrictions. It is 

obvious to expect a similar setup for the structures that are maintained by physical reality. 

Physical reality is known to show coherence. Its behavior is far from chaotic. The incorporated 

mathematical structures do not contain mechanisms that ensure coherence. The structures may only 

help to ensure coherence. Thus apart from the network of mathematical structures a model of 

physical reality must contain mechanisms that manage coherence such that dynamical chaos is 

prevented.  

In physical reality, reducing complexity appears to be the general strategy.  

One chain is expected to play a major role and its foundation can be viewed as the major foundation 

of the investigated model of physical reality. The discovery of this foundation is essential for 

explaining how the network of incorporated mathematical structures is configured. 
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2 Physical theories 
Physical theories support their application by describing the applied structures and the applied 

phenomena [1]. The aim of these theories is not the explanation of the origins of these structures 

and phenomena. The fact that the described structures and phenomena can be applied means that 

these subjects can be observed. This is the main reason behind the claim of what is called the 

scientific method. The scientific method requires that every significant physical statement must be 

verified by experiments. 

This paper investigates deeper than physical theories tend to do. It explores the potential relation 

between mathematical theories and physical reality in order to explain structures and phenomena 

that follow from a selected set of mathematical foundations. 

It will not be possible to prove that the corollaries of the mathematical models will represent the 

observable structures and phenomena of the physical model. On the other hand, the mathematical 

model might enhance the insight into corresponding physical models. 

For example this paper applies quaternionic differential calculus as alternative for or addition to 

Maxwell based differential calculus and it applies quaternionic Hilbert spaces in ways that are not 

exploited by current physical theories. 

3 The major chain 

3.1 The foundation 
This paper uses the skeleton relational structure that in 1936 was discovered by Garret Birkhoff and 

John von Neumann as the major foundation of the model. Birkhoff and von Neumann named it 

“quantum logic”[2].  

The ~25 axioms that define an orthocomplemented weakly modular lattice form the first principles 

on which according to this paper the model of physical reality is supposed to be built [3]. Another 

name for this lattice is orthomodular lattice. Quantum logic has this lattice structure. Classical logic 

has a slightly different lattice structure. Classical logic has the structure of an orthocomplemented 

modular lattice. Due to this resemblance, the discoverers of the orthomodular lattice gave quantum 

logic its name. The treacherous name “quantum logic” has invited many scientists to deliberate in 

vain about the significance of the elements of the orthomodular lattice as logical propositions. For 

our purpose it is better to interpret the elements of the orthomodular lattice as construction 

elements rather than as logic propositions. 

By taking this point of view, the selected foundation can be considered as part of a recipe for modular 

construction. What is missing are the binding mechanism and a way to hide part of the relations that 

exist inside the modules from the outside of the modules. That functionality is supposed to be realized 

in higher levels of the model. 

Thus, being a member of an orthomodular lattice is not enough in order to become a member of a 

modular system. 

3.2 Extending the major chain 
The next level of the major chain of mathematical structures emerges with inescapable self-evidence 

from the selected foundation.  

Not only quantum logic forms an orthomodular lattice, but also the set of closed subspaces of an 

infinite dimensional separable Hilbert space forms an orthomodular lattice [2].  
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Where the orthomodular lattice was discovered in the thirties, the Hilbert space was introduced 

shortly before that time [4]. The Hilbert space is a vector space that features an inner product. The 

orthomodular lattice that is formed by its set of subspaces makes the Hilbert space a very special 

vector space. 

The Hilbert space adds extra functionality to the orthomodular lattice. This extra functionality 

concerns the superposition principle and the possibility to store numeric data in eigenspaces of 

normal operators. In the form of Hilbert vectors the Hilbert space features a finer structure than the 

orthomodular lattice has. 

These features caused that Hilbert spaces were quickly introduced in the development of quantum 

physics. 

Numbers do not exist in the realm of a pure orthomodular lattice. Via the Hilbert space, number 

systems emerge into the model. Number systems do not find their foundation in the major chain. 

Instead they belong to another chain of mathematical structures. The foundation of that chain 

concerns mathematical sets. 

The Hilbert space can only handle members of a division ring for specifying superposition 

coefficients, for the eigenvalues of its operators and for the values of its inner products. Only three 

suitable division rings exist: the real numbers, the complex numbers and the quaternions. These facts 

were already known in the thirties but became a thorough mathematical prove in the second half of 

the twentieth century [5]. 

Separable Hilbert spaces act as structured storage media for discrete data that can be stored in real 

numbers, complex numbers or quaternions. Quaternions enable the storage of 1+3D dynamic 

geometric data that have an Euclidean geometric structure.  

The qualification “separable” demands that eigenspaces of operators are countable. This means that 

eigenvalues are restricted to the rational versions of the supported number systems. 

The confinement to division rings puts strong restrictions onto the model. These restrictions reduce 

the complexity of the whole model. 

Thus, selecting a skeleton relational structure that is an orthomodular lattice as the foundation of the 

model already puts significant restrictions to the model. On the other hand, as can be shown, this 

choice promotes modular construction. In this way it eases system configuration and the choice 

significantly reduces the relational complexity of the final model.  
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4 Consequences of the currently obtained model 
The orthomodular lattice can be interpreted as a part of a recipe for modular construction. What is 

missing are means to bind modules and means to hide relations that stay inside the module from the 

outside of the module. This functionality must be supplied by extensions of the model. It is partly 

supplied by the superposition principle, which is introduced via the separable Hilbert space.  

The achieved model does not yet support coherent dynamics and it does not support continuums. 

The selected foundation and its extension to a separable Hilbert space can be interpreted in the 

following ways: 

 Each discrete construct in this model is supposed to expose the skeleton relational structure 

that is defined as an orthomodular lattice. 

 Each discrete construct in this model is either a module or a modular system. 

 Every discrete construct in this model can be represented by a closed subspace of a single 

infinite dimensional separable quaternionic Hilbert space. 

 Every module and every modular system in this model can be represented by a closed 

subspace of a single infinite dimensional separable quaternionic Hilbert space. 

However 

 Not every closed subspace of the separable Hilbert space represents a module or a modular 

system. 

Modular construction eases system design and system configuration. Modular construction handles 

its resources in a very economically way. With sufficient resources present it can generate very 

complicated constructs. 

The modular construction recipe is certainly the most influential rule that exists in the generation 

of physical reality. Even without intelligent design it achieved the construction of intelligent 

species. 
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5 Supporting continuums 
The separable Hilbert space can only handle discrete numeric data. Physical reality also supports 

continuums. The eigenspaces of the operators of the separable Hilbert space are countable. 

Continuums are not countable. Thus, separable Hilbert spaces cannot support continuums. 

Soon after the introduction of the Hilbert space, scientists tried to extend the separable Hilbert space 

to a non-separable version that supports operators, which feature continuums as eigenspaces. With 

his bra-ket notation for Hilbert vectors and operators and by introducing generic functions, such as 

the Dirac delta function, Paul Dirac introduced ways to handle continuums [6]. This approach became 

proper mathematical support in the sixties when the Gelfand triple was introduced [7]. 

Every infinite dimensional separable Hilbert space owns a Gelfand triple. In fact the separable 

Hilbert space can be seen as embedded inside this Gelfand triple. How this embedding occurs in 

mathematical terms is still obscure. It appears that the embedding process allows a certain amount 

of freedom that is exploited by the mechanisms, which are contained in physical reality and that 

have the task to ensure spatial and dynamic coherence. These mechanisms apply stochastic 

operators in order to perform their functionality. 

It appears possible to see the embedding of the separable Hilbert space in its companion Gelfand 

triple as a model wide ongoing process. This possibility will be explored in this paper. 

This paper introduces the reverse bra-ket method that relates a category of operators, which reside 

in the separable Hilbert space and corresponding operators, which reside in the Gelfand triple to 

continuous functions and their parameter spaces. The reverse bra-ket method is based on Dirac’s 

bra-ket notation. The method relates the separable Hilbert space with its companion Gelfand triple in 

a well-defined way. 

In the separable Hilbert space the closed subspaces have a well-defined numeric dimension. In 

contrast, in the non-separable companion the dimension of closed subspaces is in general not 

defined. The embedding of subspaces of the separable Hilbert space in a subspace of the non-

separable Hilbert space that represents an encapsulating composite will at least partly hide the 

characteristics and interrelations of embedded constituents. This hiding is required for constituents 

of modular systems. 

Subspaces that represent continuum eigenspaces cannot have a countable dimension. They certainly 

cannot have a finite dimension. In fact the dimension of such subspaces makes little sense. 

In this paper we usually ignore the fact that operators that have countable eigenspaces also have an 

equivalent in the Gelfand triple. One may ask why reality needs the separable Hilbert spaces when 

the Gelfand triple can handle both discrete and continuum data. The reason is that all or most of the 

mechanisms that control reality do not act on the Gelfand triple. These mechanisms only control the 

separable Hilbert space. These mechanisms work in a stepwise fashion that is supported by 

stochastic operators, which only reside in the separable Hilbert space. Stochastic processes supply 

the eigenvalues of these operators. The companion non-separable Hilbert space appears to take care 

of the support of the continuums that get affected by the embedding process. 

6 Quaternionic Hilbert spaces 
Separable Hilbert spaces are linear vector spaces in which an inner product is defined. This inner 

product relates each pair of Hilbert vectors. The value of that inner product must be a member of a 
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division ring. Suitable division rings are real numbers, complex numbers and quaternions. This paper 

uses quaternionic Hilbert spaces [2][4][5]. 

Paul Dirac introduced the bra-ket notation that eases the formulation of Hilbert space habits [5]. 

〈𝑥|𝑦〉 = 〈𝑦|𝑥〉∗ 

〈𝑥 + 𝑦|𝑧〉 = 〈𝑥|𝑧〉 + 〈𝑦|𝑧〉 

〈𝛼𝑥|𝑦〉 = 𝛼 〈𝑥|𝑦〉 

〈𝑥|𝛼𝑦〉 = 〈𝑥|𝑦〉 𝛼∗ 

〈𝑥| is a bra vector. |𝑦〉 is a ket vector.  𝛼 is a quaternion. 

This paper considers Hilbert spaces as no more and no less than structured storage media for 

dynamic geometrical data that have an Euclidean signature. Quaternions are ideally suited for the 

storage of such data. Quaternionic Hilbert spaces are described in “Quaternions and quaternionic 

Hilbert spaces” [9] [10]. 

The operators of separable Hilbert spaces have countable eigenspaces. Each infinite dimensional 

separable Hilbert space owns a Gelfand triple. The Gelfand triple embeds this separable Hilbert space 

and offers as an extra service operators that feature continuums as eigenspaces. In the 

corresponding subspaces the definition of dimension loses its sense. 

This paper interprets the embedding of the separable Hilbert space into its companion Gelfand triple 

as an ongoing process. 

6.1 Tensor products 
The tensor product of two quaternionic Hilbert spaces is a real Hilbert space [5]. For that reason the 

quaternion based model cannot apply tensor products. As a consequence Fock spaces are not 

applied in this paper. 

Instead the paper represents the whole model by a single infinite dimensional separable 

quaternionic Hilbert space and its companion Gelfand triple. Elementary objects and their 

composites will be represented by subspaces of the separable Hilbert space. Their local living spaces 

coexist as eigenspaces of dedicated operators. 

6.2 Representing continuums and continuous functions 
Operators map Hilbert vectors onto other Hilbert vectors. Via the inner product the operator 𝑇 may 

be linked to an adjoint operator 𝑇†.  

〈𝑇𝑥|𝑦〉 ≡ 〈𝑥|𝑇†𝑦〉 

〈𝑇𝑥|𝑦〉 = 〈𝑦|𝑇𝑥〉∗ = 〈𝑇†𝑦|𝑥〉∗ 

A linear quaternionic operator 𝑇, which owns an adjoint operator 𝑇† is normal when 

𝑇† 𝑇 =  𝑇 𝑇†  

𝑇0 = (𝑇 + 𝑇†)/2 is a self adjoint operator and 𝑻 = (𝑇 − 𝑇†)/2 is an imaginary normal operator. 

Self adjoint operators are also Hermitian operators. Imaginary normal operators are also anti-

Hermitian operators. 

By using what we will call reverse bra-ket notation, operators that reside in the Hilbert space and 

correspond to continuous functions, can easily be defined by starting from an orthonormal base of 

(1) 

(2) 

(3) 

(4) 

(1) 

(2) 

(3) 
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vectors. In this base the vectors are normalized and are mutually orthogonal. The vectors span a 

subspace of the Hilbert space. We will attach eigenvalues to these base vectors via the reverse bra-

ket notation. This method works both in separable Hilbert spaces as well as in non-separable Hilbert 

spaces.  

Let {𝑞𝑖} be the set of rational quaternions in a selected quaternionic number system and let {|𝑞𝑖〉} be 

the set of corresponding base vectors. They are eigenvectors of a normal operator ℛ = |𝑞𝑖〉𝑞𝑖〈𝑞𝑖|. 

Here we enumerate the base vectors with index 𝑖. 

ℛ ≡ |𝑞𝑖〉𝑞𝑖〈𝑞𝑖|  

ℛ is the configuration parameter space operator. 

This notation must not be interpreted as a simple outer product between a ket vector |𝑞𝑖〉, a 

quaternion 𝑞𝑖 and a bra vector 〈𝑞𝑖|. It involves a complete set of eigenvalues {𝑞𝑖} and a complete 

orthonormal set of Hilbert vectors {|𝑞𝑖〉}. It implies a summation over these constituents, such that 

for all bra’s 〈𝑥|〉 and ket’s |𝑦〉: 

〈𝑥|ℛ 𝑦〉 = ∑〈𝑥|𝑞𝑖〉𝑞𝑖〈𝑞𝑖|𝑦〉

𝑖

 

ℛ0 = (ℛ + ℛ†)/2 is a self-adjoint operator. Its eigenvalues can be used to arrange the order of the 

eigenvectors by enumerating them with the eigenvalues. The ordered eigenvalues can be interpreted 

as progression values. 

𝓡 = (ℛ − ℛ†)/2 is an imaginary operator. Its eigenvalues can also be used to order the 

eigenvectors. The eigenvalues can be interpreted as spatial values. Quaternionic number systems 

can be ordered in several ways. Operator ℛ corresponds with one of these orderings. 

 

Let 𝑓(𝑞) be a mostly continuous quaternionic function. Now the reverse bra-ket notation defines 

operator 𝑓 as: 

𝑓 ≡ |𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖|  

𝑓 defines a new operator that is based on quaternionic function 𝑓(𝑞). Here we suppose that the 

target values of 𝑓 belong to the same version of the quaternionic number system as its parameter 

space does. 

Operator 𝑓 has a countable set of discrete quaternionic eigenvalues. 

For this operator the reverse bra-ket notation is a shorthand for 

 

〈𝑥|𝑓 𝑦〉 = ∑〈𝑥|𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖|𝑦〉

𝑖

 

 

In a non-separable Hilbert space, such as the Gelfand triple, the continuous function ℱ(𝑞) can be 

used to define an operator, which features a continuum eigenspace. 

 

(4) 

(5) 

(6) 

(7) 
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ℱ = |𝑞〉ℱ(𝑞)〈𝑞|  

 

Via the continuous quaternionic function ℱ(𝑞), the operator ℱ defines a curved continuum ℱ. This 

operator and the continuum reside in the Gelfand triple, which is a non-separable Hilbert space. 

 

ℜ ≡ |𝑞〉𝑞〈𝑞| 

 

The function ℱ(𝑞) uses the eigenspace of the reference operator ℜ as a flat parameter space that is 

spanned by a quaternionic number system {𝑞}. The continuum ℱ represents the target space of 

function ℱ(𝑞). The set of rational values inside parameter space ℜ correspond with parameter space 

ℛ. 

Here we no longer enumerate the base vectors with index 𝑖. We just use the name of the parameter. 

If no conflict arises, then we will use the same symbol for the defining function, the defined operator 

and the continuum that is represented by the eigenspace. 

For the shorthand of the reverse bra-ket notation of operator ℱ the integral over 𝑞 replaces the 

summation over 𝑞𝑖. 

 

〈𝑥|ℱ 𝑦〉 = ∫〈𝑥|𝑞〉ℱ(𝑞)〈𝑞|𝑦〉
𝑞

 𝑑𝑞 

 

Remember that quaternionic number systems exist in several versions, thus also the operators 𝑓 and 

ℱ exist in these versions. The same holds for the parameter space operators. When relevant, we will 

use superscripts in order to differentiate between these versions.  

Thus, operator 𝑓𝑥 ≡ |𝑞𝑖
𝑥〉𝑓𝑥(𝑞𝑖

𝑥)〈𝑞𝑖
𝑥| is a specific version of operator 𝑓. Function 𝑓𝑥(𝑞𝑖

𝑥) uses 

parameter space ℛ𝑥 ≡ |𝑞𝑖
𝑥〉𝑞𝑖

𝑥〈𝑞𝑖
𝑥|. We will call such parameter spaces “natural” parameter spaces. 

They belong to the standard household of the quaternionic Hilbert space ℋ. Similar natural 

parameter spaces exist for the separable Hilbert space ℌ. 

Similarly, ℱ𝑥 = |𝑞𝑥〉ℱ𝑥(𝑞𝑥)〈𝑞𝑥| is a specific version of operator ℱ. Function ℱ𝑥(𝑞𝑥) and continuum 

ℱ𝑥 use parameter space ℜ𝑥. If the operator ℱ𝑥 that resides in the Gelfand triple ℋ uses the same 

defining function as the operator ℱ𝑥 that resides in the separable Hilbert space, then both operators 

belong to the same quaternionic ordering version. 

In general the dimension of a subspace loses its significance in the non-separable Hilbert space.  

The continuums that appear as eigenspaces in the non-separable Hilbert space ℋ can be considered 

to be represented by quaternionic functions that also represent an eigenspace of a corresponding 

operator, which resides in the companion infinite dimensional separable Hilbert space ℌ. Both 

representations use a flat natural parameter space ℜ𝑥 or ℛ𝑥 that is spanned by quaternions. ℛ𝑥 is 

spanned by rational quaternions. 

The natural parameter space operators will be treated as reference operators. The rational 

quaternionic eigenvalues {𝑞𝑖
𝑥} that occur as eigenvalues of the reference operator ℛ𝑥 in the 

(8) 

(9) 

(10) 
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separable Hilbert space map onto the rational quaternionic eigenvalues {𝑞𝑖
𝑥} that occur as subset of 

the quaternionic eigenvalues {𝑞𝑥} of the reference operator ℜ𝑥 in the Gelfand triple. In this way the 

reference operator ℛ𝑥 in the infinite dimensional separable Hilbert space ℌ relates directly to the 

reference operator ℜ𝑥, which resides in the Gelfand triple ℋ. 

All operators that reside in the Gelfand triple and are defined via a mostly continuous quaternionic 

function have a representation in the separable Hilbert space. 

6.3 Stochastic operators 
Stochastic operators do not get their data from a continuous quaternionic function. Instead a 

stochastic process delivers the eigenvalues. Again these eigenvalues are quaternions and the real 

parts of these quaternions may be interpreted as progression values. The generated eigenvalues are 

picked from a selected parameter space. 

Stochastic operators only act in a step-wise fashion. Their eigenspace is countable. Stochastic 

operators may act in a cyclic fashion. 

The mechanisms that control the stochastic operator can synchronize the progression values with 

the model wide progression that is set by a selected reference operator. The resulting well-

orderedness of the eigenspace can allow to interpret the production of the stochastic process as 

location swarm and at the same time as a hopping path. 

Characteristic for stochastic operators is that the imaginary parts of the eigenvalues are not smooth 

functions of the real values of those eigenvalues. 

 Density operators 
The eigenspace of a stochastic operator may be characterized by a continuous spatial density 

distribution. In that case the corresponding stochastic process must ensure that this continuous 

density distribution fits. The density distribution can be constructed afterwards or after each 

regeneration cycle. Constructing the density distribution involves a reordering of the imaginary parts 

of the produced eigenvalues. This act will usually randomize the real parts of those eigenvalues. A 

different operator can then use the continuous density distribution in order to generate its 

functionality. The old real parts of the eigenvalues may then reflect the reordering. The construction 

of the density distribution is a pure administrative action that is performed as an aftermath. The 

constructed density operator represents a continuous function and may reside both in the separable 

Hilbert space and in the Gelfand triple. The construction of the density function involves a selected 

parameter space. That parameter space need not be the same as the parameter space from which 

the stochastic process picked its eigenvalues. 

6.4 Fourier spaces 
Via the Fourier transform of functions, operators can be defined that represent these Fourier 

transforms. This also involves a change of the parameter spaces. We will use an accent in order to 

indicate the Fourier space version of functions. 

𝑓(𝑞̃) ⟺ 𝑓(𝑞) 

 

The function 𝑞̃(𝑞)turns reference operator ℛ into reference operator ℛ̃ and reference operator ℜ 

into reference operator ℜ̃. 

ℛ̃ = |𝑞𝑖〉𝑞̃(𝑞𝑖)〈𝑞𝑖| 

(1) 

(2) 
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ℜ̃ = |𝑞〉𝑞̃(𝑞)〈𝑞| 

These operators define the parameter spaces in Fourier space. In the Gelfand triple, the Fourier 

transform version 𝑓 of operator 𝑓 is defined by: 

𝑓 = |𝑞̃〉𝑓(𝑞̃)〈𝑞̃| 

Similarly in separable Hilbert space: 

𝑓 = |𝑞̃𝑖〉𝑓(𝑞̃𝑖))〈𝑞̃𝑖| 

 

  

(3) 

(4) 

(5) 
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6.5 Notations 
The reverse bra-ket notation enables the definition of some special operators that play an unique 

role in the model. We will reserve special symbols for these operators and we will also use special 

symbols in order to distinguish separable from non-separable Hilbert spaces. 

Symbol Meaning Applied in As 

ℌ  Separable Hilbert space Model Structured storage  

ℋ Non-separable Hilbert space, Gelfand triple Model Structured storage 

ℛ Reference operator ℌ  Parameter space 

ℜ Reference operator ℋ Parameter space 

ℭ  Embedding continuum operator ℋ Field, function 

𝔄 Symmetry related field operator ℋ Field, function 

𝔖 Symmetry center operator ℌ  Floating parameter space 

ℴ  Coherent swarm operator ℌ  Dynamic location distribution 

𝒷 Mapped coherent swarm operator ℌ  Dynamic location distribution 

ρ Density operator ℋ Density function 

 

The defining function in the reverse bra-ket notation enables the definition of operators in both the 

separable Hilbert space ℌ and in the Gelfand triple ℋ. Still different symbols are used for reference 

operators ℜ and ℛ.  

ℴ is a stochastic operator. 𝒷 maps the eigenspace of ℴ in parameter space ℛ. ρ is the corresponding 

density operator. 
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7 Change of base 
In quaternionic Hilbert space a change of base can be achieved by: 

 

〈𝑥|ℱ̃ 𝑦〉 = ∫ 〈𝑥 |𝑞̃〉 {∫〈𝑞|𝑞〉ℱ(𝑞)〈𝑞|𝑞̃〉 𝑑𝑞
𝑞

} 〈𝑞̃|𝑦〉 𝑑𝑞̃
𝑞̃

 

= ∫〈𝑥|𝑞̃〉ℱ̃(𝑞̃)〈𝑞̃|𝑦〉
𝑞̃

 𝑑𝑞̃ 

ℱ̃(𝑞̃) = ∫〈𝑞|𝑞〉ℱ(𝑞)〈𝑞|𝑞̃〉
𝑞

 𝑑𝑞  

ℜ̃(𝑞̃) = ∫〈𝑞|𝑞〉𝑞〈𝑞|𝑞̃〉
𝑞

 𝑑𝑞  

〈𝑥|ℜ̃ 𝑦〉 = ∫〈𝑥|𝑞̃〉ℜ̃(𝑞̃)〈𝑞̃|𝑦〉
𝑞̃

 𝑑𝑞̃ 

ℜ̃ = |𝑞̃〉𝑞̃〈𝑞̃| 

However, as we see in the formulas this method merely achieves a rotation of parameter spaces and 

functions. In the complex number based Hilbert space it would achieve no change at all. 

7.1 Fourier transform 
A Fourier transform uses a different approach. It is not a direct transform between parameter 

spaces, but instead it is a transform between sets of mutually orthogonal functions, which are 

formed by inner products, which are related to different parameter spaces. The quaternionic Fourier 

transform exists in three versions. The first two versions have a reverse Fourier transform.  

The left oriented Fourier transform is defined by: 

 

ℱ̃𝐿(𝑞̃𝐿) = ∫〈𝑞̃𝐿|𝑞〉 ℱ(𝑞)
𝑞

 𝑑𝑞  

Like the functions 〈𝑞|𝑞′〉 and 〈𝑞̃𝐿|𝑞̃𝐿
′ 〉, the functions 〈𝑞̃𝐿|𝑞〉 and 〈𝑞|𝑞̃𝐿〉 form sets of mutually 

orthogonal functions, as will be clear from:  

〈𝑞|𝑞′〉 = 𝛿(𝑞 − 𝑞′) 

〈𝑞̃𝐿|𝑞̃𝐿
′ 〉 = 𝛿(𝑞̃𝐿 − 𝑞̃𝐿

′ ) 

∫ 〈𝑞′|𝑞̃𝐿〉〈𝑞̃𝐿|𝑞〉  𝑑𝑞̃𝐿
𝑞̃𝐿

= 𝛿(𝑞 − 𝑞′) 

∫〈𝑞̃𝐿
′ |𝑞〉〈𝑞|𝑞̃𝐿〉  𝑑𝑞

𝑞

= 𝛿(𝑞̃𝐿 − 𝑞̃𝐿
′ ) 

 

The reverse transform is: 

(1) 

(2) 

(3) 

(4) 

(5) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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ℱ(𝑞) = ∫ 〈𝑞|𝑞̃𝐿〉ℱ̃𝐿(𝑞̃𝐿) 𝑑𝑞̃𝐿 =
𝑞̃𝐿

∫ ∫ 〈𝑞|𝑞̃𝐿〉〈𝑞̃𝐿|𝑞
′〉ℱ(𝑞′) 𝑑𝑞̃𝐿

𝑞′𝑞̃𝐿

𝑑𝑞′  

= ∫ {∫ 〈𝑞|𝑞̃𝐿〉〈𝑞̃𝐿|𝑞
′〉 𝑑𝑞̃𝐿

𝑞̃𝐿

}ℱ(𝑞′)
𝑞′

𝑑𝑞′ = ∫ 𝛿(𝑞 − 𝑞′)ℱ(𝑞′) 𝑑𝑞′ 
𝑞′

 

 

The reverse bra-ket form of the operator ℱ̃𝐿 equals: 

ℱ̃𝐿 = |𝑞̃𝐿〉ℱ̃𝐿(𝑞̃𝐿)〈𝑞̃𝐿|  

 

Operator ℜ̃𝐿 provides the parameter space for the left oriented Fourier transform ℱ̃𝐿(𝑞̃𝐿) of function 

ℱ(𝑞) in equations (1) and (6).  

ℜ̃𝐿 = |𝑞̃𝐿〉𝑞̃𝐿〈𝑞̃𝐿|  

 

Similarly the right oriented Fourier transform can be defined. 

ℱ̃𝑅(𝑞̃) = ∫ℱ(𝑞′)〈𝑞′|𝑞̃〉
𝑞

 𝑑𝑞′  

The reverse transform is: 

ℱ(𝑞) = ∫ ℱ̃𝑅(𝑞̃𝑅)〈𝑞|𝑞̃𝑅〉 𝑑𝑞̃𝑅 =
𝑞̃𝑅

∫ ∫ ℱ(𝑞′)〈𝑞′|𝑞̃𝑅〉〈𝑞̃𝑅|𝑞〉 𝑑𝑞′ 𝑑𝑞̃𝑅
𝑞′𝑞̃𝑅

 

= ∫ ℱ(𝑞′) {∫ 〈𝑞′|𝑞̃𝑅〉〈𝑞̃𝑅|𝑞〉  𝑑𝑞̃𝑅
𝑞̃𝑅

}𝑑𝑞′

𝑞′
= ∫ ℱ(𝑞′) 𝛿(𝑞 − 𝑞′) 𝑑𝑞′ 

𝑞′
 

 

Also here the functions 〈𝑞|𝑞′〉, 〈𝑞̃𝑅|𝑞̃𝑅
′ 〉, 〈𝑞̃𝑅|𝑞〉 and 〈𝑞|𝑞̃𝑅〉 form sets of mutually orthogonal 

functions. 

The reverse bra-ket form of the operator ℱ̃𝑅 equals: 

ℱ̃𝑅 = |𝑞̃𝑅〉ℱ̃𝑅(𝑞̃𝑅)〈𝑞̃𝑅|  

 

Operator ℜ̃𝑅 provides the parameter space for the right oriented Fourier transform ℱ̃𝑅(𝑞̃𝑅) of 

function ℱ(𝑞) in equations (9) and (10).  

ℜ̃𝑅 = |𝑞̃𝑅〉𝑞̃𝑅〈𝑞̃𝑅|  

 

The third version of the Fourier transform is: 

ℱ̃(𝑞̃𝐿, 𝑞̃𝑅) =
ℱ̃𝐿(𝑞̃𝐿) + ℱ̃𝑅(𝑞̃𝑅)

2
= ½∫{〈𝑞̃𝐿|𝑞〉ℱ(𝑞) + ℱ(𝑞)〈𝑞|𝑞̃𝑅〉} 𝑑𝑞

𝑞

  

In contrast to the right and left version, the third version has no reverse.  

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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8 Well-ordered reference operators 
The eigenvalues of a normal operator 𝑇 that resides in a separable Hilbert space can be ordered with 

respect to the real part of the eigenvalues. Operator 𝑇0 = (𝑇 + 𝑇†)/2 is the corresponding self-

adjoint operator. If each real value occurs only once, then the operator 𝑇 and its adjoint 𝑇† can be 

uniquely ordered up or down. The result is a well-ordered normal operator. Both the eigenvectors 

and the eigenvalues can be enumerated by the same natural numbers. This means that the 

eigenvalues of 𝑇0 can also be used as enumerators for other ordering processes. The imaginary part 

of the eigenvalues can then still be ordered in different ways. Operator 𝑻 = (𝑇 − 𝑇†)/2 is the 

corresponding anti-Hermitian operator. For example it can be ordered according to Cartesian 

coordinates or according to spherical coordinates. Also each of these orderings can be done in 

different ways. 

The property of being well-ordered is restricted to operators with countable eigenspaces. However, 

via the reverse bra-ket method and the defining functions, the well-orderedness can be transferred 

to the corresponding operator in the Gelfand triple. We require that all physically relevant operators 

will be well-ordered. Anti-Hermitian operators that have no Hermitian counterpart can become well-

ordered via synchronization with mechanisms that work as a function of progression. Stochastic 

operators can be examples of this procedure. 

8.1 Progression ordering 
A single self-adjoint reference operator that offers an infinite set of rational eigenvalues can 

synchronize a category of well-ordered normal operators. We use ℛ0 for this purpose. The ordered 

eigenvalues of this self-adjoint operator act as progression values. In this way the infinite 

dimensional separable Hilbert space owns a model wide clock. With this choice the separable Hilbert 

space steps with model-wide progression steps. 

The selected well-ordered normal reference operator ℛ that resides in an infinite dimensional 

separable quaternionic Hilbert space is used in the specification of the companion quaternionic 

Gelfand triple. There it corresponds to reference operator ℜ. In that way progression steps in the 

separable Hilbert space and flows in the companion Gelfand triple. Both reference operators will be 

used to provide “natural” parameter spaces. 

The countable set of progression values of the Hermitian part ℛ0 = (ℛ + ℛ†)/2 of the well-ordered 

reference operator ℛ can be used to enumerate other ordered sequences. 

We will use the progression ordering in order to mark the progression of the embedding of the 

separable Hilbert space into its companion Gelfand triple. 

8.2 Cartesian ordering 
The whole separable Hilbert space can at the same time be spanned by the eigenvectors of a 

reference operator whose eigenvalues are well-ordered with respect to the real parts of the 

eigenvalues, while the imaginary parts are ordered with respect to a Cartesian coordinate system.  

For Cartesian ordering, having an origin is not necessary. In affine Cartesian ordering only the 

direction of the ordering is relevant. Affine Cartesian ordering exists in eight symmetry flavors. 

Cartesian ordering supposes a unique orientation of the Cartesian axes. 

The well-ordered reference operator ℛ is supposed to feature affine Cartesian ordering.  
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8.3 Spherical ordering 
Spherical ordering starts with a selected Cartesian set of coordinates. In this case the origin is at a 

unique center location. Spherical ordering can be done by first ordering the azimuth and after that 

the polar angle is ordered. Finally, the radial distance from the center can be ordered. Ordering of 

the radius has a natural direction. Another procedure is to start with the polar angle, then the 

azimuth and finally the radius. Such, spherical orderings may create a symmetry center. Since the 

ordering starts with a selected Cartesian coordinate system, spherical ordering will go together with 

affine Cartesian ordering. 

Each symmetry center is described by the eigenspaces of an anti-Hermitian operator 𝕾𝑛
𝑥  that map a 

finite dimensional subspace of Hilbert space ℌ onto itself. Superscript  𝑥 refers to the ordering type 

of the symmetry center. 𝕾𝑛
𝑥  has no Hermitian part. Only through its ordering it can synchronize with 

progression steps. The subscript 𝑛 enumerates the symmetry centers. 

8.4 The significance of well-orderedness 
The well-ordering requirement for physical operators implements a special version of Stokes 

generalized theorem[11] [24]. In this special version, the theorem arranges a relation between the 

manifolds on the encapsulated part of quaternionic parameter space Ω and the static status quo of 

these manifolds onside the encapsulation parameter space 𝜕Ω, which represent the real progression 

value 𝜏. 𝑑𝜔 is an exterior derivative of manifold 𝜔. Onside 𝜕Ω is 𝜔 the boundary of the quaternionic 

manifold 𝜔, which exists onside the combination of Ω and 𝜕Ω. 

 

∫ 𝑑𝜔
Ω

= ∫ 𝜔; (= ∮ 𝜔
𝜕Ω

)
𝜕Ω

 

 

The 1+3D manifolds 𝜔 and 𝑑𝜔 represent quaternionic fields 𝔉 and d𝔉, while onside 𝜕Ω the 3D 

manifold 𝜔 represents the quaternionic boundary of the quaternionic field 𝔉. 𝑑𝜔 is the exterior 

derivative of 𝜔.  

The theorem constructs a rim 𝔉(𝒙, 𝜏) between the past history of the field [𝔉(𝒙, 𝑡)]𝑡<𝜏 and the 

future [𝔉(𝒙, 𝑡)]𝑡>𝜏 of that field. It means that the boundary 𝔉(𝒙, 𝜏) of field [𝔉(𝒙, 𝑡)]𝑡<𝜏 represents a 

universe wide static status quo of that field. 

 

More specifically: 

 

∫ ∭d𝔉

𝑉

𝜏

𝑡=0

(𝑥) = [∭𝔉

𝑉

(𝒙)𝑑𝒙]

𝑡=𝜏

 

 

Here [𝔉(𝒙, 𝑡)]𝑡=𝜏 represents the static status quo of a quaternionic field at instance 𝜏. 𝑉 represents 

the spatial part of the quaternionic parameter space, but it may represent only a restricted part of 

that parameter space. This last situation corresponds to the usual form of the divergence theorem.  

Like the classical divergence equation, equations (1) and (2) are integral balance equations. 

(1) 

(2) 
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 Interpretation 
The quaternionic parameter space is supposed to be defined as eigenspace of a reference operator 

that resides in the non-separable Hilbert space. The bra-ket method relates this parameter space to 

an equivalent parameter space, which resides in the separable Hilbert space. 

The future is kept on the outside of the discussed boundary. As a consequence, the mechanisms that 

generate new data operate on the rim between past and future. These mechanisms act in a spatially 

stochastic fashion and will provide all generated data with a progression stamp. This progression 

stamp reflects the state of a universe wide clock tick. The whole universe, including its physical fields 

will proceed with these progression steps. However, in the Gelfand triple this progression will flow. 

At the defined rim, any forecasting will be considered as mathematical cheating. Thus, at the rim, the 

uncertainty principle does not work for the progression part of the parameter spaces. Differential 

equations that offer advanced as well as retarded solutions must reinterpret the advanced solutions 

and turn them in retarded solutions, which in that case represent another kind of object. If the 

original object represents a particle, then the reversed particle is the anti-particle. 

As a consequence of the construct, the history, which is stored-free from any uncertainty-in the 

already processed part of the eigenspaces of the physical operators, is no longer touched. Future is 

unknown or at least it is inaccessible. 

 Other aspects of the generalized Stokes theorem. 
The generalized Stokes theorem is in fact a combination of two versions. One is the using the 

divergence part of the exterior derivative 𝑑𝜔. It is also known as the generalized divergence 

theorem. The other version uses the curl part of the exterior derivative. The theorem can be applied 

when everywhere in Ω the derivative d𝜔 exists and when everywhere in 𝜕Ω the manifold 𝜔 is 

continuous. 

∫ 𝑑𝜔
Ω

= ∫ 𝜔; (= ∮ 𝜔
𝜕Ω

)
𝜕Ω

 

 

If that is not the case, then it is possible to encapsulate the local discontinuities and separate the 

neighborhood of each of these discontinuities in a different boundary. This is shown for one of these 

discontinuities. 

∫ 𝑑𝜔
Ω−H

= ∫ 𝜔
𝜕Ω

+ ∫ 𝜔
𝜕H

 

 

In the orthomodular base model we will separate elementary modulus by encapsulating their 

geometric centers. In the quaternionic parameter space the extra encapsulations can float over the 

spatial part of Ω. This will be applied by the notion of symmetry center that will be introduced below. 

Also discontinuities that cover a region of Ω can be handled in this way. For example a region that is 

surrounded by a boundary where the curvature is so high that information contained in 𝜔 cannot 

pass that boundary can be handled by separation from the rest of Ω.  
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9 Symmetry flavor 
Quaternions can be mapped to Cartesian coordinates along the orthonormal base vectors 1, 𝒊, 𝒋 and 

𝒌; with 𝒊𝒋 = 𝒌  

Due to the four dimensions of quaternions, quaternionic number systems exist in 16 well-ordered 

versions {𝑞𝑥} that differ only in their discrete Cartesian symmetry set. The quaternionic number 

systems {𝑞𝑥} correspond to 16 versions {𝑞𝑖
𝑥} of rational quaternions.  

Half of these versions are right handed and the other half are left handed. Thus the handedness is 

influenced by the symmetry flavor. 

The superscript  𝑥 can be  ⓪,  ①,  ②,  ③,  ④,  ⑤,  ⑥,  ⑦,  ⑧,  ⑨,  ⑩,  ⑪,  ⑫,  ⑬,  ⑭, or ⑮.  

This superscript represents the symmetry flavor of the superscripted subject. 

The reference operator ℛ⓪ = |𝑞𝑖
⓪

〉 𝑞𝑖
⓪

〈𝑞𝑖
⓪

| in the infinite dimensional separable Hilbert space ℌ 

maps into the reference operator ℜ⓪ = |𝑞⓪〉𝑞⓪〈𝑞⓪| in Gelfand triple ℋ. 

The symmetry flavor of the symmetry center 𝕾𝑛
𝑥, which is maintained by operator 𝕾𝑥 = |𝖘𝑖

𝑥〉𝖘𝑖
𝑥〈𝖘𝑖

𝑥| is 

determined by its Cartesian ordering and then compared with the reference symmetry flavor, which 

is the symmetry flavor of the reference operator ℛ⓪.  

Now the symmetry related charge follows in three steps. 

1. Count the difference of the spatial part of the symmetry flavor of 𝕾𝑥 with the spatial part of 

the symmetry flavor of reference operator ℛ⓪. 

2. If the handedness changes from R to L, then switch the sign of the count. 

3. Switch the sign of the result for anti-particles. 

Electric charge equals symmetry related charge divided by 3. In a suggestive way, we use the names 

of the elementary fermions that appear in the standard model in order to distinguish the possible 

combinations of symmetry flavors. 

Symmetry flavor 

Ordering 

x   y   z    τ 

Super 

script 

Handedness 

Right/Left 

Color 

charge 

Electric 

charge * 3 

Symmetry center type. 

Names are taken from the 

standard model 

 ⓪ R N +0 neutrino 

 ① L R −1 down quark 

 ② L G −1 down quark 

 ③ L B −1 down quark 

 ④ R B +2 up quark 

 ⑤ R G +2 up quark 

 ⑥ R R +2 up quark 

 ⑦ L N −3 electron 

 ⑧ R N +3 positron 

 ⑨ L 𝑅̅ −2 anti-up quark 

 ⑩ L 𝐺̅ −2 anti-up quark 

 ⑪ L 𝐵̅ −2 anti-up quark 

 ⑫ R 𝐵̅ +1 anti-down quark 

 ⑬ R 𝑅̅ +1 anti-down quark 

 ⑭ R 𝐺̅ +1 anti-down quark 

 ⑮ L N −0 anti-neutrino 
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Per definition, members of coherent sets {𝑎𝑖
𝑥} of quaternions all feature the same symmetry flavor 

that is marked by superscript  𝑥. 

Also continuous functions and continuums feature a symmetry flavor. Continuous quaternionic 

functions 𝜓𝑥(𝑞𝑥) and corresponding continuums do not switch to other symmetry flavors  𝑦.  

The reference symmetry flavor 𝜓𝑦(𝑞𝑦) of a continuous function 𝜓𝑥(𝑞𝑦) is the symmetry flavor of 

the parameter space {𝑞𝑦}.  

The symmetry related charge conforms to the amount of reordering that is required when the 

symmetry center or one of its elements is mapped onto the reference space ℛ⓪. 

 

The concept of symmetry flavor sins against the cosmologic principle, which states that universe 

does not contain specific directions. It also claims that universe has no origin. Affine Cartesian 

ordering does not apply a selected spatial origin. That does not say that universe cannot have a 

unique spatial origin. That origin would be the spatial origin of reference operator ℛ⓪. All symmetry 

centers own a unique spatial origin. That origin maps onto a dynamic location in ℛ⓪. 
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10 Symmetry centers 
Each symmetry center corresponds to a dedicated subspace of the infinite dimensional separable 

Hilbert space. That subspace is spanned by the eigenvectors {|𝖘𝑖
𝑥〉} of a corresponding symmetry 

center reference operator 𝕾𝑛
𝑥. Here the superscript  𝑥 refers to the type of the symmetry center. The 

type covers more than just the symmetry flavor. 

Symmetry flavors relate to affine Cartesian ordering. Each symmetry center will own a single 

symmetry flavor. The symmetry flavor of the symmetry center relates to the Cartesian coordinate 

system that acts as start for the spherical ordering. The combination of affine Cartesian ordering and 

spherical ordering puts corresponding axes in parallel. Spherical ordering relates to spherical 

coordinates. Starting spherical ordering with the azimuth corresponds to half integer spin. The 

azimuth runs from 0 to π radians. Starting spherical ordering with the polar angle corresponds to 

integer spin. The polar angle runs from 0 to 2π radians. These selections add to the type properties 

of the symmetry centers.  

The model suggests that symmetry centers {𝕾𝑛
𝑥} are maintained by special mechanisms {𝔐𝑛} that 

ensure the spatial and dynamical coherence of the coupling of the symmetry center to the 

background space. Several types of such mechanisms exist. Each symmetry center type corresponds 

to a class of mechanism types. These mechanisms are not part of the separable Hilbert space. 

Symmetry centers {𝕾𝑛
𝑥} are resources where the coherence ensuring mechanisms {𝔐𝑛} can 

dynamically take locations that are stored in quaternionic eigenvalues of dedicated stochastic 

operators, in order to generate coherent location swarms that represent point-like objects. The type 

of the point-like object corresponds to the type of the controlling mechanism. The coherent location 

swarm corresponds with the eigenspace of the stochastic operator. 

The basic symmetry center 𝕾𝑛
𝑥  is independent of progression. Once created, a symmetry center 

persists until it is annihilated. However, during creation its ordering can be synchronized with 

selected progression steps. Any progression dependence that concerns a symmetry center 𝕾𝑛
𝑥  is 

handled by a type dependent mechanism 𝔐𝑛. The type depends on the symmetry flavor and on the 

spin. Further, it depends on other characteristics that will appear as properties of the point-like 

object that will be supported by the controlling mechanism 𝔐𝑛. An example is the generation flavor 

of the point-like particle. In this way the same symmetry center type can support electrons, muons 

and tau particles. Symmetry flavor and spin can be related to the ordering of the symmetry center 

𝕾𝑛
𝑥. Generation flavor is a property of the controlling mechanism 𝔐𝑛. The creation and annihilation 

of the symmetry center may go together with the creation and the annihilation of the point-like 

object that is managed by mechanism 𝔐𝑛. 

The mechanisms that control the usage of symmetry centers act mostly in a cyclic fashion. When 

compared to mechanisms that care about particles, the cycles that occur in equivalent mechanisms 

that care about corresponding anti-particles act in the reverse direction. As a consequence many of 

the properties of the anti-particles are the opposite of the properties of the corresponding particles. 

This holds for the sign of the symmetry related charge and it holds for the color charge, but it does 

not hold for the mass and for the energy of the (anti)particle. 

Symmetry centers have a well-defined spatial origin. That origin floats on the eigenspace of the 

reference operator ℛ⓪. Symmetry centers are formed by a dedicated category of compact anti-

Hermitian operators {𝕾𝑛
𝑥}.  
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An infinite dimensional separable Hilbert space can house a huge but finite set of subspaces that 

each represent such a symmetry center. Each of these subspaces then corresponds to a dedicated 

spherically ordered reference operator 𝕾𝑛
𝑥. The superscript  𝑥 distinguishes between symmetry 

flavors and other properties, such as spin and generation flavor. Symmetry centers correspond to 

dedicated subspaces that are spanned by the eigenvectors {|𝖘𝑖
𝑥〉} of the symmetry center reference 

operator 𝕾𝑥. 

 

𝕾𝑥 = |𝖘𝑖
𝑥〉𝖘𝑖

𝑥〈𝖘𝑖
𝑥| 

 

𝕾𝑥†
= −𝕾𝑥 

 

Here, for reasons of convenience, we omitted subscript 𝑛. 

The location of the geometric center of the symmetry center inside the eigenspace of reference 

operator ℛ⓪ is a progression dependent value. This value is not eigenvalue of operator 𝕾𝑛
𝑥. The 

location of the center inside ℛ⓪ is eigenvalue of a central governance operator ℊ. 

Symmetry centers feature a symmetry related charge that depends on the difference between the 

symmetry flavor of the symmetry center and the symmetry flavor of the reference operator ℛ⓪, 

which equals the symmetry flavor of the embedding continuum ℭ. The symmetry related charges 

raise a symmetry related field 𝔄. The symmetry related field 𝔄 influences the position of the center 

of the symmetry center in parameter space ℛ⓪ and indirectly it influences the position of the map 

of the symmetry center into the field that represents the embedding continuum ℭ. Both fields, 𝔄 and 

ℭ use the eigenspace of the reference operator ℜ as their parameter space. 

Here we have put all possible symmetry related fields together under the same name 𝔄, because we 

only will treat the interactions of these fields with their symmetry related charges. In fact a large 

variety of these 𝔄𝑥 fields exist that should be distinguished by the superscript  𝑥. 

The closed subspaces that correspond to a symmetry center have a fixed finite dimension. This 

dimension is the same for all types of symmetry centers. This ensures that symmetry related charges 

all appear in the same short list. 

10.1 Synchronization via coupling 
The basic symmetry center 𝕾𝑛

𝑥  is independent of progression. Any progression dependence that 

concerns a symmetry center is handled by a type dependent mechanism 𝔐𝑛 that controls the usage 

of the symmetry center. The type dependent mechanism 𝔐𝑛 acts in a progression dependent 

fashion. On certain progression steps the mechanism selects a location from the symmetry center 

that will be used to embed a point-like object in the background space. The mechanism 𝔐𝑛 selects 

locations in accordance to the Poisson equation. If this is a screened Poisson equation, then that 

equation defines a clock signal with frequency 𝜔, which can aid in the synchronization. 

 

⟨𝛁, 𝛁⟩𝜒 − 𝜔2𝜒 =  𝜌 

 

(1) 

(2) 

(1) 
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𝜒 = 𝑎(𝒙) exp (±𝑖 𝜔 𝜏) 

 

The background space, is maintained by reference operator ℛ⓪. Embedding elements of the 

symmetry center into the eigenspace of this operator ensures the synchronization of the symmetry 

center with the background space. That is why the embedding occurs at instances that are selected 

from the progression values, which are offered as eigenvalues by ℛ0
⓪

= (ℛ⓪ + ℛ⓪
†
) /2. 

However, the controlling mechanism 𝔐𝑛 does not embed the center location, but instead the 

mechanism 𝔐𝑛 uses a stochastic process in order to select a location somewhere inside the 

symmetry center. Further, not all eigenvalues {𝖘𝑖
𝑥} of 𝕾𝑥 will be used in the embedding process. A 

special operator ℴ𝑥 that is dedicated to the type of the embedded point-like object describes the 

selected locations in its eigenvalues.  

Eigenvalue 𝑎𝑖
𝑥 of operator ℴ𝑥 corresponds to a mapped eigenvalue 𝑏𝑖

⓪
 of operator 𝒷⓪ in 

background space ℛ⓪. Since ℛ⓪ maps onto ℜ⓪, the operator 𝒷⓪ has an equivalent in the 

Gelfand triple. These maps are the result of a relocation of the whole location swarm {𝑎𝑖
𝑥}, which is 

due to the independent location and movement of the symmetry center. Due to the differences in 

symmetry flavor between the symmetry center and background space ℛ⓪, this map involves 

reordering of the spatial parts of the eigenvalues. Function ℭ(𝑞)maps the relocated swarm elements 

onto continuum ℭ. Thus, operator 𝒷⓪ has images 𝒷⓪ and ℭ(𝒷⓪) in the Gelfand triple. The 

reordering is an artificial act. In fact the embedded elements act as artifacts that disturb the 

embedding continuum. The artifact causes a point-like discontinuity in the embedding continuum. 

This effect only lasts during an infinitesimal instant. The actual embedding is immediately released. 

However, the embedding continuum remembers the disturbance via its dynamic reaction on the 

temporary disturbance. Also the separable Hilbert space registers the temporary existence of the 

generated point-like object.  

The final embedding location of swarm element 𝑎𝑖
𝑥 represents a point-like object that originally 

resided in the symmetry center. That embedding location is mapped onto the embedding continuum, 

which resides as the eigenspace of operator ℭ in the Gelfand triple ℋ.. This continuum is defined as a 

function ℭ(𝑞) over parameter space ℜ⓪. The embedded artifact affects the embedding continuum 

during an infinitesimal instant. 

The locations in the symmetry center that for the purpose of the embedding are selected, form a 

coherent location swarm and a hopping path that together characterize the dynamic behavior of the 

point-like object. The embedding process deforms continuum ℭ. It does not affect the parameter 

spaces ℛ⓪ and ℜ⓪. The embedding process is treated in more detail in section 21; Embedding. 

10.2 Hadronic centers 
Symmetry centers can bind into hadronic centers that also feature isotropic symmetry. In reverse the 

hadronic centers can split into isotropic symmetry centers. 

Hadronic centers feature zero or full symmetry related charge. Hadronic centers exist as meson 

centers and as baryon centers. 

(2) 
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 Baryon centers 
Baryon centers are governed by tri-state switchers, which govern the states of three quarks and join 

them into a colorless union. 

 Meson centers 
Meson centers are colorless combinations of quarks and anti-quarks. 
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10.3 Symmetry centers as floating parameter spaces 
Symmetry centers represent parameter spaces in regions H that float on a background parameter 

space Ω. These regions are platforms for local discontinuities in basic fields. The symmetry centers 

are encapsulated and the encapsulating boundary is part of the disconnected boundary which 

encapsulates all continuous parts of physical fields that exist in the orthomodular base model. 

 

∫ 𝑑𝜔
Ω−H

= ∫ 𝜔
𝜕Ω

+ ∑∫ 𝜔
𝜕H𝑛𝑛

 

 

𝐻 = ⋃H𝑛

𝑛

 

 

H𝑛 ↔ 𝕾𝑛
𝑥 

 

11 Central governance 
The eigenvalues ℊ(𝑞, 𝑛) of the central governance operator ℊ  administer the relative locations of the 

symmetry centers 𝕾𝑛
𝑥  with respect to the reference operator ℛ⓪ which resides in the separable 

Hilbert space ℌ and maps to the reference continuum ℜ⓪ in the Gelfand triple ℋ. . A further map 

projects onto the embedding continuum ℭ.The central governance operator ℊ  resides in the 

separable Hilbert space ℌ . Operator ℊ  has an equivalent ℭ(ℊ) in the Gelfand triple. Function 

ℭ(𝑞)maps eigenvalues ℊ(𝑞, 𝑛) of ℊ  onto continuum ℭ. 

The reference continuum ℜ⓪ acts as a parameter space of the function 𝔄(𝑞) that specifies the 

symmetry related field 𝔄, which is eigenspace of the corresponding operator 𝔄.  

Each symmetry center owns a symmetry related charge, which is located at its geometric center. 

Each symmetry related charge owns an individual field 𝜑 that contributes to the overall symmetry 

related field 𝔄. 

The reference continuum ℜ⓪ also acts as a parameter space of the function ℭ(𝑞) that specifies the 

embedding continuum ℭ, which is eigenspace of the corresponding operator ℭ. 

A fundamental difference exists between field 𝔄 and field ℭ. However, both fields obey the same 

quaternionic differential calculus. The difference between these basic fields originates from the kind 

of artifacts that cause the discontinuities of the fields. In the case of the symmetry related field 𝔄 the 

disturbing artifacts are the symmetry related charges. In the case of the embedding continuum ℭ the 

disturbing artifacts are the embedding events. What happens in not too violent conditions and in not 

too wide ranges will be described by the second order partial differential equation of the 

corresponding field and will be affected by the local and current conditions. Since the embedded 

elementary point-like objects originate from the inside of their individual symmetry center, the 

embedding continuum will also be affected by what happens to the symmetry centers. This fact 

couples the two basic fields 𝔄 and ℭ.  

(1) 

(2) 

(3) 
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Double differentiation of field 𝔄 shows the relation between 𝔄 and ℊ.  Two quaternionic double 

differentiation operators exist. They are ∇∗∇ = ∇∇∗= ∇0∇0 + 〈𝛁,𝛁〉 and 𝔒 = −∇0∇0 + 〈𝛁,𝛁〉. Thus 

∇∗∇ 𝔄 = ℊ or 𝔒 𝔄 = ℊ 

11.1 Embedding symmetry centers 

The well-ordered eigenspace of a quaternionic normal operator ℛ⓪ that resides in an infinite 

dimensional separable Hilbert space acts as a reference operator from which the parameter space 

ℜ⓪ of the embedding continuum ℭ will be derived. This parameter space resides as continuum 

eigenspace of a corresponding operator ℜ⓪ in the Gelfand triple. This parameter space also acts as 

parameter space of a symmetry related field 𝔄. It is sparsely covered by locations of symmetry 

centers. The central governance operator ℊ administers these locations. The symmetry centers 

contain symmetry related charges. The locations of these charges are influenced by the symmetry 

related field 𝔄. Function ℭ(𝑞) maps both the contributions 𝜑 of the symmetry related charges and 

the eigenspace of ℊ onto continuum ℭ. 

  

(1) 
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12 Modules 
Modules are represented by closed subspaces of the separable Hilbert space, but not every closed 

subspace represents a module or modular system. In fact only a small minority of the closed 

subspaces will act as actual modules. What renders a closed subspace into a module and what 

combines modules into subsystems or systems? The answers to these questions can only be found by 

investigating the contents of the closed subspaces. 

A special category of modules are elementary modules. Elementary modules are not constituted of 

other modules. They are the atoms of the orthomodular lattice, which describes the relations 

between modules and modular systems. All elementary modules reside on a their own individual 

symmetry center. The symmetry center covers a closed subspace and the module covers a subspace 

of that subspace. 

We consider operators as physically relevant when they are well-ordered. Thus closed subspaces can 

represent modules when they can be considered as eigenspaces of well-ordered operators. 

12.1 Module content 
In free translation, the spectral theorem for normal operators that reside in a separable Hilbert space 

states: “If a normal operator maps a closed subspace onto itself, then the subspace is spanned by an 

orthonormal base consisting of eigenvectors of the operator.” The corresponding eigenvalues 

characterize this closed subspace. 

It is possible to select a quaternionic normal operator for which a subset of the eigenvectors span the 

closed subspace and the corresponding eigenvalues describe the dynamic geometric data of this 

module. By ordering the real values of these eigenvalues, the geometric data become functions of 

what we will call progression. 

 Progression window 
Stochastic processes that are controlled by dedicated mechanisms provide the modules with 

dynamic geometric data. Here we only consider elementary modules for which the content is well-

ordered. This means that every progression value is only used once. 

For the most primitive modules the closed subspace may be reduced until it covers a generation 

cycle in which the statistically averaged characteristics of the module mature to fixed values. The 

resulting closed subspace acts as a sliding progression window. 

The sliding window separates a deterministic history from a partly uncertain future. Inside the sliding 

window a dedicated mechanism 𝔐𝑛 fills the eigenspace of stochastic operator ℴ = |𝑎𝑗〉𝑎𝑗〈𝑎𝑗|. The 

mechanism is a function of progression. If it is a cyclic function of progression, then the module is 

recurrently regenerated. 

12.2 Symmetry center as platform 
All elementary modules are supposed to reside in an individual symmetry center. However, at every 

progression instant the elementary module occupies only one location of the symmetry center. 

During the regeneration cycle of the module the occupied locations form a coherent location swarm 

and at the same time the locations form a hopping path. Symmetry centers float on an supporting 

medium. That supporting medium corresponds to a well-ordered normal reference operator ℛ⓪, 

whose eigenvectors span the whole infinite dimensional separable Hilbert space. 
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12.3 Map into a continuum 
By imaging the discrete eigenvalues into a reference space, the discrete eigenvalues form a swarm 

{𝑎𝑗
𝑥}, which is a subset of the rational quaternions {𝖘𝑖

𝑥} that form the symmetry center on which the 

module resides. At the same time the discrete eigenvalues form a hopping path. With other words 

the swarm forms a spatial map of the dynamic hopping of the point-like object. The swarm and the 

hopping path conform to a stochastic operator ℴ𝑥 that is well ordered with respect to its progression 

values, but is not ordered in spatial sense like reference operators ℛ or 𝕾𝑛
𝑥. 

ℴ𝑥 = |𝑎𝑗
𝑥〉𝑎𝑗

𝑥〈𝑎𝑗
𝑥| 

This temporal ordering is installed via the quaternionic version of the screened Poisson equation. That equation involves a symmetry 

center wide clock that can synchronize the location generation process with the model wide progression steps that are oppressed by 

reference operator ℛ⓪.  

Next, we use a map ℳ1 of the swarm into the reference continuum that is the eigenspace of the 

reference operator ℜ⓪. This operator and its eigenspace reside in the Gelfand triple ℋ. 

In the model, two maps ℳ1 and ℳ2 are relevant. The first map ℳ1 has the flat reference continuum 

ℜ⓪ = {𝑞⓪} as target. This reference continuum is not affected by the imaging. Only the locations 

of the symmetry centers are affected by the influence of the symmetry related field 𝔄. The second 

map ℳ2 has the deformable continuum ℭ as target. In contrast, ℭ is affected by the embedding 

process. The defining function ℭ(𝑞) of the operator ℭ uses the flat field ℜ⓪ as its parameter space. 

This indicates that without embedding of the artifacts that come from sets such as {𝑎𝑗
𝑥}, the 

deformable field would be flat and equal to field ℜ⓪!  

In the symmetry center the hopping path is closed. If the image of the hopping path is also closed in 

the reference continuum ℜ⓪, then the swarm stays at the same location in the map ℳ1 onto the 

reference continuum ℜ⓪. This does not need to be the case for the map ℳ2 into the embedding 

continuum ℭ. The two target continuums ℜ and ℭ reside as eigenspaces in the Gelfand triple. 

We will interpret the two maps to work in succession. The second map ℳ2 maps the reference 

continuum ℜ⓪ that resides in the Gelfand triple into the embedding continuum ℭ, which also 

resides in the Gelfand triple. 

12.4 Coherent elementary modules  
Coherent elementary modules are directly related to a symmetry center. The elements of the 

coherent location swarm that characterizes the coherent elementary module are taken from the 

symmetry center. These elements are ordered with respect to progression, but spatially they are 

selected in a stochastic fashion. This selection is described by operator ℴ𝑥. In the map onto the 

reference continuum, coherent elementary modules feature a hopping path. Inside the symmetry 

center the hopping path is closed. Further, for coherent elementary modules, the map of the location 

swarm into the reference continuum corresponds to an operator 𝜌 that is defined by a continuous 

function. That continuous function is a normalized location density distribution and it has a Fourier 

transform. As a consequence the operator that conforms to this function has a different ordering 

with respect to its spatial values. That new operator 𝜌 has ℛ as its parameter space. It tends to 

describe the swarm as a whole unit. It no longer describes the hopping path. The operator is no 

more than a special descriptor. It does not affect the location distribution that is described by 

this operator and its defining function. 
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Coherence is ensured by a mechanism𝔐𝑛  that selects the eigenvalues such that a coherent swarm is 

generated. 

The notion of coherent swarm will be defined later. Coherent elementary modules are characterized 

by the symmetry flavor of their symmetry center 𝕾𝑛
𝑥. When mapped into a reference continuum that 

is eigenspace of reference operator ℜ⓪ = |𝑞⓪〉𝑞⓪〈𝑞⓪| the module is characterized by a symmetry 

related charge, which is located at the center of symmetry. The symmetry related charge is a 

property of the local symmetry center 𝕾𝑛
𝑥. 

The size and the sign of the symmetry related charge depends on the difference of the symmetry 

flavor of the local symmetry center with respect to the symmetry flavor of the reference continuum 

ℛ⓪. The coherent swarm {𝑎𝑗
𝑥} inherits the symmetry flavor of the local symmetry center 𝕾𝑛

𝑥. 

However, the controlling mechanism 𝔐𝑛 picks the elements of this set in a spatially stochastic way 

instead of in a spatially ordered fashion. Thus the operator ℴ𝑥that reflects the stochastic selection, 

corresponds with another operator 𝜌𝑥 that reflects the spatial ordering and characterizes the 

coherent stochastic mechanism 𝔐𝑛 with respect to its achievement to establish spatial coherence. 

12.5 The function of coherence 
Embedding of point-like objects into the affected embedding continuum spreads the reach of the 

separate embedding locations and offers the possibility to bind modules. The spread of the 

embedded point-like object is defined by the Green’s function of the non-homogeneous second 

order partial differential equation. However, spurious embedding locations have not enough 

strength and not enough reach to implement an efficient binding effect. In contrast, coherent 

location swarms offer enough locality and enough embedding strength in order to bind two coherent 

swarms that are sufficiently close. 

For example a Gaussian distribution of the location swarm would turn the very peaky Green’s 

function into a rather broad spherical painting brush that can be described by the potential: 

 

𝜑(𝑟) =
𝐸𝑅𝐹(𝑟)

𝑟
 

 

This is a smooth function without a trace of a singularity. 

Imaging of the location swarm into the reference continuum is only used to define coherence and to 

indicate the influence of the symmetry related charges. The embedding into the affected continuum 

is used to exploit the corresponding potential binding effect of the swarm. The stochastic process 

that implements the stochastic location distribution is the factual actuator in establishing the 

coherent swarm. 

  

(1) 
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13 The dynamic orthomodular base model 
We have achieved a level in which the major chain of mathematical structures does no longer offer 

an inescapable self-evident extension. The model uses separable and non-separable Hilbert spaces in 

order to store numeric data that can describe a series of discrete objects that are embedded in a 

continuum. The real parts of the parameters can be used to order the parameters and the target 

values of functions. If properly ordered these descriptions can represent a sequence of static status 

quos. However, without controlling mechanisms this model contains no means to establish the 

coherence between the subsequent members of the sequence. 

The model describes the evolution of the embedding of a quaternionic infinite dimensional separable 

Hilbert space into its companion Gelfand triple. On the rim between the history and the future 

operate controlling mechanisms that fill eigenspaces of operators that reside in the separable Hilbert 

space with new data, that subsequently will be embedded into a deformable eigenspace of an 

operator that resides in the Gelfand triple. The history is no longer touched and stays stored in 

eigenspaces of operators that reside in the separable Hilbert space. The future is not yet known and 

will be generated by the stochastic processes, which are controlled by dedicated mechanisms that 

act as functions of progression. 

We will call this stage of the model development “The dynamic orthomodular base model”. Any 

further development of the model involves the investigation of the mechanisms that ensure the 

coherence between the subsequent members of the sequence of static status quos. 

The orthomodular base model describes the relational structure of modular systems. Via the 

management mechanisms it can add characteristics to the modules. These characteristics are based 

on eigenvalues of normal operators that reside in the separable Hilbert space and have eigenvectors 

in the closed subspace that represents the module. The Hilbert spaces only support storage and 

description. The management mechanisms represent the actual drivers of the model. However, the 

Hilbert spaces pose restrictions on what the mechanisms can do. 

The numeric data that occur in the orthonormal base model must be taken from division rings. The 

most elaborate choice for these data are quaternions.  

Quaternions and Hilbert spaces can represent a wider usage than just the storage of dynamic 

geometric data. Quaternions can implement rotations. In this way they can shift properties between 

dimensions. This is shown in section 27; Tri-state spaces. 

The peculiarities of these quaternions influence the features and the behavior of the discrete objects 

and the fields that occur in the orthonormal model. Many of these peculiarities are hardly known by 

scientists. As far as they apply to this paper these subjects are treated in the related sections. 

Concepts such as symmetry centers and coherent location swarms are not part of the orthonormal 

base model, but these features make use of the structure and the properties of the orthonormal 

base model. The same holds for the symmetry related field 𝔄 and the embedding continuum ℭ. 

However, the reference operators that can be applied as parameter spaces can be considered as 

standard properties of quaternionic Hilbert spaces. They can be considered to belong to the 

orthomodular base model. 
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14 Fields 
A category of operators can represent quaternionic functions. This is applicable both in the separable 

Hilbert space and in the Gelfand triple.  

In this paper, fields are continuums that are target spaces of quaternionic functions that define 

eigenspaces of operators, which reside in the Gelfand triple. 

Quaternionic functions and their differentials can be split in a real scalar functions and imaginary 

vector functions. Here we will only consider the not too violent disruptions of the continuity of the 

fields. We also restrict the validity range of the equations. With these restrictions the quaternionic 

nabla can be applied and the discontinuities restrict to point-like artifacts.. 

Quaternionic functions can represent fields and continuums, but they can also represent density 

distributions of discrete dynamic locations. Quaternionic differentiation is treated in the next 

chapter. 

Double differentiation of a basic field leads to a non-homogeneous second order partial differential 

equation that relates the basic field to the corresponding density distributions of discrete dynamic 

locations of the artifacts that cause the local discontinuities of the basic field. For quaternionic 

functions two different second order partial differential equations exist. They offer different views of 

the same basic field. 

The symmetry related field 𝔄 and the embedding continuum ℭ are basic fields. 

The symmetry related field 𝔄 is based on the existence of symmetry centers. These symmetry 

centers float over a background reference space. 

The embedding continuum ℭ is based on the existence of a dynamic deformable function that 

describes the embedding of discrete artifacts, which reside on symmetry centers and are mapped 

onto ℭ. The artifacts are selected by a mechanism 𝔐𝑛 that is dedicated to the symmetry center 𝕾𝑛
𝑥. 

The acts of these mechanisms can be described by a corresponding stochastic operator. 

14.1 Subspace maps 
The orthomodular base model consist of two related Hilbert spaces.  

 A separable Hilbert space ℌ that acts as a descriptor of the properties of all discrete objects.  

 A non-separable Hilbert space ℋ that acts as a descriptor of the properties of all continuums. 

An ongoing process which is governed by dedicated mechanisms embeds the separable Hilbert space 

ℌ into its non-separable companion Hilbert space ℋ. 

The two Hilbert spaces are coupled by the well-ordered reference operator ℛ⓪ and the 

corresponding reference operator ℜ⓪. Both are defined by the quaternionic function ℜ(𝑞) ≡ 𝑞. 

On the rim between history and future will controlling mechanisms {𝔐𝑛} fill the module related 

subspaces of separable Hilbert space ℌ with data and the new contents of these subspaces are 

subsequently embedded into the non-separable Hilbert space ℋ. The history stays untouched. The 

fill of subspaces with data is described by dedicated stochastic operators. The mechanisms {𝔐𝑛} 

use stochastic processes in order to generate these data. 

A closed subspace in ℌ maps into a subspace of ℋ. Only countable subspaces of ℋ have a 

sensible dimension. Defining functions can map countable eigenspaces of operators that reside 
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in the separable Hilbert space into continuum eigenspaces in the Gelfand triple. Mapping does 

not influence the flat reference fields that are in use as parameter spaces. 

14.2 Parameter spaces 

The reference operator ℜ⓪ that reside in the Gelfand triple delivers a simple field that can act as a 

flat parameter space. This field is not affected by the embedding map. Via its defining function 

ℜ⓪(𝑞⓪) = 𝑞⓪, it is a direct map of parameter space ℛ⓪. 

Symmetry centers are spanned by the eigenvectors {|𝖘𝑖
𝑥〉} of a compact symmetry center reference 

operator 𝕾𝑛
𝑥. The superscript  𝑥 distinguishes between properties such as symmetry flavors and spin. 

Symmetry centers are special forms of parameter spaces that reside in the separable Hilbert space ℌ. 

They also have a representation in the Gelfand triple. In the separable Hilbert space ℌ they have a 

fixed finite dimension, which is the same for all symmetry centers. Reference operator ℜ⓪ acts as 

the playground of maps of symmetry centers that define local symmetry related charges. Symmetry 

centers float over this background space. 

14.3 Embedding field 
The elements of the eigenspace of the stochastic operator ℴ, which is used by a controlling 

mechanism 𝔐𝑛 will be embedded in the eigenspace of operator ℭ. This eigenspace is deformable 

and resides in the Gelfand triple ℋ. The stochastic operator resides in the separable Hilbert 

space ℌ. It is connected to an elementary module and its controlling mechanism 𝔐𝑛 picks the 

eigenvalues of this operator from a corresponding symmetry center. These eigenvalues are 

mapped to parameter spaces ℛ⓪ and ℜ⓪. This converts operator ℴ to operator 𝒷. Operator ℴ 

resides in separable Hilbert space ℌ. Operator 𝒷 resides both in the separable Hilbert space and 

in Gelfand triple ℋ. The map involves a shift of the locations of the swarm elements. 

Operator ℭ can be described by a quaternionic function ℭ(𝑞⓪) that has a parameter space, 

which is generated by the eigenspace of operator ℜ⓪. The embedding process can be described 

by quaternionic differential calculus. If the discontinuities that are generated by local 

discontinuities are not too violent , then the non-homogeneous second order partial differential 

equation will elucidate the embedding process.  

We will show that two different non-homogeneous second order partial differential equations 

exist that offer different views on the embedding process. The equation that is based  the double 

quaternionic nabla cannot show wave behavior. However, the equation that is based on 

d’Alembert’s operator acts as a wave equation, which offers wave as part of its set of solutions. 

In ℋthe operator ℭ ≡ |𝑞⓪〉ℭ(𝑞⓪)〈𝑞⓪| is defined by function ℭ(𝑞⓪) and represents an 

embedding continuum ℭ. This continuum gets affected by the embedding process and thus 

deforms dynamically. 

The embedding continuum is always and everywhere present. It is deformed and vibrated by 

discrete artifacts that are embedded in this field. 

In ℋ, the representations of symmetry centers float over the natural parameter space ℜ⓪ of the 

embedding continuum. The symmetry related charges of the symmetry centers generate local 

contributions 𝜑 to the symmetry related field 𝔄. The location of the center of the symmetry 

center within parameter space ℜ⓪ is affected by the symmetry related field 𝔄. The symmetry 

related field 𝔄 ≡ |𝑞⓪〉𝔄(𝑞⓪)〈𝑞⓪| uses the same natural parameter space ℜ⓪ as the 

embedding field ℭ does. 
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The mechanism 𝔐𝑛 that controls stochastic operator ℴ picks members of a symmetry center 

and stores them in the eigenvalues of that operator. These eigenvalues are mapped to parameter 

space ℛ⓪ and in that way they become eigenvalues of a new operator 𝒷. This map involves 

relocation and re-ordering. This fact couples the location of the symmetry related charge of this 

symmetry center with the locations that get embedded in the eigenspace of operator ℭ. 

However, the parameter location of the symmetry related charge does not coincide with the 

parameter location of the eigenvalue of operator 𝒷,that will be embedded in the eigenspace of 

operator ℭ. This embedding involves a map that is described by function ℭ(q). The eigenvalues 

of operator 𝒷 will form a mapped swarm whose center will coincide with the mapped parameter 

location of the symmetry related charge. That location also coincides with the location of the 

mapped geometric center of the symmetry center. This location is not embedded and therefore it 

does not deform the eigenspace of operator ℭ. 

14.4 Symmetry related fields 
Due to their four dimensions, quaternionic number systems exist in sixteen versions that only differ 

in their symmetry flavor. The elements of coherent sets of quaternions belong to the same symmetry 

flavor. This is the symmetry flavor of the symmetry center that supports the original location swarm. 

Differences between symmetry flavors of a symmetry center and the symmetry flavor of the 

eigenspace of the surrounding reference operator ℛ⓪ cause the presence of a symmetry related 

charge at the center location of that symmetry center. The countable reference parameter space 

ℛ⓪ in the separable Hilbert space ℌ maps onto the continuum parameter space ℜ⓪, which resides 

in the Gelfand triple ℋ. 

Symmetry related charges are point-like objects. These charges generate a field 𝔄 that differs from 

the embedding continuum. This symmetry related field also plays a role in the binding of modules, 

but that role differs significantly from the role of the embedding continuum ℭ. The defining function 

𝔄(𝑞) of field 𝔄 and the defining function ℭ(q) of field ℭ use the same parameter space ℜ⓪. 

Symmetry related charges are located at the geometric centers of local symmetry centers. The size 

and the sign of the symmetry related charge depends on the difference of the symmetry flavor of the 

symmetry center with respect to the symmetry flavor of the embedding continuum. Symmetry 

centers that belong to different symmetry related charges appear to react on the symmetry 

differences. Equally signed charges repel and differently signed charges attract. The attached 

coherent location sets that are attached to the symmetry centers will be affected by these effects. 

The symmetry related field 𝔄 can affect the locations of the symmetry related charges in the first 

map ℳ1. This means that with the centers of symmetry also the corresponding coherent swarms are 

relocated. This can be interpreted as if the symmetry related field 𝔄 acts as a deformed parameter 

space for the embedding continuum ℭ. Here we ignore this possibility and consider ℜ⓪ as the flat 

parameter space of ℭ. 

The symmetry related charges do not directly affect the embedding continuum ℭ. Their effects are 

confined to map ℳ1. However, with their action the symmetry related charges relocate the centers 

of the corresponding coherent swarms. The elements of the swarms deform the embedding 

continuum. 

The symmetry related charges are point charges. As a consequence the range of the field that is 

generated by a single charge is rather limited. The corresponding Green’s function diminishes as 1/r 

with distance r from the charge ℭ. 
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Fields of point charges superpose. A wide spread uniform distribution of symmetry related point 

charges can generate a corresponding wide spread symmetry related field 𝔄. This works well if a 

majority of the charges have the same sign. Still, relevant values of the symmetry related field 𝔄 

depend on the nearby existence of symmetry related charges. 

Coherent swarms are recurrently regenerated on their symmetry centers. The symmetry centers are 

not recurrently generated, but instead they can get relocated. Together with these symmetry centers 

the corresponding symmetry related charges and the residing swarms get relocated. 

14.5 Free space 

In the separable Hilbert space, the eigenvectors of the well-ordered reference operator ℛ⓪ that do 

not belong to a module subspace together span free space. The elementary modules reside on 

symmetry centers whose center locations float on the eigenspace of ℛ⓪.  

At every progression instant only one element of the swarm {𝑎𝑗
𝑥} is used. Thus “free space” 

surrounds all elements of the swarm. It forms most of the continuum ℭ, which is deformed by the  

embedding of the currently selected swarm element.   
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15 Field dynamics 
In this chapter we will use a switch ⊛ = ±1 that selects between two different sets of differential 

calculus. One set concerns low order quaternionic differential calculus. The other set concerns 

Maxwell based differential calculus. The switch will be used to highlight the great similarity and the 

significant differences between these sets. 

15.1 Differentiation 
In the model that we selected, the dynamics of the fields can be described by quaternionic 

differential calculus. Apart from the eigenspaces of reference operators and the symmetry centers 

we encountered two basic fields that are defined by quaternionic functions and corresponding 

operators. One is the symmetry related field 𝔄 and the other is the embedding field ℭ.  

𝔄 determines the dynamics of the symmetry centers. ℭ gets deformed and vibrated by the recurrent 

embedding of point-like elementary particles that each reside on an individual symmetry center.  

Apart from the way that they are affected by point-like artifacts that disrupt the continuity of the 

field, both fields obey, under not too violent conditions and over not too large ranges, the same 

differential calculus. Two quite similar, but still significantly different kinds of dynamic geometric 

differential calculus exist. They will appear to represent different views onto the basic fields. We will 

indicate the two sets as pure quaternionic differential calculus and Maxwell based differential 

calculus.  

15.2 Quaternionic differential calculus. 
For quaternionic differential calculus the switch ⊛ equals 1. 

First we will investigate the validity range of our pack of pure quaternionic differential equations. 

Under rather general conditions the change of a quaternionic function 𝑓(𝑞) can be described by: 

 

𝑑𝑓(𝑞) ≈ ∑{
𝜕𝑓

𝜕𝑞𝜇
+ ∑

𝜕

𝜕ν

𝜕𝑓

𝜕𝑞𝜇
𝑑𝑞𝜈

𝜇=0…3

}

𝜇=0…3

𝑑𝑞𝜇 = 𝑐𝜇(𝑞)𝑑𝑞𝜇 + 𝑐𝜇𝜈(𝑞)𝑑𝑞𝜇𝑑𝑞𝜈 

 

Here the coefficients 𝑐𝜇(𝑞) and 𝑐𝜇𝜈(𝑞) are full quaternionic functions. 𝑑𝑞𝜇 are real numbers. 𝑒𝜈 are 

quaternionic base vectors. 

The conditions that are accepted by equation (1) do not require more than second order 

differentiation. Thus, these conditions cannot be considered as general conditions! 

Under more moderate and sufficiently short range conditions the function are supposed to behave 

more linearly.  

 

𝑑𝑓(𝑞) ≈ ∑
𝜕𝑓

𝜕𝑞𝜇
𝜇=0…3

𝑑𝑞𝜇 = 𝑐𝜇(𝑞)𝑑𝑞𝜇 

 

(1) 

(2) 
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Under even stricter conditions the functions become real functions 𝑐0
𝜇(𝑞) attached to quaternionic 

base vectors: 

 

𝑑𝑓(𝑞) = 𝑐0
𝜏 𝑑𝑞𝜏 + 𝑐0

𝑥 𝒊 𝑑𝑞𝑥 + 𝑐0
𝑦
 𝒋 𝑑𝑞𝑦 + 𝑐0

𝑧 𝒌 𝑑𝑞𝑧 = 𝑐0
𝜇(𝑞) 𝑒𝜇 𝑑𝑞𝜇 

= ∑(∑
𝜕𝑓𝜍

𝜕𝑞𝜇

3

𝜍=0

𝑒𝜍)𝑒𝜇𝑑𝑞𝜇

3

𝜇=0

= ∑ 𝛷𝜇𝑒𝜇𝑑𝑞𝜇

3

𝜇=0…3

 

𝛷𝜇 = 𝑐0
𝜇

= ∑
𝜕𝑓𝜍

𝜕𝑞𝜇

3

𝜍=0

𝑒𝜍 =
𝜕𝑓𝜍

𝜕𝑞𝜇
𝑒𝜍 =

𝜕𝑓

𝜕𝑞𝜇
 

 

Thus, in a rather flat continuum we can use the quaternionic nabla ∇. This is the situation that we 

want to explore with our set of pure quaternionic equations. The resulting conditions are very 

restrictive! 

 

∇= {
𝜕

𝜕𝜏
,
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
} =  

𝜕

𝜕𝜏
+ 𝒊

𝜕

𝜕𝑥
+ 𝒋

𝜕

𝜕𝑦
+ 𝒌

𝜕

𝜕𝑧
= 𝛻0 +  𝜵 = ∑

𝜕𝑓

𝜕𝑞𝜇
𝑒𝜇

3

𝜇=0

 

 

𝛷 = 𝛷0 + 𝜱 = 𝛻𝜓 = (𝛻0 +  𝜵)(𝜓0 + 𝝍) 

Thus, in a rather flat continuum we can use the quaternionic nabla ∇. 

 

∇= {
𝜕

𝜕𝜏
,
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
} =  

𝜕

𝜕𝜏
+ 𝒊

𝜕

𝜕𝑥
+ 𝒋

𝜕

𝜕𝑦
+ 𝒌

𝜕

𝜕𝑧
= 𝛻0 +  𝜵 

 

𝛷 = 𝛷0 + 𝜱 = 𝛻𝜓 = (𝛻0 +  𝜵)(𝜓0 + 𝝍) 

 

This form of the partial differential equation highlights the fact that in first order and second order 

partial differential equations the nabla operator can be applied as a multiplier. 

 

𝛷0 = 𝛻0𝜓0 −⊛ ⟨𝜵,𝝍⟩ 

 

𝜱 = 𝛻0𝝍 + 𝜵𝜓0 ± 𝜵 × 𝝍 

 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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These equations represent only low order partial differential equations. In this form the equations 

can still describe point-like disruptions of the continuity of the field. 

𝛷∗ = (𝛻𝜓)∗ = 𝛻∗𝜓∗ − 2 𝜵 × 𝝍 

 

𝛻∗(𝛻∗𝜓∗)∗ = 𝛻∗𝛷 = 𝛻∗𝛻𝜓 

 

Double partial differentiation will then result in the quaternionic non-homogeneous second order 

partial differentiation equation: 

 

𝜉 = 𝜉0 + 𝝃 = 𝛻∗𝛻𝜓 = (𝛻0 −  𝜵)(𝛻0 +  𝜵)(𝜓0 + 𝝍) 

 

= {𝛻0𝛻0 + ⊛ 〈𝜵, 𝜵〉}𝜓 =
𝜕2𝜓

𝜕𝜏2
+⊛

𝜕2𝜓

𝜕𝑥2
+⊛

𝜕2𝜓

𝜕𝑦2
+⊛

𝜕2𝜓

𝜕𝑧2
 

 

The switch ⊛ in this equation suggests that this equation exists in two forms that are both based on 

the quaternionic nabla. However, that is not the case. The switch is only applied in order to signal the 

difference between the two sets of differential equations. See equations (18) and (22). 

 

𝜁0 = 𝛻0𝜙0 +⊛ 〈𝜵,𝝓〉 

= 𝛻0𝛻0𝜑0 −⊛ 𝛻0〈𝜵,𝝋〉 +⊛ 〈𝜵, 𝜵〉𝜑0 +⊛ 𝛻0〈𝜵,𝝋〉 ±⊛ 〈𝜵, 𝜵 × 𝝋〉 

= (𝛻0𝛻0 +⊛ 〈𝜵,𝜵〉)𝜑0 

 

𝜻 = −𝜵𝜙0 + 𝛻0𝝓 ∓ 𝜵 × 𝝓 

= −𝜵𝛻0𝜑0 +⊛ 𝜵〈𝜵,𝝋〉 + 𝛻0𝜵𝜑0 + 𝛻0𝛻0𝝋 ± 𝛻0𝜵 × 𝝋 

∓𝜵 × 𝜵𝜑0 ∓ 𝜵 × 𝛻0𝝋 − 𝜵 × 𝜵 × 𝝋 

= −𝜵𝛻0𝜑0 +⊛ 𝜵 × 𝜵 × 𝝋 +⊛ 〈𝜵,𝜵〉𝝋 + 𝛻0𝜵𝜑0 + 𝛻0𝛻0𝝋 ± 𝛻0𝜵 × 𝝋 

∓𝜵 × 𝜵𝜑0 ∓ 𝜵 × 𝛻0𝝋 − 𝜵 × 𝜵 × 𝝋 

= (𝛻0𝛻0 +⊛ 〈𝜵,𝜵〉)𝝋 

 

Here 𝜉 is a quaternionic function that for a part 𝜌 describes the density distribution of a set of point-

like artifacts that disrupt the continuity of function 𝜓(𝑞).  

 

𝜌 = 𝜌0 + 𝝆 = 〈𝜵, 𝜵〉𝜓 =
𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
+

𝜕2𝜓

𝜕𝑧2
 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 
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𝜉 − 𝜌 = 𝛻0𝛻0𝜓 

 

In case of a single static point-like artifact, the solution 𝜓 will describe the corresponding Green’s 

function. 

Function 𝜓(𝑞) describes the mostly continuous field 𝜓. 

The second order partial differential equation that is based on the double quaternionic nabla: 

 

𝜉 = 𝛻𝛻∗𝜓 = 𝛻∗𝛻𝜓 = (𝛻0 −  𝜵)(𝛻0 +  𝜵)(𝜓0 + 𝝍) = {𝛻0𝛻0 + 〈𝜵, 𝜵〉}𝜓  

 

can be split into two continuity equations, which are quaternionic first order partial differential 

equations: 

 

𝛷 = 𝛻𝜓 

 

𝜌 = 𝛻∗𝛷 

 

If 𝜓 and Φ are normalizable functions and ‖𝜓‖ = 1, then with real 𝑚 and ‖𝜁‖ = 1 

 

𝛻𝜓 = 𝑚 𝜁 

 

We will encounter another quaternionic second order partial differential equation that cannot 

be split into two first order quaternionic partial differential equations. It is based on 

d’Alembert’s operator 𝔒=(−𝛻0𝛻0 + 〈𝜵, 𝜵〉). 

 

𝜁 = 𝜁0 + 𝜻 = 𝔒𝜑 = 𝔒(𝜑0 + 𝝋) = {−𝛻0𝛻0 + 〈𝜵, 𝜵〉}𝜑  

 

Dirac has shown that it can be split into two biquaternionic partial differential equations. 

15.3 Fourier equivalents 
In this quaternionic differential calculus, differentiation is implemented as multiplication. 

This is revealed by the Fourier equivalents of the equations (4) through (10) in the previous 

paragraph: 

𝛷̃ = 𝛷̃0 + 𝜱̃ = 𝑝 𝜓̃ = (𝑝0 +  𝒑)(𝜓̃0 + 𝝍̃) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(1) 
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The nabla 𝛻 is replaced by operator 𝑝. 𝛷̃ is the Fourier transform of 𝛷. 

 

𝛷̃0 = 𝑝0𝜓̃0 − ⟨𝒑, 𝝍̃⟩ 

 

𝜱̃ = 𝑝0𝝍̃ + 𝒑𝜓̃0 ± 𝒑 × 𝝍̃ 

 

The equivalent of the quaternionic second order partial differential equation is: 

 

𝜉 = 𝜉0 + 𝝃̃ = 𝑝∗𝑝 𝜓̃ = {𝑝0𝑝0 + 〈𝒑, 𝒑〉}𝜓̃ 

 

𝜌̃ = 𝜌̃0 + 𝝆̃ = 〈𝒑, 𝒑〉𝜓̃ 

 

The continuity equations result in: 

𝛷̃ = 𝑝𝜓̃ 

 

𝜌̃ = 𝑝∗𝛷̃ 

15.4 Poisson equations 
The screened Poisson equation is a special condition of the non-homogeneous second order partial 

differential equation in which some terms are zero or have a special value.  

 

∇∗∇𝜓 = ∇0∇0𝜓 +⊛ ⟨𝛁,𝛁⟩𝜓 = 𝜉 

 

⊛ ∇0∇0𝜓 + ⟨𝛁,𝛁⟩𝜓 =⊛ 𝜉 

 

⊛ ∇0∇0𝜓 = −𝜆2 𝜓 

 

⟨𝛁, 𝛁⟩𝜓 − 𝜆2𝜓 = ⊛ 𝜉 

 

The 3D solution of this equation is determined by the screened Green’s function 𝐺(𝑟). 

Green functions represent solutions for point sources. 

 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(1) 

(2) 

(3) 

(4) 
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𝐺(𝑟) =
exp(−𝜆 𝑟)

𝑟
 

 

𝜓 =  ∭𝐺(𝒓 − 𝒓′) 𝜌(𝒓′) 𝑑3𝒓 ′ 

 

G(r) has the shape of the Yukawa potential [12] 

In case of 𝜆 = 0 it resembles the Coulomb or gravitation potential of a point source. 

If 𝜆 ≠ 0 and ⊛ = 1, then a solution of equation (3) is: 

 

𝜓 = 𝑎(𝒙) exp (± 𝑖 𝜔 𝜏); 𝜆 = ± 𝑖 𝜔 

 

15.5 Solutions of the homogeneous second order partial differential equation 
Solutions of the quaternionic homogeneous second order partial differential equation are of special 

interest because for odd numbers of participating dimensions this equation has solutions in the form 

of shape keeping fronts. 

This homogeneous partial differential equation is given by: 

 

∇∗∇𝜓 = ∇0∇0𝜓 +⊛ ⟨𝛁,𝛁⟩𝜓 =
𝜕2𝜓

𝜕𝜏2
+⊛

𝜕2𝜓

𝜕𝑥2
+⊛

𝜕2𝜓

𝜕𝑦2
+⊛

𝜕2𝜓

𝜕𝑧2
= 0 

 

Let us start with: 

 

∇∗∇𝜓0 = 0 

 

Equation (2) has three-dimensional spherical shape keeping fronts as its solutions. 𝜓0 is a scalar 

function. By changing to polar coordinates it can be deduced that a solution is given by: 

 

𝜓0(𝑟, 𝜏) =
𝑓0(𝒊𝑟 − 𝑐𝜏)

𝑟
 

 

Where 𝑐 = ±1 and 𝒊 represents a base vector in radial direction. In fact the parameter 𝒊𝑟 − 𝑐𝜏 of 𝑓0 

can be considered as a complex number valued function. It keeps its shape during its travel through 

the field. Its amplitude quickly diminishes as 1/𝑟 with distance 𝑟 from the trigger point. 

Next we investigate: 

(5) 

(6) 

(7) 

(1) 

(2) 

(3) 
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∇∗∇𝝍 = 0 

 

Here 𝝍 is a vector function. 

Equation (4) has one-dimensional shape keeping fronts as its solutions: 

 

𝝍(𝑧, 𝜏) = 𝒇(𝒊𝑧 − 𝑐𝜏) 

 

Again the parameter 𝒊𝑧 − 𝑐𝜏 of 𝒇 can be interpreted as a complex number based function. 

The imaginary 𝒊 represents the base vector in the 𝑥, 𝑦 plane. Its orientation 𝜃 may be a function of 

𝑧. 

That orientation determines the polarization of the one-dimensional shape keeping front. 

15.6 Special formulas 
 

𝜵〈𝒌, 𝒙〉 = 𝒌 

 

𝒌 is constant. 

 

〈𝛁, 𝐱〉 = 𝟑 

 

𝛁 × 𝐱 = 𝟎 

 

𝛁|𝐱| =
𝐱

|𝐱|
 

 

𝛁
1

|𝐱 − 𝐱′|
= −

𝐱 − 𝐱′

|𝐱 − 𝐱′|3
 

 

〈𝛁,
𝐱 − 𝐱′

|𝐱 − 𝐱′|3
〉 = 〈𝛁,𝛁〉

1

|𝐱 − 𝐱′|
= 〈𝛁, 𝛁

1

|𝐱 − 𝐱′|
〉 = 4𝜋 𝛿(𝐱 − 𝐱′) 

 

Similar formulas apply to the quaternionic nabla and parameter values. 

 

(4 

(5) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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𝛻𝑥 = 1 − 3 ;  𝛻∗𝑥 = 1 + 3;  𝛻𝑥∗ = 1 + 3 

 

𝛻(𝑥∗𝑥) = 𝑥 

 

𝛻|𝑥| = 𝛻√(𝑥∗𝑥) =
𝑥

|𝑥|
 

 

𝛻
1

|𝑥 − 𝑥′|
= −

𝑥 − 𝑥′

|𝑥 − 𝑥′|3
 

 

 𝛻∗
𝑥 − 𝑥′

|𝑥 − 𝑥′|3
= 𝛻 𝛻∗

1

|𝑥 − 𝑥′|
= (

𝜕

𝜕𝜏

𝜕

𝜕𝜏
+ 〈𝛁,𝛁〉)

1

|𝑥 − 𝑥′|
≠ 4𝜋 𝛿(𝑥 − 𝑥′) 

 

Instead: 

 

(∇0∇0 + 〈𝜵, 𝜵〉)
1

|𝑥|
=

3𝜏2

|𝑥|5
−

1

|𝑥|3
+

3𝜏2

|𝑥|5
=

6𝜏2 − |𝑥|2

|𝑥|5
=

5𝜏2 − |𝒙|2

|𝑥|5
 

 

(∇0∇0 − 〈𝜵, 𝜵〉)
1

|𝑥|
= −

1

|𝑥|3
 

 

〈𝜵, 𝜵〉
1

|𝒙|
= 4𝜋 𝛿(𝒙) 

 

Thus, with spherical boundary conditions, 
1

4𝜋 |𝒙−𝒙′|
 is suitable as the Green’s function for the Poisson 

equation, but 
1

4𝜋 |𝑥−𝑥′|
 does not represent a Green’s function for the quaternionic operator 

(∇0∇0 + 〈𝛁, 𝛁〉) ! 

For a homogeneous second order partial differential equation a Green’s function is not required. 

Thus, the deficit of a green’s function does not forbid the existence of a quaternionic homogeneous 

second order partial differential equation. Still equation (6) forms the base of the Poisson equation. 

15.7 Field equations 
In this section, we will compare two sets of differential equations. Both sets use pure space as part of 

the parameter space. 

 Quaternionic differential equations 

o These equations use progression as one of its parameters. 

 Maxwell based differential equations 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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o These equations use quaternionic distance as one of its parameters. 

 

By introducing new symbols 𝕰 and 𝕭 we will turn the quaternionic differential equations into 

Maxwell-like quaternionic differential equations. We introduced a simple switch ⊛= ±1 that apart 

from the difference between the parameter spaces, will turn one set into the other set.  

Maxwell based differential equations split quaternionic functions into a scalar function and a vector 

function. Instead of the quaternionic nabla ∇= ∇0 + 𝛁 the Maxwell based equations use the scalar 

operator ∇0=
𝜕

𝜕𝑡
 and the vector nabla 𝛁 as separate operators. Maxwell equations use a switch 𝛼 

that controls the structure of a gauge equation. 

𝜘 = 𝛼
𝜕

𝜕𝑡
 𝜑0 + 〈𝜵,𝝋〉 

For Maxwell based differential calculus is 𝛼 = +1 and ∇0=
𝜕

𝜕𝑡
. The switch value is ⊛ −1. 

For quaternionic differential calculus is 𝛼 = −1 and ∇0=
𝜕

𝜕𝜏
. The switch value is ⊛= +1. 

In EMFT the scalar field 𝜘 is taken as a gauge with 

𝛼 = 1; Lorentz gauge 

𝛼 = 0; Coulomb gauge 

 𝛼 = −1; Kirchhoff gauge.  

 

𝜘 ≡ 𝛼 𝛻𝑡𝜑0 + 〈𝛁,𝝋〉 ⟺ 𝜙0 =  𝛻𝜏𝜑0 − 〈𝛁,𝝋〉 

 

In Maxwell based differential calculus the scalar field 𝜘 is ignored or it is taken equal to zero. As will 

be shown, zeroing 𝜘 is not necessary for the derivation of the Maxwell based wave equation [13]. 

Maxwell equations split the considered functions in scalar functions and vector functions. The 

differential operators are also split and cannot be treated as multipliers.  

 

𝜙 = {𝜙0, 𝝓} = {∇0, 𝛁}{𝜑0, 𝝋} 

 

𝜙0 = ∇0 𝜑0 −⊛ 〈𝜵,𝝋〉 

 

𝝓 = ∇0𝝋 + 𝜵𝜑0 ± 𝜵 × 𝝋 

 

Equations (4) and (5) are not genuine Maxwell equations. We introduce them here as extra Maxwell 

equations. Choice ⊛= −1 conforms to the Lorenz gauge. 

 

(1) 

(2) 

(3) 

(4) 

(5) 
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𝕰 ≡ −∇0𝝋 − 𝜵𝜑0 

 

∇0𝕰 = −∇0∇0 𝝋 − ∇0𝜵𝜑0 

 

〈𝜵, 𝕰〉 = −∇0〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝜑0 

 

𝕭 ≡ 𝜵 × 𝝋 

 

These definitions imply: 

 

〈𝕰,𝕭〉 = 0 

 

∇0𝕭 = −𝜵 × 𝕰 

 

〈𝜵,𝕭〉 = 0 

 

𝜵 × 𝕭 = 𝜵〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝝋 

 

Also the following two equations are not genuine Maxwell equations, but they relate to the gauge 

equation. 

 

∇0𝜙0 = ∇0∇0 𝜑0 −⊛ ∇0〈𝜵,𝝋〉 

 

𝜵𝜙0 = ∇0 𝜵𝜑0 − ⊛ 𝜵〈𝜵,𝝋〉 = ∇0 𝜵𝜑0 −⊛ 𝜵 × 𝜵 ×  𝝋 − ⊛ 〈𝜵, 𝜵〉 𝝋 

 

𝜁 = (∇0 +⊛ 〈𝛁, 𝛁〉)𝜑 = 𝜁0 + 𝜻 ⟺ {𝜁0, 𝜻} = {∇0, −𝛁}{𝜙0, 𝜙} 

 

𝜁0 = (∇0∇0 +⊛ 〈𝛁,𝛁〉)𝜑0 = ∇0 𝜙0 −⊛ 〈𝛁,𝕰〉 

 

𝜻 = (∇0∇0 +⊛ 〈𝛁,𝛁〉)𝝋 = −𝜵𝜙0 − ∇0𝕰 −⊛ 𝜵 × 𝓑 

 

More in detail the equations mean: 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 
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𝜁0 = 𝛻0𝜙0 +⊛ 〈𝜵,𝝓〉 

= {𝛻0𝛻0𝜑0 −⊛ 𝛻0〈𝜵,𝝋〉} + {⊛ 〈𝜵, 𝜵〉𝜑0 +⊛ 𝛻0〈𝜵,𝝋〉 ±⊛ 〈𝜵, 𝜵 × 𝝋〉} 

= (𝛻0𝛻0 +⊛ 〈𝜵,𝜵〉)𝜑0 

 

𝜁0 = ∇0 𝜙0 −⊛ 〈𝛁,𝕰〉 

= {∇0∇0 𝜑0 −⊛ ∇0〈𝜵, 𝝋〉} + {⊛ ∇0〈𝜵, 𝝋〉 +⊛ 〈𝜵, 𝜵〉𝜑0} 

= (𝛻0𝛻0 +⊛ 〈𝜵,𝜵〉)𝜑0 

 

𝜻 = −𝜵𝜙0 + 𝛻0𝝓 ∓ 𝜵 × 𝝓 

= {−𝜵𝛻0𝜑0 +⊛ 𝜵 × 𝜵 × 𝝋 +⊛ 〈𝜵,𝜵〉𝝋} + {𝛻0𝜵𝜑0 + 𝛻0𝛻0𝝋 ± 𝛻0𝜵 × 𝝋} 

{∓𝜵 × 𝜵𝜑0 ∓ 𝜵 × 𝛻0𝝋 − 𝜵 × 𝜵 × 𝝋} 

= (𝛻0𝛻0 +⊛ 〈𝜵,𝜵〉)𝝋 +⊛ 𝜵 × 𝜵 × 𝝋 − 𝜵 × 𝜵 × 𝝋 

 

𝜻 = −𝜵𝜙0 − ∇0𝕰 −⊛ 𝜵 × 𝓑 

= {−𝜵𝛻0𝜑0 +⊛ 𝜵 × 𝜵 × 𝝋 +⊛ 〈𝜵,𝜵〉𝝋} + {∇0∇0 𝝋 + ∇0𝜵𝜑0} −⊛ 𝜵 × 𝜵 × 𝝋 

= (𝛻0𝛻0 +⊛ 〈𝜵,𝜵〉)𝝋 

 

Equation (21) reveals why Maxwell based differential equations use the gauge 𝜘 rather than accept 

equation (4) as a genuine Maxwell equation. 

 

𝜌0 =⊛ 〈𝛁,𝛁〉𝜑0 = 𝜁0 − ∇0∇0𝜑0 

𝝆 =⊛ 〈𝛁, 𝛁〉𝝋 = 𝜻 − ∇0𝛁𝟎𝝋 

 

Thus a simple change of a parameter and the control switch ⊛ turn quaternionic differential 

equations into equivalent Maxwell differential equations and vice versa. This makes clear that both 

sets represent two different views from the same subject, which is a field that can be stored in the 

eigenspace of an operator that resides in the Gelfand triple. 

Still the comparison shows an anomaly in equation (21) that represents a significant difference 

between the two sets of differential equations that goes beyond the difference between the 

parameter spaces. A possible clue will be given in the section on the Dirac equation. This clue comes 

down to the conclusion that the Maxwell based equations do not lead via the coupling of two first 

order quaternionic partial differential equations to a regular second order partial quaternionic 

differential equation, but instead the wave equation represents a coupling between two solutions of 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 
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different first order biquaternionic differential equations that use different parameter spaces. In the 

Dirac equation these solutions represent either particle behavior or antiparticle behavior. 

15.8 Quaternionic differential operators 
When applied to quaternionic functions, quaternionic differential operators result in another 

quaternionic function that uses the same parameter space. 

The operators 𝛻0,𝜵,𝛻 = 𝛻0 + 𝜵 , 𝛻∗ = 𝛻0 − 𝜵, 〈𝜵, 𝜵〉, 𝛻𝛻∗ = 𝛻∗𝛻 =  𝛻0𝛻0 + 〈𝜵, 𝜵〉 and  

𝔒 = −𝛻0𝛻0 + 〈𝜵, 𝜵〉 are all quaternionic differential operators. 𝛻 is the quaternionic nabla operator. 

𝛻∗ is its quaternionic conjugate. 

The Dirac nabla operators 𝒟 = 𝑖0𝛻0 + 𝜵 and 𝒟∗ = 𝑖0𝛻0 − 𝛻 convert quaternionic functions into 

biquaternionic functions. The equation 

𝔒 𝑓 = −𝛻0𝛻0 + 〈𝜵, 𝜵〉 𝑓 = 𝑔 

represents a wave equation. 

15.9 Genuine Maxwell wave equations 
The scalar part of the genuine Maxwell based differential equals zero. This is oppressed by the Lorenz 

gauge. 

The genuine Maxwell differential equations deliver different inhomogeneous wave equations: 

 

𝕰 ≡ −𝛻0𝜑 − 𝜵𝜑0 

 

𝕭 ≡ 𝜵 × 𝝋 

 

The following definitions follow from the definitions of 𝕰 and 𝕭. 

 

𝛻0𝕰 ≡ −𝛻0𝛻0 𝝋 − 𝛻0𝜵𝜑0 

 

〈𝜵, 𝕰〉 ≡ −𝛻0〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝜑0  

 

𝛻0𝕭 ≡ −𝜵 × 𝕰 

 

〈𝜵,𝕭〉 ≡ 𝟎 

 

𝜵 × 𝕭 ≡ 𝜵〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝝋 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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The Lorenz gauge means: 

 

𝛻0𝝋𝟎 + 〈𝜵,𝝋〉 = 0 

 

The genuine Maxwell based wave equations are: 

 

(𝛻0𝛻0 − 〈𝜵, 𝜵〉)𝜑0 = 𝜌0 = 〈𝜵,𝕰〉 

 

(𝛻0𝛻0 − 〈𝜵, 𝜵〉)𝝋 = 𝐽 = 𝜵 × 𝕭 − ∇0𝕰 

15.10 Poynting vector 
The definitions invite the definition of the Poynting vector: 

 

𝑺 = 𝕰 × 𝓑 

𝑢 =  ½(〈𝕰,𝕰〉 + 〈𝓑,𝓑〉) 

𝜕𝑢

𝜕𝜏
=  〈𝜵, 𝑺〉 + 〈𝑱,𝕰〉 

 

15.11 Solutions of the wave equation 
The Maxwell based differential calculus offers second order partial differential equations in the form 

of the wave equations: 

 

(𝛻0𝛻0 − ⟨𝛁,𝛁⟩)𝜑0 =
𝜕2𝜑0

𝜕𝜏2
−

𝜕2𝜑0

𝜕𝑥2
−

𝜕2𝜑0

𝜕𝑦2
−

𝜕2𝜑0

𝜕𝑧2
= 𝜌0 

 

(𝛻0𝛻0 − ⟨𝛁,𝛁⟩)𝝋 =
𝜕2𝜑

𝜕𝜏2
−

𝜕2𝜑

𝜕𝑥2
−

𝜕2𝜑

𝜕𝑦2
−

𝜕2𝜑

𝜕𝑧2
= 𝝆 

 Shape keeping fronts 
Like the quaternionic second order partial differential equation this wave equation offers solutions 

that represent shape keeping fronts. 

For isotropic conditions in three participating dimensions the shape keeping front solution runs: 

𝜑0  = 𝑓(𝑟 − 𝑐𝑡)/𝑟, where 𝑐 = ±1; 𝑓 is real 

This follows from  

〈𝜵, 𝜵〉𝜑0 ≡
1

𝑟2
(

𝜕

𝜕𝑟
(𝑟2

𝜕𝜑0

𝜕𝑟
)) =

𝑓′′(𝑟 − 𝑐𝑡)

𝑟
=

1

𝑐2

𝜕²𝜑0

𝜕𝑡2
 

(8) 

(9) 

(10) 

(1) 

(2) 

(3) 

(1) 

(2) 

(1) 

(2) 
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In a single participating dimension the shape keeping front solution runs: 

𝜑0  = 𝑓(𝑥 − 𝑐𝑡), where 𝑐 = ±1; 𝑓 is real 

 

The same solutions hold for vector function 𝝋. 

 Other solutions of the homogenous wave equation 
Apart from the shape keeping solutions the homogeneous wave equation offers wave form solutions. 

Some of these solutions are obtained by starting with: 

 

𝛻0𝛻0𝑓 = ⟨𝛻, 𝛻⟩𝑓 = −𝜔2𝑓 

 

𝑓(𝑡, 𝑥) = 𝑎 exp(𝑖𝜔(𝑐𝑡 − |𝒙 − 𝒙′|)) ; 𝑐 = ±1 

 

This leads to a category of solutions that are known as solutions of the Helmholtz equation. 

 The Maxwell based Poisson equations 
The screened Poisson equation in Maxwell based differential calculus runs: 

(⟨𝛁, 𝛁⟩ − 𝜆2)𝝋 =
𝜕2𝝋

𝜕𝑥2
+

𝜕2𝝋

𝜕𝑦2
+

𝜕2𝝋

𝜕𝑧2
− 𝜆𝝋 = −𝝆 

𝜕2𝝋

𝜕𝑡2
= 𝜆2𝝋 

𝝋 = 𝒂(𝒙) exp (±𝜆𝑡) 

This differs significantly from the quaternion differential calculus version of the screened Poisson 

equation. 

  

(3) 

(1) 

(2) 

(1) 

(2) 

(3) 
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16 Dirac equation 

16.1 The Dirac equation in original format 
In its original form the Dirac equation is a complex equation that uses spinors, matrices and partial 

derivatives [14].  

Instead of the usual {
𝜕𝑓

𝜕𝑡
 , 𝒊

𝜕𝑓

𝜕𝑥
, 𝒋

𝜕𝑓

𝜕𝑦
, 𝒌

𝜕𝑓

𝜕𝑧
} we want to use operators 𝛻 = {∇0, 𝛁} 

The subscript 0 indicates the scalar part. Bold face indicates the vector part. 

The operator 𝛻 relates to the applied parameter space. This means that the parameter space is also 

configured of combinations 𝑥 = {𝑥0, 𝒙 } of a scalar 𝑥0 and a vector 𝒙. Also the functions 𝑓 = {𝑓0, 𝒇 } 

can be split in scalar functions 𝑓0 and vector functions 𝒇.  

The local parameter 𝑡 = 𝑥0 represents the scalar part of the applied parameter space. 

 

Dirac was searching for a split of the Klein-Gordon equation into two first order differential 

equations.  

 

𝜕2𝑓

𝜕𝑡2
−

𝜕2𝑓

𝜕𝑥2
−

𝜕2𝑓

𝜕𝑦2
−

𝜕2𝑓

𝜕𝑧2
= −𝑚2𝑓 

 

(∇0∇0 − 〈𝛁, 𝛁〉)𝑓 = 𝔒𝑓 = −𝑚2𝑓 

 

Here 𝔒 = ∇0∇0 − 〈𝛁, 𝛁〉 is the d’Alembert operator. 

 

Dirac used a combination of matrices and spinors in order to reach this result. He applied the Pauli 

matrices in order to simulate the behavior of vector functions under differentiation. 

The unity matrix 𝐼 and the Pauli matrices  𝜎1, 𝜎2, 𝜎3 are given by [15]: 

 

𝐼 = [
1  0
0 1

] , 𝜎1 = [
0  1
1 0

] , 𝜎2 = [ 
0 −𝑖
𝑖 0

] , 𝜎3 = [
1 0
0 −1

] 

 

For one of the potential orderings of the quaternionic number system, the Pauli matrices together 

with the unity matrix 𝐼 relate to the quaternionic base vectors 1, 𝒊, 𝒋 and 𝒌 

 

1 ⟼ 𝐼, 𝒊 ⟼  𝑖0 𝜎1, 𝒋 ⟼ 𝑖0 𝜎2, 𝒌 ⟼ 𝑖0 𝜎3 

 

𝜎1𝜎2 − 𝜎2𝜎1 = 2 𝑖 𝜎3;  𝜎2𝜎3 − 𝜎3𝜎2 = 2 𝑖 𝜎1; 𝜎3𝜎1 − 𝜎1𝜎3 = 2 𝑖 𝜎2 

(1) 

(2) 

(3) 

(4) 

(5) 
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𝜎1𝜎1 = 𝜎2𝜎2 = 𝜎3𝜎3 = 𝐼 

 

The different ordering possibilities of the quaternionic number system correspond to different 

symmetry flavors. Half of these possibilities offer a right handed external vector product. The other 

half offer a left handed external vector product. 

 

We will regularly use: 

 

〈𝑖0𝝈,𝜵〉 = 𝜵 ; 𝑖0 = √−1 

 

With 

 

𝑝𝜇 = −𝑖0𝛻𝜇  

 

follow 

 

𝑝𝜇𝜎𝜇 = −𝑖0𝑒𝜇𝛻𝜇 

 

〈𝝈, 𝒑〉 ↔ −𝑖0𝜵 

 

16.2 Dirac’s approach 
The original Dirac equation uses 4x4 matrices 𝛂 and β. [6]: 

𝜶 and 𝛽 are matrices that implement the quaternion arithmetic behavior including the possible 

symmetry flavors of quaternionic number systems and continuums.  

 

𝛼𝜇 = [
0 𝜎𝜇

𝜎𝜇 0
] 

 

𝛽 = [
1 0
0 −1

] 

 

𝛽𝛽 = 𝐼 

(6) 

(7) 

(8) 

(9) 

(10) 

(1) 

(2) 

(3) 
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The interpretation of the Pauli matrices as representation of a special kind of angular momentum has 

led to the half integer eigenvalue of the corresponding spin operator. 

Dirac’s selection leads to 

 

(𝑝0 − 〈𝜶,𝒑〉 − 𝛽𝑚𝑐){𝜑} = 0 

 

{𝜑} is a four component spinor. 

Which splits into 

 

(𝑝0 − 〈𝝈, 𝒑〉 − 𝑚𝑐)𝜑𝐴 = 0 

 

and 

 

(𝑝0 − 〈𝝈, 𝒑〉 + 𝑚𝑐)𝜑𝐵 = 0 

 

𝜑𝐴 and 𝜑𝐵 are spinor components. Thus the original Dirac equation splits into: 

 

(𝛻0 − 𝜵 − 𝑖0𝑚𝑐)𝜑𝐴 = 0 

 

(𝛻0 − 𝜵 + 𝑖0𝑚𝑐)𝜑𝐵 = 0 

 

This split does not lead easily to a second order partial differential equation that looks like the Klein 

Gordon equation. 

16.3 Relativistic formulation 
Instead of Dirac’s original formulation, usually the relativistic formulation is used [16]. 

That formulation applies gamma matrices, instead of the alpha and beta matrices. This different 

choice influences the form of the equations that result for the two spinor components. 

 

𝛾𝜇 = 𝛽 𝛼𝜇 = [
0 𝜎1

−𝜎𝜇 0 ] ; 𝜇 = 1,2,3 

 

(4) 

(5) 

(6) 

(7) 

(8) 

(1) 

(2) 
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𝛾0 = 𝛽 = [
1 0
0 −1

] 

 

𝛾5 = 𝑖0𝛾0𝛾1𝛾2𝛾3 = [
0 1
1 0

] 

The matrix 𝛾5 anti-commutes with all other gamma matrices. 

Several different sets of gamma matrices are possible. The choice above leads to a “Dirac equation” 

of the form  

 

(𝑖0𝛾
𝜇𝛻𝜇 − 𝑚𝑐)𝜑 = 0 

 

More extended: 

(𝛾0

𝜕

𝜕𝑡
+ 〈𝜸, 𝜵〉 −

 𝑚

𝑖0ℏ
) {𝜓} = 0 

 

([
1 0
0 −1

]
𝜕

𝜕𝑡
+ [

0 〈𝝈, 𝜵〉

−〈𝝈,𝜵〉 0
] −

 𝑚

𝑖0ℏ
[
1 0
0 1

]) [
𝜑𝐴

𝜑𝐵
] = 0 

 

(𝑖0 [
1 0
0 −1

]
𝜕

𝜕𝑡
+ [

0 𝜵
−𝜵 0

] −
 𝑚

ℏ
[
1 0
0 1

]) [
𝜑𝐴

𝜑𝐵
] = 0 

 

𝑖0
𝜕

𝜕𝑡
𝜑𝐴 + 𝛁𝜑𝐵 −

 𝑚

𝑖0ℏ
𝜑𝐴 = 0 

 

−𝑖0
𝜕

𝜕𝑡
𝜑𝐵 − 𝛁𝜑𝐴 −

 𝑚

𝑖0ℏ
𝜑𝐵 = 0 

 

Also this split does not easily lead to a second order partial differential equation that looks like the 

Klein Gordon equation. 

16.4 A better choice 
Another interpretation of the Dirac approach replaces 𝛾0 with 𝛾5 [17]: 

 

(𝛾5

𝜕

𝜕𝑡
− 𝛾1

𝜕

𝜕𝑥
− 𝛾2

𝜕

𝜕𝑦
− 𝛾3

𝜕

𝜕𝑧
−

 𝑚

𝑖0ℏ
) {𝜓} = 0 

 

(3) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(1) 
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(𝛾5

𝜕

𝜕𝑡
− 〈𝜸, 𝜵〉 −

 𝑚

𝑖0ℏ
) {𝜓} = 0 

 

([
0 1
1 0

]
𝜕

𝜕𝑡
− [

0 〈𝝈, 𝜵〉
−〈𝝈,𝜵〉 0

] −
 𝑚

𝑖0ℏ
[
1 0
0 1

]) [
𝜓𝐴

𝜓𝐵
] = 0 

 

This invites splitting of the four component spinor equation into two equations for the two 

components 𝜓𝐴 and 𝜓𝐵 of the spinor: 

 

𝑖0∇0𝜓𝐴 + 𝑖0〈𝝈,𝜵〉𝜓𝐴 =
 𝑚

ℏ
 𝜓𝐵 

 

𝑖0∇0𝜑𝐵 − 𝑖0〈𝝈,𝜵〉𝜓𝐵 =
 𝑚

ℏ
 𝜓𝐴 

 

(𝑖0𝛻0 + 𝜵)𝜓𝐴 =
 𝑚

ℏ
 𝜓𝐵 

 

(𝑖0𝛻0 − 𝜵)𝜓𝐵 =
 𝑚

ℏ
 𝜓𝐴 

 

This looks far more promising. We can insert the right part of the first equation into the left part of 

the second equation. 

 

(𝑖0𝛻0 − 𝜵)(𝑖0𝛻0 + 𝜵)𝜓𝐴 = (−𝛻0𝛻0 − 𝜵𝜵)𝜓𝐴 = (〈𝜵, 𝜵〉−𝛻0𝛻0)𝜓𝐴 

 

=
 𝑚

ℏ
(𝑖0𝛻0 − 𝜵) 𝜓𝐵 =

 𝑚2

ℏ2
 𝜓𝐴 

 

(〈𝜵, 𝜵〉−𝛻0𝛻0)𝜓𝐴 =
 𝑚2

ℏ2
 𝜓𝐴 

 

(𝑖0𝛻0 + 𝜵)(𝑖0𝛻0 − 𝜵)𝜓𝐵 = (−𝛻0𝛻0 − 𝜵𝜵)𝜓𝐵 = (〈𝜵, 𝜵〉−𝛻0𝛻0)𝜓𝐵 

=
 𝑚

ℏ
(𝑖0𝛻0 + 𝜵) 𝜓𝐴 =

 𝑚2

ℏ2
 𝜓𝐵 

 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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(〈𝜵, 𝜵〉−𝛻0𝛻0)𝜓𝐵 =
 𝑚2

ℏ2
 𝜓𝐵 

 

This is what Dirac wanted to achieve. The two first order differential equations couple into a second 

order differential equation that is equivalent to a Klein Gordon equation. The homogeneous version 

of this second order partial differential equation is a wave equation and offers solutions that are 

waves. 

The nabla operator acts differently onto the two component spinors  𝜓𝐴 and  𝜓𝐵. 

16.5 The quaternionic nabla and the Dirac nabla 
The modified Pauli matrices together with a 2×2 identity matrix implement the equivalent of a 

quaternionic number system with a selected symmetry flavor.  

 

𝐼 = [
1  0
0 1

] ; 𝑖0𝜎1 = [
0  𝑖0
𝑖0 0

] ; 𝑖0𝜎2 = [ 
0 1

−1 0
] ; 𝑖0𝜎3 = [

𝑖0 0
0 −𝑖0

] 

 

The modified Pauli matrices together with the 𝐼0 matrix implements another structure, which is not a 

version of a quaternionic number system. 

 

𝐼0 = [
𝑖0 0
0 𝑖0

] ;   𝑖0𝜎1 = [
0  𝑖0
𝑖0 0

] ;  𝑖0𝜎2 = [ 
0 1

−1 0
] ;  𝑖0𝜎3 = [

𝑖0 0
0 −𝑖0

] 

 

Both the quaternionic nabla and the Dirac nabla implement a way to let these differential operators 

act as multipliers. 

The quaternionic nabla is defined as 

 

𝛻 = 𝛻0 + 𝜵 = 𝑒𝜇𝛻𝜇 = 𝛻0 + 𝑖0〈𝝈,𝜵〉 

 

𝛻∗ = 𝛻0 − 𝜵  

 

For scalar functions and for vector functions hold: 

 

𝛻∗𝛻 = 𝛻𝛻∗ = 𝛻0𝛻0 + 〈𝜵, 𝜵〉 

 

The Dirac nabla is defined as 

 

(11) 

(1) 

(2) 

(3) 

(4) 

(5) 
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𝒟 = 𝑖0𝛻0 + 𝜵 = 𝑖0𝛻0 + 𝑖0〈𝝈,𝜵〉 

 

𝒟∗ = 𝑖0𝛻0 − 𝜵 

 

𝒟∗𝒟 = 𝒟 𝒟∗ = −𝛻0𝛻0 + 〈𝜵, 𝜵〉 

 

 Prove 
We use  

 

𝛻0𝜵𝑓0 = 𝜵𝛻0𝑓0 

 

𝛻0𝜵𝒇 = 𝜵𝛻0𝒇 = −𝛻0〈𝜵, 𝒇〉 + 𝛻0𝜵 × 𝒇 

 

𝜵𝜵𝑓0 = −〈𝜵,𝜵〉𝑓0 + 𝜵 × 𝜵𝑓0 = −〈𝜵, 𝜵〉𝑓0 

 

𝜵(𝜵𝒇) = −𝜵〈𝜵, 𝒇〉 + 𝜵 × 𝜵 × 𝒇 = −〈𝜵,𝜵〉𝒇 = (𝜵𝜵)𝒇 

 

𝜵 × 𝜵 × 𝒇 = 𝜵〈𝜵, 𝒇〉 − 〈𝜵, 𝜵〉𝒇 

 

〈𝜵, 𝜵 × 𝒇〉 = 0 

 

𝜵 × 𝜵 𝑓0 = 𝟎 

 

This results in 

 

(𝛼𝛻0 + 𝜵)𝑓0 = 𝛼𝛻0𝑓0 + 𝜵𝑓0 

 

(𝛼𝛻0 − 𝜵)(𝛼𝛻0 + 𝜵)𝑓0 

 

= 𝛼2𝛻0𝛻0 + 𝛼𝛻0𝜵𝑓0 − 𝛼𝜵𝛻0𝑓0 + 〈𝜵, 𝜵〉𝑓0 − 𝜵 × 𝜵𝑓0 

 

= 𝛼2𝛻0𝛻0 + 〈𝜵, 𝜵〉𝑓0 

(6) 

7) 

(8) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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(𝛼𝛻0 + 𝜵)𝒇 = 𝛼𝛻0𝒇 − 〈𝜵, 𝒇〉 + 𝜵 × 𝒇 

 

(𝛼𝛻0 − 𝛼𝛻0𝒇 − 〈𝜵, 𝒇〉 + 𝜵 × 𝒇)(𝛼𝛻0 + 𝜵)𝒇 

 

(𝛼𝛻0 − 𝜵)(𝛼𝛻0 + 𝜵)𝑓0 

 

= 𝛼2𝛻0𝛻0𝒇 − 𝛼𝛻0〈𝜵, 𝒇〉 + 𝛼𝛻0𝜵 × 𝒇 + 𝛼𝛻0〈𝛁, 𝒇〉 

 

−𝛼𝛻0𝛁 × 𝒇 + 𝛁〈𝜵, 𝒇〉 + 〈𝛁,𝜵 × 𝒇〉 − 𝛁 × 𝜵 × 𝒇 

 

= 𝛼2𝛻0𝛻0𝒇 + 〈𝜵, 𝜵〉𝒇 

 

 Discussion 
For 𝛼 = 1 the equations  

 

(𝛻∗𝛻 𝑓0 = 𝛻𝛻∗ 𝑓0 = 𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝑓0 

 

(𝛻∗𝛻 𝒇 = 𝛻𝛻∗ 𝒇 = 𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝒇 

 

work for both parts of a quaternionic function 𝑓 = 𝑓0 + 𝒇. 

 

For 𝛼 = 𝑖0 the equations  

 

(𝒟∗𝒟 𝑓0 = 𝒟𝒟∗ 𝑓0 = −𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝑓0 

 

(𝒟∗𝒟 𝒇 = 𝒟𝒟∗𝒇 = −𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝒇 

 

work separately for scalar function 𝑓0.and vector function 𝒇. The right sides of the equations work for 

quaternionic functions. Thus 

 

(𝑔 = 𝔒𝑓 = −𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝑓 

(10) 

(11) 

(1) 

(2) 

(3) 

(4) 

(5) 
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is a valid equation for quaternionic functions 𝑓 and 𝑔. 

Thus the d’Alembert operator 𝔒 = −𝛻0𝛻0 + 〈𝜵, 𝜵〉 is a valid quaternionic operator. 

The nabla operators reflects the structure of the parameter space of the functions on which they 

work. Thus the quaternionic nabla operator reflects a quaternionic number system. The Dirac nabla 

operator reflects the structure of the parameters of the two component spinors that figure in the 

modified Dirac equation. 

Between the two spinor components 𝜓𝐴 and 𝜓𝐵, the scalar part of the parameter space appears to 

change sign with respect to the vector part. 

Applied to a quaternionic function, the quaternionic nabla results again in a quaternionic function. 

 

𝜙 = 𝜙0 + 𝝓 = (𝛻0 + 𝜵)(𝑓0 + 𝒇) = 𝛻0𝑓0 − 〈𝜵, 𝒇〉 + 𝜵𝑓0 +  𝛻0𝒇 + 𝜵 × 𝒇 

 

Applied to a quaternionic function, the Dirac nabla results in a biquaternionic function. 

 

(𝑖0 𝛻0 + 𝜵)(𝑓0 + 𝒇) =  𝛻0𝑖0𝑓0 − 〈𝜵, 𝒇〉 + 𝜵𝑓0 + 𝑖0 𝛻0𝒇 + 𝜵 × 𝒇 

 

Neither the Dirac nabla 𝒟 nor its conjugate 𝒟∗ delivers quaternionic functions from quaternionic 

functions. They are not proper quaternionic operators. 

Thus, the d’Alembert operator cannot be split into two operators that map quaternionic functions 

onto quaternionic functions. 

In contrast the operators 𝛻∗𝛻, 𝛻 and 𝛻∗ are all three proper quaternionic operators. 

16.6 Quaternionic format of Dirac equation 
The initial goal of Dirac was to split the Klein Gordon equation into two first order differential 

equations. He tried to achieve this via the combination of matrices and spinors. This leads to a result 

that does not lead to an actual second order differential equation, but instead it leads to two 

different first order differential equations for two different spinors that can be coupled into a second 

order partial differential equation that looks like a Klein Gordon equation. The homogeneous version 

of the Klein Gordon equation is a wave equation. However, that equation misses an essential right 

part of the Klein-Gordon equation. 

 

Quaternionic differential calculus supports first order differential equations that in a natural way lead 

to a second order partial differential equation that differs significantly from a wave equation. 

The closest quaternionic equivalents of the first order Dirac equations for the electron and the 

positron are: 

 

(6) 

(7) 
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∇𝜓 = (𝛻0 + 𝜵)(𝜓0 + 𝝍) = 𝑚𝜑 

 

∇∗𝜑 = (𝛻0 − 𝜵)(𝜑0 + 𝝋) = 𝑚𝜓 

 

𝛻∗𝛻𝜓 = (𝛻0 − 𝜵)(𝛻0 + 𝜵)(𝜓0 + 𝝍) = 𝑚2𝜓 

 

𝛻∗𝛻𝜓 = 𝛻∗𝛻𝜓 = (𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝜓 = 𝑚2𝜓 

 

𝛻𝛻∗𝜑 = 𝛻∗𝛻𝜑 = (𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝜑 = 𝑚2𝜑 

 

A similar equation exists for spherical coordinates. 

 

These second order equations are not wave equations. Their set of solutions does not include waves. 

16.7 Interpretation of the Dirac equation 
The original Dirac equation can be split into two equations. One of them describes the behavior of 

the electron. The other equation describes the behavior of the positron.  

The positron is the anti-particle of the electron. These particles feature the same rest mass, but other 

characteristics such as their electric charge differ in sign. The positron can be interpreted as an 

electron that moves back in time. Sometimes the electron is interpreted as a hole in a sea of 

positrons. These interpretations indicate that the functions that describe these particles feature 

different parameter spaces that differ in the sign of the scalar part. 

 Particle fields 
The fields that characterize different types of particles can be related to parameter spaces that 

belong to different versions of the quaternionic number system. These fields are coupled to an 

embedding field on which the particles and their private parameter spaces float. 

The reverse bra-ket method shows how fields can on the one hand be coupled to eigenspaces and 

eigenvectors of operators which reside in quaternionic non-separable Hilbert spaces and on the 

other hand can be coupled to pairs of parameter spaces and quaternionic functions. Quaternionic 

functions can be split into scalar functions and vector functions. In a quaternionic Hilbert space 

several different natural parameter spaces can coexist. Natural parameter spaces are formed by 

versions of the quaternionic number system. These versions differ in the way that these number 

systems are ordered. 

The original Dirac equations might represent this coupling between the particle field and the 

embedding field. 

(1) 

(2) 

(3) 

(4) 

(5) 
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16.8 Alternatives 

 Minkowski parameter space 
In quaternionic differential calculus the local quaternionic distance can represent a scalar that is 

independent of the direction of progression. It corresponds to the notion of coordinate time 𝑡. This 

means that a small coordinate time step ∆𝑡 equals the sum of a small proper time step ∆𝜏 and a 

small pure space step ∆𝒙. In quaternionic format the step ∆𝜏 is a real number. The space step ∆𝒙 is 

an imaginary quaternionic number. The original Dirac equation does not pay attention to the 

difference between coordinate time and proper time, but the quaternionic presentation of these 

equations show that a progression independent scalar can be useful as the scalar part of the 

parameter space. This holds especially for solutions of the homogeneous wave equation. 

In this way coordinate time is a function of proper time 𝜏 and distance in pure space |∆𝒙|. 

 

|∆𝑡|2 = |∆𝜏|2 + |∆𝒙|2 

 

Together 𝑡 and 𝒙 deliver a spacetime model that has a Minkowski signature. 

 

|∆𝜏|2 = |∆𝑡|2 − |∆𝒙|2 

 Other natural parameter spaces 
The Dirac equation in quaternionic format treats a coupling of parameter spaces that are each 

other’s quaternionic conjugate. The 𝛽 matrix implements isotropic conjugation. An adapted 

conjugation matrix can apply anisotropic conjugation. This concerns conjugations in which only one 

or two dimensions get a reverse ordering. In that case the equations handle the dynamic behavior of 

anisotropic particles such as quarks. Quarks correspond to solutions that have anisotropic parameter 

spaces. Also for these quarks exist advanced particle solutions and retarded antiparticle solutions. 
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17 Double differentiation 
The partial differential equations hide that they are part of a differential equation. 

 

𝛻′𝛻𝑓 = 𝜉 = ∑𝑒𝜈
′

𝜕

𝜕𝑞𝜈
′ (∑ 𝑒𝜇

𝜕𝑓

𝜕𝑞𝜇

3

𝜇=0

)

3

𝜈=0

= (𝑒𝜈
′𝑒𝜇

𝜕2

𝜕𝑞𝜇𝜕𝑞𝜈
′ )𝑓 

 

 

Single difference is defined by 

𝑑𝑓(𝑞) = ∑∑
𝜕𝑓𝜍

𝜕𝑞𝜇
𝑒𝜇𝑒𝜍  𝑑𝑞𝜇

3

𝜍=0

 

3

𝜇=0

= ∑ 𝜙𝜈𝑒𝜈𝑑𝑞𝜈

3

𝜈=0

 

 

𝜕𝑓𝜍

𝜕𝑞𝜇
𝑒𝜇𝑒𝜍 =

[
 
 
 
 
 
 
 
 
 

𝜕𝑓0

𝜕𝑞0

𝜕𝑓1

𝜕𝑞0
𝒊

𝜕𝑓2

𝜕𝑞0
𝒋

𝜕𝑓3

𝜕𝑞0
𝒌

𝜕𝑓0

𝜕𝑞1
𝒊

𝜕𝑓1

𝜕𝑞1

𝜕𝑓2

𝜕𝑞1
𝒌 −

𝜕𝑓3

𝜕𝑞1
𝒋

𝜕𝑓0

𝜕𝑞2
𝒋 −

𝜕𝑓1

𝜕𝑞2
𝒌

𝜕𝑓2

𝜕𝑞2

𝜕𝑓3

𝜕𝑞2
𝒊

𝜕𝑓0

𝜕𝑞3
𝒌

𝜕𝑓1

𝜕𝑞3
𝒋 −

𝜕𝑓2

𝜕𝑞3
𝒊

𝜕𝑓3

𝜕𝑞3 ]
 
 
 
 
 
 
 
 
 

 

 

=

[
 
 
 
 
 
 
 
 
 
𝜕𝑓0

𝜕𝑞0
−ℰ𝑥𝒊 −ℰ𝑦𝒋 −ℰ𝑧𝒌

ℰ𝑥𝒊
𝜕𝑓1

𝜕𝑞1
−ℬ𝑧1𝒌 −ℬ𝑦2𝒋

ℰ𝑦𝒋 −ℬ𝑧2𝒌
𝜕𝑓2

𝜕𝑞2
−ℬ𝑥1𝒊

ℰ𝑧𝒌 −ℬ𝑦1𝒋 −ℬ𝑥2𝒊
𝜕𝑓3

𝜕𝑞3 ]
 
 
 
 
 
 
 
 
 

 

Here  

ℬ𝑥 = ℬ𝑥1 − ℬ𝑥2;  ℬ𝑦 = ℬ𝑦1 − ℬ𝑦2;  ℬ𝑧 = ℬ𝑧1 − ℬ𝑧2 

 

𝑓̇ =
𝑑𝑓

𝑑𝜆
= ∑𝜙𝜇𝑒𝜇

𝑑𝑞𝜇

𝑑𝜆

3

𝜇=0

= ∑ 𝜙𝜇𝑒𝜇𝑞̇𝜇

3

𝜇=0

 

(1) 

(2) 

(3) 

(4) 

(5) 
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The scalar 𝜆 is can be a linear function of τ or a scalar function of q. 

𝑞̇ ≡
𝑑𝑞

𝑑𝜆
= 𝑒𝜇

𝑑𝑞𝜇

𝑑𝜆
= 𝑒𝜇𝑞̇𝜇 

 

Double difference is defined by: 

𝑑2𝑓(𝑞) = ∑𝑒𝜈
′ (∑

𝜕2𝑓𝜍

𝜕𝑞𝜇𝜕𝑞𝜈
′ 𝑒𝜇𝑑𝑞𝜇

3

𝜇=0

)𝑒𝜍𝑑𝑞′𝜈

3

𝜈=0

 

 

𝑓̈ ≡
𝑑2𝑓(𝑞)

𝑑𝜆2
= 𝑒𝜚𝑓̈𝜚 = ∑𝑒𝜈

′ (∑
𝜕2𝑓𝜍

𝜕𝑞𝜇𝜕𝑞𝜈
′ 𝑒𝜇

𝑑𝑞𝜇

𝑑𝜆

3

𝜇=0

)𝑒𝜍

𝑑𝑞′𝜈

𝑑𝜆

3

𝜈=0

 

= ∑𝑒𝜈
′ (∑

𝜕2𝑓𝜍

𝜕𝑞𝜇𝜕𝑞𝜈
′ 𝑒𝜇𝑞̇𝜇

3

𝜇=0

)𝑒𝜍𝑞̇
′𝜈

3

𝜈=0

= (𝑞̇𝜇𝑞̇′𝜈
𝜕2

𝜕𝑞𝜇𝜕𝑞𝜈
′ 𝑒𝜈

′𝑒𝜇)𝑓 = 𝜁𝜈𝜇 𝑓 

 

𝜁𝜈𝜇 = 𝑒𝜈
′𝑒𝜇 𝑞̇′𝜈 𝑞̇𝜇

𝜕2

𝜕𝑞𝜇𝜕𝑞𝜈
′ = 𝑒𝜈

′𝑒𝜇Υ𝜈𝜇 

Υ𝜈𝜇 =  𝑞̇′𝜈 𝑞̇𝜇
𝜕2

𝜕𝑞𝜇𝜕𝑞𝜈
′  

 

If we apply 𝜙 = 𝛻𝑓as the first differential operation and 𝜉 = 𝛻∗𝜙 as the second differential 

operation, then 𝑒 = {1,+𝒊, +𝒋,+𝒌} and 𝑒′ = {1 − 𝒊,−𝒋,−𝒌} and 

 

Υ𝜈𝜇 = [

+Υ00 +Υ01𝒊 +Υ02𝒋 +Υ03𝒌
−Υ10𝒊 ⊛ Υ11 +Υ12𝒌 +Υ13𝒋
−Υ20𝒋 −Υ21𝒌 ⊛ Υ22 −Υ23𝒊
−Υ30𝒌 −Υ31𝒋 +Υ32𝒊 ⊛ Υ33

] 

 

Here again the switch ⊛ distinguishes between quaternionic differential calculus and Maxwell based 

differential calculus. 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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17.1 Deformed space 
If the investigated field represents deformed space ℭ, then the field ℜ, which represents the 

parameter space of function ℭ(𝑞) represents the virgin state of that deformed space. 

Further, the equation 
𝑑2ℭ(𝑞)

𝑑𝜆2 = 0 represents a local condition in which ℭ is not affected by external 

influences. Here 𝜆 can be any linear combination of progression τ or is can represent the equivalent 

of local quaternionic distance: 

 

𝜆 = 𝑎 𝑞0 + 𝑏 

or 

𝜆 = |𝑞|  
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18 Tensor differential calculus 
We restrict to 3+1 D parameter spaces. 

Parameter spaces can differ in the way they are ordered and in the way the scalar part relates to the 

spatial part. 

Fields are functions that have values, which are independent of the selected parameter space. Fields 

exist in scalar fields, vector fields and combined scalar and vector fields.  

Combined fields exist as continuum eigenspaces of normal operators that reside in quaternionic non-

separable Hilbert spaces. These combined fields can be represented by quaternionic functions of 

quaternionic parameter spaces. However, the same field can also be interpreted as the eigenspaces 

of the Hermitian and anti-Hermitian parts of the normal operator. The quaternionic parameter space 

can be represented by a normal quaternionic reference operator that features a flat continuum 

eigenspace. This reference operator can be split in a Hermitian and an anti-Hermitian part. 

The eigenspace of a normal quaternionic number system corresponds to a quaternionic number 

system. Due to the four dimensions of quaternions, the quaternionic number systems exist in 16 

versions that differ in their Cartesian ordering. If spherical ordering is pursued, then for each 

Cartesian start orderings two extra orderings are possible. All these choices correspond to different 

parameter spaces. 

Further it is possible to select a scalar part of the parameter space that is a scalar function of the 

quaternionic scalar part and the quaternionic vector part. For example it is possible to use 

quaternionic distance as the scalar part of the new parameter space. 

Tensor differential calculus relates components of differentials with corresponding parameter 

spaces. 

Components of differentials are terms of the corresponding differential equation. These terms can be 

split in scalar functions and in vector functions. Tensor differential calculus treats scalar functions 

different from vector functions. 

Quaternionic fields are special because the differential operators of their defining functions can be 

treated as multipliers. 

18.1 The metric tensor 
The metric tensor determines the local “distance”. 

𝑔𝜇𝜈 = [

𝑔00 𝑔01 𝑔02 𝑔03

𝑔10 𝑔11 𝑔12 𝑔13

𝑔20 𝑔21 𝑔22 𝑔23

𝑔30 𝑔31 𝑔32 𝑔33

] 

The consequences of coordinate transformations 𝑑𝑥𝜈 ⇒ 𝑑𝑋𝜈 define the elements 𝑔𝜇𝜈 as  

𝑔𝜇𝜈 =
𝑑𝑋𝜇

𝑑𝑥𝜈
 

18.2 Geodesic equation 
The geodesic equation describes the situation of a non-accelerated object. In terms of proper time 

this means: 

(1) 

(2) 

(1) 
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𝜕2𝑥𝜇

𝜕𝜏2
= −Г𝛼𝛽

𝜇 𝑑𝑥𝛼

𝑑𝜏

𝑑𝑥𝛽

𝑑𝜏
 

In terms of coordinate time this means: 

𝜕2𝑥𝜇

𝜕𝑡2
= −Г𝛼𝛽

𝜇 𝑑𝑥𝛼

𝑑𝑡

𝑑𝑥𝛽

𝑑𝑡
+Г𝛼𝛽

0 𝑑𝑥𝛼

𝑑𝑡

𝑑𝑥𝛽

𝑑𝑡

𝑑𝑥𝜇

𝑑𝑡
 

 Derivation: 
We start with the double differential. Let us investigate a function 𝑋 that has a parameter space 

existing of scalar 𝛽 and a three dimensional vector 𝜵 = {𝑥1, 𝑥2, 𝑥3}. The function 𝛽 represents three 

dimensional curved space. The geodesic conditions are: 

𝜕2𝑋𝜆

𝜕𝜏2
= 0 ;  𝜆 = 1,2,3 

First we derive the first order differential. 

𝑑𝑋𝜆 = ∑
𝜕𝑋𝜆

𝜕𝑥𝛽
𝑑𝑥𝛽

3

𝛽=1

 

We can use the summation convention for subscripts and superscripts. This avoids the requirement 

for summation symbols. 

𝑑𝑋𝜆

𝑑𝜏
=

𝜕𝑋𝜆

𝜕𝑥𝛽

𝑑𝑥𝛽

𝑑𝜏
 

𝑑2𝑋𝜆 = ∑ (
𝜕𝑋𝜆

𝜕𝑥𝛽
𝑑2𝑥𝛽 + 𝑑𝑥𝛽 ∑

𝜕2𝑋𝜆

𝜕𝑥𝛽𝜕𝑥𝛼

3

𝛼=1

𝑑𝑥𝛼)

3

𝛽=1

 

Now we obtained the double differential equation. 

𝑑2𝑋𝜆

𝑑𝜏2
=

𝜕𝑋𝜆

𝜕𝑥𝛽

𝑑2𝑥𝛽

𝑑𝜏2
+

𝜕2𝑋𝜆

𝜕𝑥𝛽𝜕𝑥𝛼

𝑑𝑥𝛼

𝑑𝜏

𝑑𝑥𝛽

𝑑𝜏
= 0 

The geodesic requirement results in: 

𝜕𝑋𝜆

𝜕𝑥𝛽

𝑑2𝑥𝛽

𝑑𝜏2
= −

𝜕2𝑋𝜆

𝜕𝑥𝛽𝜕𝑥𝛼

𝑑𝑥𝛼

𝑑𝜏

𝑑𝑥𝛽

𝑑𝜏
 

If we use summation signs: 

∑
𝜕𝑋𝜆

𝜕𝑥𝛽
𝑑2𝑥𝛽

3

𝛽=1

= − ∑ (𝑑𝑥𝛽 ∑ (
𝜕2𝑋𝜆

𝜕𝑥𝛽𝜕𝑥𝛼
𝑑𝑥𝛼)

3

𝛼=1

)

3

𝛽=1

 

Next we multiply both sides with 
𝜕𝑋𝜆

𝜕𝑥𝛽 and sum again: 

∑ (
𝜕𝑥𝜆

𝜕𝑋𝜇
(∑

𝜕𝑋𝜆

𝜕𝑥𝛽
𝑑2𝑥𝛽

3

𝛽=1

))

3

𝜆=1

= − ∑ (
𝜕𝑥𝜆

𝜕𝑋𝜇
∑ (𝑑𝑥𝛽 ∑ (

𝜕2𝑋𝜆

𝜕𝑥𝛽𝜕𝑥𝛼
𝑑𝑥𝛼)

3

𝛼=1

)

3

𝛽=1

)

3

𝜆=1

 

We apply the fact: 

(2) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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∑ (
𝜕𝑥𝜆

𝜕𝑋𝜇

𝜕𝑋𝜆

𝜕𝑥𝛽
)

3

𝜆=1

= 𝛿𝛽
𝜇

 

This results into: 

𝑑2𝑥𝜇 = ∑ (
𝜕𝑥𝜆

𝜕𝑋𝜇
∑ (𝑑𝑥𝛽 ∑ (

𝜕2𝑋𝜆

𝜕𝑥𝛽𝜕𝑥𝛼
𝑑𝑥𝛼)

3

𝛼=1

)

3

𝛽=1

)

3

𝜆=1

= Г𝛼𝛽
𝜇

𝑑𝑥𝛼𝑑𝑥𝛽 

Without summation signs: 

Г𝛼𝛽
𝜇

𝑑𝑥𝛼𝑑𝑥𝛽 ≡ (
𝜕𝑥𝜇

𝜕𝑋𝜆

𝜕2𝑋𝜆

𝜕𝑥𝛼𝜕𝑥𝛽
)𝑑𝑥𝛼𝑑𝑥𝛽 

 

𝑑2𝑥𝜇

𝑑𝜏2
= −Г𝛼𝛽

𝜇 𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
 

𝑑2𝑥𝜇

𝑑𝜏2
= −(

𝜕𝑥𝜇

𝜕𝑋𝜆

𝜕2𝑋𝜆

𝜕𝑥𝛼𝜕𝑥𝛽
)

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
 

𝑑2𝑥𝜇

𝑑𝑡2
= −(

𝜕𝑥𝜇

𝜕𝑋𝜆

𝜕2𝑋𝜆

𝜕𝑥𝛼𝜕𝑥𝛽
)

𝑑𝑥𝛽

𝑑𝑡

𝑑𝑥𝛼

𝑑𝑡
+ (

𝜕𝑥0

𝜕𝑋𝜆

𝜕2𝑋𝜆

𝜕𝑥𝛼𝜕𝑥𝛽
)

𝑑𝑥𝛽

𝑑𝑡

𝑑𝑥𝛼

𝑑𝑡

𝑑𝑥𝜇

𝑑𝑡
 

18.3 Toolbox 
Coordinate transformations: 

𝑆
𝜈′𝜌′
𝜇′

=
𝜕𝑥𝜇′

𝜕𝑥𝜇

𝜕𝑥𝜈

𝜕𝑥𝜈′

𝜕𝑥𝜌

𝜕𝑥𝜌′ 𝑆𝜈𝜌
𝜇

 

The Christoffel symbol plays an important role: 

2 𝑔𝛼𝛿 Г𝛽𝛼
𝛿 =

𝜕𝑔𝛼𝛽

𝜕𝑥𝛾
+

𝜕𝑔𝛼𝛾

𝜕𝑥𝛽
+

𝜕𝑔𝛽𝛾

𝜕𝑥𝛼
 

Г𝛼𝛽
𝜇

≡
𝜕𝑥𝜇

𝜕𝑋𝜆

𝜕2𝑋𝜆

𝜕𝑥𝛼𝜕𝑥𝛽
 

Г𝛽𝛼
𝛿 = Г𝛼𝛽

𝛿  

 

Covariant derivative 𝛻𝜇𝛼 and partial derivative 𝜕𝜇α of scalars 

𝜕𝜇′α =
𝜕𝑥𝜇′

𝜕𝑥𝜇
𝜕𝜇α 

Covariant derivative 𝛽𝛽𝛽
𝛽 and partial derivative 𝛽𝛽𝛽

𝛽of vectors 

𝛻𝜇𝑉𝜈 = 𝜕𝜇𝑉𝜈 + Г𝜇𝜆
𝜈 𝑉𝜆 

𝛻𝜇𝜑𝜈 = 𝜕𝜇𝜑𝜈 − Г𝜇𝜈
𝜆 𝜑𝜆 

𝛻𝜇𝑔𝛼𝛽 = 0 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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𝛻𝜇𝑔𝛼𝛽 = 0 

𝑔𝜈𝜇𝑔𝜈𝜇 = 𝛿𝜈
𝜇

 

𝑔 = det(𝑔𝜈𝜇) 

𝑔′ = (det(
𝜕𝑥𝜇′

𝜕𝑥𝜇 ))

−2

𝑔 

det (
𝜕𝑥𝜇′

𝜕𝑥𝜇 ) is Jacobian 

𝑑4𝑥 ≡ 𝑑𝑥0𝑑𝑥1𝑑𝑥2𝑑𝑥3 

𝑑4𝑥′ = det (
𝜕𝑥𝜇′

𝜕𝑥𝜇 )𝑑4𝑥 

  

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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19 Regeneration and detection 
The regeneration of an elementary particle by the controlling mechanism involves the creation of a 

new embedding location. Detection stops this regeneration process. At detection, the set {𝑎𝑖
𝑥} is no 

longer filled by taking locations from the members of the set {𝖘𝑖
𝑥}. No more elements of the set are 

stored in the separable Hilbert space. With other words afterwards detection occurred at a precisely 

known location. However, that location was not known beforehand. 

A virtual map images the completely regenerated set {𝑎𝑖
𝑥} onto parameter space ℛ⓪. This involves 

the reordering from the stochastic generation order to the ordering of this new parameter space. 

This first map turns the location swarm into the eigenspace of a virtual operator 𝒷. A continuous 

location density distribution 𝜉(𝑞) describes the virtual map of the swarm into parameter space ℜ⓪. 

Actually each element of the original swarm is embedded into the deformable embedding continuum 

ℭ where that element is blurred with the Green’s function of this embedding continuum.  

This indirectly converts the operator ℴ, which describes the regeneration in the symmetry center 𝕾𝑛
𝑥  

into a differently ordered operator 𝜉 that resides in the Gelfand triple ℋ. The defining function 𝜉(𝑞) 

of operator 𝜉 describes the triggers in the non-homogeneous quaternionic second order partial 

differential equation, which describes the embedding behavior of ℭ. 

𝜉 = 𝛻∗𝛻𝜓 = {𝛻0𝛻0 + 〈𝜵, 𝜵〉}𝜓 =
𝜕2𝜓

𝜕𝜏2
+

𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
+

𝜕2𝜓

𝜕𝑧2
 

Function 𝜉(𝑞) uses ℜ⓪ as its parameter space. ℴ describes the hopping of the point-like object, 

while 𝜉(𝑞) describes the density distribution of the corresponding location swarm. 

Stochastic operator ℴ describes the hopping of the point-like object, while 𝜉 describes the density 

distribution of the image of the corresponding location swarm. 

  

(1) 
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20 Embedding 

20.1 Selection 
At each progression instant only a single eigenvalue 𝑎𝑖

𝑥 is selected from the eigenspace of the 

symmetry center reference operator 𝕾𝑛
𝑥 . In a regeneration cycle a complete location swarm {𝑎𝑖

𝑥} 

of eigenvalues is selected. The set {𝑎𝑖
𝑥} correspond to sets of eigenvectors {|𝑎𝑖

𝑥〉} that span a 

corresponding subspace. This restricts reference operator 𝕾𝑥= |𝖘𝑖
𝑥〉𝖘𝑖

𝑥〈𝖘𝑖
𝑥| to operator 

ℴ𝑥 = |𝑎𝑗
𝑥〉𝑎𝑗

𝑥〈𝑎𝑗
𝑥|. The corresponding closed subspace acts as a sliding window within a larger 

subspace that covers all progression values, including the history of the sliding window. The 

sliding window covers the recurrent regeneration of the set {𝑎𝑖
𝑥}. During this period the 

statistical properties of the set stabilize. The set {𝑎𝑖
𝑥} inherits the symmetry flavor of the 

symmetry center. Its elements are selected in a stochastic fashion that is independent of the 

spatial ordering of the symmetry center. 

20.2 Suggested generation process 
The mechanism 𝔐𝑛,which controls the generation of the set of eigenvalues {𝑎𝑖

𝑥} of stochastic 

operator ℴ𝑥, might apply a Poisson process in combination with a binomial process. The mechanism 

works in sync with the progression steps that are defined by reference operator ℛ⓪. At regular 

instances, the Poisson process produces germs that are spread by the binomial process, which 

implements a spread function that converts the germs into the spatial location swarm {𝑎𝑖
𝑥}. The 

spread function produces locations that are selected from the symmetry center 𝕾𝑛
𝑥. The binomial 

process effectively attenuates the spatial effectivity of the Poisson process. A Poisson process in 

combination with a binomial process can be considered as a new Poisson process. This time the 

stochastic process is spatially distributed. We shall refer to this special stochastic process as a 

stochastic spatial spread function 𝒮𝑛(𝖘𝑖
𝑥) that blurs the location of the geometric center of the 

swarm. This geometric center coincides with the geometric center of the symmetry center. 

The spread function is spherical symmetric and is best treated in spherical coordinates. The 

generated location is specified in the independent variables radius 𝑟, polar angle 𝜑 and azimuth 𝜃. 

The order of these specifications may vary between mechanism types. This order and the direction in 

which the angles run influence the generated hopping path. 

This view makes it possible to treat the swarm as a point spread function that can be handled in a 

similar way as the point spread function in an imaging process. This means that optical Fourier 

methodology can be used in order to handle the movement and mappings of the swarm. For that 

purpose it is necessary that the point spread function owns a Fourier transform. We will apply that 

Fourier transform as a coherence quality characteristic of the generated swarm. The swarm is 

mapped onto the embedding continuum. This map will be considered as the imaging process. The 

map will treated as an Optical Transfer Function. This means that the Fourier transform of the 

mapped swarm equals product of the Fourier transform of the generated swarm and the Optical 

Transfer Function of the map. 

For a swarm, owning a Fourier transfer means owning a displacement generator. It means that in 

first approximation the swarm can be considered as moving as one unit. 

After finishing the generation cycle the stochastic spatial spread function can be considered as a 

location density distribution. 
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20.3 Regeneration and detection 
The regeneration of an elementary particle by the controlling mechanism 𝔐𝑛 involves the creation 

of a new embedding location. Detection stops this regeneration process. At detection, the set {𝑎𝑖
𝑥} is 

no longer filled by taking locations from the members of the set {𝖘𝑖
𝑥}. No more elements of the set 

are stored in the separable Hilbert space. With other words, afterwards detection occurred at a 

precisely known location. However, that location was not known beforehand. 

A virtual map images the completely regenerated set {𝑎𝑖
𝑥} onto parameter space ℛ⓪. This involves 

the reordering from the stochastic generation order to the ordering of this new parameter space. 

This first map turns the location swarm into the eigenspace of a virtual operator 𝒷. A continuous 

location density distribution 𝜉(𝑞) describes the virtual map of the swarm into parameter space ℜ⓪. 

Actually each element of the original swarm is embedded into the deformable embedding continuum 

ℭ where that element is blurred with the Green’s function of this embedding continuum.  

This indirectly converts the operator ℴ, which describes the regeneration in the symmetry center 𝕾𝑛
𝑥  

into a differently ordered operator 𝜉 that resides in the Gelfand triple ℋ. The defining function 𝜉(𝑞) 

of operator 𝜉 describes the triggers in the non-homogeneous quaternionic second order partial 

differential equation, which describes the embedding behavior of ℭ. 

𝜉 = 𝛻∗𝛻𝜓 = {𝛻0𝛻0 + 〈𝜵, 𝜵〉}𝜓 =
𝜕2𝜓

𝜕𝜏2
+

𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
+

𝜕2𝜓

𝜕𝑧2
 

Function 𝜉(𝑞) uses ℜ⓪ as its parameter space. ℴ describes the hopping of the point-like object, 

while 𝜉(𝑞) describes the density distribution of the corresponding location swarm. 

Stochastic operator ℴ describes the hopping of the point-like object, while 𝜉 describes the 

density distribution of the image of the corresponding location swarm. 

Most of the described map is virtual. Only the embedding or the detection are actual 

occurrences. The consequences of detection and the consequences of the embedding can be 

observed. 

20.4 The mapper 
The mapper function ℘𝑥(𝑞) maps elements 𝑎𝑖

𝑥 of location swarms {𝑎𝑖
𝑥} onto the continuum ℭ, 

which is defined by function ℭ(𝑞). The mapper ℘𝑥 = ℘𝑥(𝟎) maps the geometric center of the 

symmetry center onto a location in the continuum ℭ. 

The action of the mapper function can be split into four steps. The intermediate steps are virtual 

maps. We introduce these virtual steps in order to be able to analyze what happens. 

The three first steps form a map from a subset of the eigenspace of 𝕾𝑛
𝑥  to the corresponding 

eigenspace of ℜ⓪.  

The first step stores selections into the eigenspace of stochastic selection operator ℴ𝑥. The 

operator ℴ𝑥 = |𝑎𝑗
𝑥〉𝑎𝑗

𝑥〈𝑎𝑗
𝑥| resides in separable Hilbert space ℌ and represents the discrete location 

distribution {𝑎𝑗
𝑥} that is generated by the stochastic spatial spread function 𝒮𝑛(𝖘𝑖

𝑥) during a period of 

progression that covers the progression values of the set {𝑎𝑗
𝑥}.Afterwards, 𝒮𝑛(𝖘𝑖

𝑥) acts as a location 

density distribution. Operator ℴ𝑥 is a stochastic operator. 

The second step maps {𝑎𝑗
𝑥}. onto 𝓡⓪.  

𝑏𝑗
𝑥 = ℊ(𝑎𝑗

𝑥 , 𝑛) 

(1) 

(1) 
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The second step maps the geometric center of the symmetry center onto location ℊ(𝟎, 𝑛) in 𝓡⓪. 

The second step switches the symmetry flavor of the swarm {𝒂𝑗
𝑥} into {𝒃𝑗

⓪
} and then maps onto 

𝓡⓪. 𝑏𝑗
⓪

 keeps the real value of 𝑎𝑗
𝑥. This involves relocation of the set of eigenvalues. The 

mapped selection operator 𝒷⓪ = |𝑏𝑗
⓪

〉 𝑏𝑗
⓪

〈𝑏𝑗
⓪

|, resides in separable Hilbert space ℌ and 

represents the discrete distribution {𝑏𝑗
𝑥} that is indirectly generated by the stochastic spatial spread 

function 𝒮𝑛(𝖘𝑖
𝑥) during a period of progression that covers the progression values of the set {𝑎𝑗

𝑥}. 

This set is the map onto parameter space ℛ⓪ and it is relocated due to the displacement of the 

symmetry center by field 𝔄. Operator 𝒷⓪ is in effect also a stochastic operator. The real parts of 

operators ℴ𝑥 and  𝒷⓪ were already synchronized with each other and are in sync (but not in 

sequence order) with the progression values that are specified by the Hermitian part ℛ0
⓪

 of the 

reference operator ℛ⓪. 

The mapper ℘𝑥 is affected by the movements of the symmetry related charges that are initiated 

by the symmetry related field 𝔄. It means that the symmetry centers on which the coherent 

location swarms reside are relocated due to the effects of the symmetry related field 𝔄 on the 

locations of the symmetry related charges. This influences function ℊ in equation (1). The 

symmetry related charges are located at the geometric centers of the symmetry centers. They 

are point-like objects and are located at ℊ(𝟎, 𝑛). The symmetry related field is constituted from 

the contributions that are generated by the individual symmetry related charges. The symmetry 

related field 𝔄 uses ℜ⓪ as its parameter space. As a consequence the  

The displacement can be interpreted as a usually uniform movement of the symmetry center. 

This results in a distorted image {𝑏𝑗
⓪

} of swarm {𝑎𝑗
𝑥} on parameter space ℛ⓪. The swarm is no 

longer characterized by the stochastic spatial spread function 𝒮𝑛(𝖘𝑖
𝑥). If the displacement is small 

compared to the extension of the swarm, then the distorted swarm can still be characterized by a 

continuous location density distribution. That new location density distribution is not obtained via 

normal distortion of the complete original location density distribution. Instead every separate 

element is displaced in an individual way that is determined by its progression order. The new shape 

cannot be predicted from the old shape. We will attach a new name 𝜉𝑛(𝒒) to this location density 

distribution. It replaces the stochastic spatial spread function 𝒮𝑛(𝖘𝑖
𝑥). 

This sidetrack has no influence on the mapper ℘𝑥. Mapper ℘𝑥 treats the relocation of the geometric 

center ℊ(𝟎, 𝑛) of the symmetry center 𝕾𝑛
𝑥. However, the redistribution influences mapper function 

℘𝑥(𝑞). 

The third step embeds ℌ into ℋ by mapping ℛ⓪ onto ℜ⓪. It is a map between quaternions with 

rational valued components and a continuum consisting of quaternions that have real valued 

components. The discrete set and the continuum have the same symmetry flavor, which is the 

reference symmetry flavor. The geometric center ℊ(𝟎, 𝑛) of the symmetry center 𝕾𝑛
𝑥  has a similar 

value in 𝕽⓪. 

In this step operator 𝒷⓪ gets accompanied by operator 𝜉, which represents the continuous 

density distribution that characterizes the eigenspace {𝑏𝑗
⓪

} of 𝒷⓪. Generating the eigenspace of 

operator 𝜉 in the separable Hilbert space involves a local averaging over the full regeneration 

cycle and resampling of the generated 𝑏𝑗
⓪

 locations. This offers a density distribution that is 

characterized by 𝜉(𝑞𝑖). Operator 𝜉 plays no significant role in the embedding process. Its role is 
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purely administrative. It relates {𝑏𝑗
⓪

} to the wave function of the elementary object. Further, it 

enables the computation of the embedding field potential, which is a smoothed and averaged 
view of the embedding continuum. If 𝜉(𝑞𝑖) has a Fourier transform, then the existence of 𝜉(𝑞𝑖) is 

the assurance of the coherence of the location swarm. It means that the mapped swarm has a 

displacement generator and at first approximation it can be considered to move as one unit. 

The fourth step is performed completely inside ℋ by operator ℭ. This involves the blurring of 

the elements of {𝑏𝑗
⓪

} by the Green’s function 𝒢 of the embedding continuum. 

In the four steps, operator ℴ is transferred to operator 𝒷, reordered, relocated and smoothed, 

such that operator 𝜉 results. The embedding process then blurs the swarm further. The result is 

a rather smooth, but deformed embedding field ℭ. For a part, the embedding process can be 

described by second order partial differential equations. 

The described multi-step map from generation to embedding is in fact a virtual map that occurs in 

one instant. Its structure is only of interest when the generation of the swarm suddenly stops. The 

smoothing effect of the Green’s function 𝒢(𝑞) of the embedding process and the integration over 

the generation cycle normally hide the structure of the route that is taken. 

 

The symmetry flavor switch occurs in ℌ and the deformation of the continuum by the 

embedding process occurs in ℋ. 

Apart from the conversion of the symmetry flavor and the relocation ℊ(𝑞, 𝑛) of the symmetry 

center the mapper ℘𝑥equals the map onto the embedding continuum.  

Thus for the mapper function ℘𝑥(𝑞) holds: 

 

℘𝑥(𝑞) = ℭ(ℊ(𝑞, 𝑛)) ∘ 𝒢(𝑞) 

 

And for the mapper ℘𝑥 holds: 

 

℘𝑥 = ℘𝑥(𝟎) = ℭ(ℊ(𝟎, 𝑛)) 

 

This location is not embedded, thus is not blurred by a Green’s function. 

If we include the blur that is introduced by the generation process, then the total map can be 

characterized by: 

 

𝒫(𝑞) = ℘𝑥 ∘ 𝜉𝑛 =  ℭ(ℊ(𝑞, 𝑛)) ∘ 𝒢(𝑞) ∘ 𝜉𝑛(𝑞) = ℭ(ℊ(𝑞, 𝑛)) ∘ 𝔊(𝑞) 

 

𝜉𝑛(𝑞) is the location density distribution that replaces the stochastic spatial spread function 𝒮𝑛(𝖘𝑖
𝑥). 

The stochastic spatial spread function varies with each subsequent generation cycle. The location 

(1) 

(2) 

(3) 
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density distribution 𝜉𝑛(𝑞) depends on the movement of the symmetry center 𝕾𝑛
𝑥. Fourier 

transformation converts convolution into multiplication. 

 

𝔊̃(𝑞̃) = 𝒢̃(𝑞̃) ∘ 𝜉𝑛(𝑞̃) 

 

𝔊̃(𝑞̃) qualifies the coherence of the map. 

The exact target location 𝒫(𝑎𝑗
𝑥) is not known beforehand, but after selection of the source 

eigenvalue 𝑎𝑗
𝑥 the image ℘𝑥(𝑎𝑗

𝑥) is exactly known and is stored in the eigenspaces of the respective 

operators. With other words history is no longer uncertain and is accurately stored in the separable 

Hilbert space and in its companion Gelfand triple. 

Averaged over all selections, 𝒫 produces a blurred image of the set {𝑎𝑗
𝑥}. The blur is characterized by 

𝔊(𝑞). The blur only concerns the imaginary parts of the involved quaternions. 

The average 𝒂𝑥 of the imaginary parts of all {𝑎𝑗
𝑥} is the center location of the set. It corresponds to 

the geometric center of the symmetry center. The combination of all involved operators and the 

selection mechanism 𝔐𝑛 produces a blurred image of 𝒂𝑥. 

20.5 Coherence 
Closed subspaces of a separable Hilbert space are characterized by a countable set of 

eigenvalues of a normal operator that maps this subspace onto itself.  

The eigenvalues of the operators in quaternionic Hilbert spaces are quaternions. Due to the four 

dimensions of quaternions, quaternionic number systems exist in 16 versions that only differ in 

their discrete symmetry set. For example right handed quaternions exist and left handed 

quaternions exist. 

Dedicated mechanisms {𝔐𝑛} ensure the coherence of the set of selected eigenvalues. For each 

coherent set {𝑎𝑖
𝑥} the responsible mechanism 𝔐𝑛 takes the eigenvalues from the eigenspace of a 

symmetry center reference operator 𝕾𝑛
𝑥  and stores them in the eigenspace of the stochastic 

operator ℴ𝑥. The swarm {𝑎𝑖
𝑥} is characterized by a location density distribution 𝒮𝑛(𝖘𝑖

𝑥). 

In the model, coherence plays an important role. For that reason the mapping of the swarm {𝑎𝑗
𝑥} of 

eigenvalues of stochastic operator ℴ𝑥 onto the embedding continuum ℭ is analyzed in detail in order 

to ensure that coherence is not destroyed by the mapping process. 

The following criteria define the set {𝑎𝑖
𝑥} of selected discrete quaternionic eigenvalues as a 

coherent set: 

1. All members of the set {𝑎𝑖
𝑥} are taken from the same symmetry center. 

a. All members of the set belong to the same symmetry flavor.  

b. All members of the set have the same spin value. 

c. The selected set is well-ordered. 

2. The set can be described by a continuous density distribution. 

An ordered coherent set is ordered with respect to the real parts of its members. In a well-
ordered coherent set all members have different real parts. 

(4) 
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The second requirement means that the spread function 𝒮𝑛 can be considered as a continuous 

location density distribution.  

The well-ordered coherent set {𝑎𝑖
𝑥} describes a well-defined hopping path. Also the hops form a 

discrete distribution. The distribution of the hops is described by operator 𝓸𝑥, which is the anti-

Hermitian part of operator ℴ𝑥. The landing locations form a well ordered swarm and the hops 

are also ordered with respect to progression. However, the subsequent hops have quite 

stochastic directions and sizes. Like the Hermitian part, the anti-Hermitian part of ℴ𝑥 has no 
continuous defining function! The location density distribution 𝒮𝑛(𝖘𝑖

𝑥) that describes the set of 

locations also characterizes the distribution of the hop landing locations.  

The real valued continuous location density distribution 𝜉0(𝑞
⓪) describes the density 

distribution of set {𝑏𝑗
𝑥} with respect to parameter space ℛ⓪. In fact this density distribution is 

the real part of the defining function of operator 𝜉. However, in the eigenspace of 𝜉0 the spatial 
eigenvalues are reordered, relocated and smoothed when compared to the eigenvalues {𝑎𝑖

𝑥} of 

the stochastic operator ℴ𝑥. 

Function 𝜉(𝑞⓪) describes the defining function of operator 𝜉. The only purpose of this operator 

is to show the coherence of the generated and relocated swarm {𝑏𝑗
𝑥}. Function 𝜉(𝑞⓪) has a 

Fourier transform. This Fourier transform is used to qualify the coherence of the relocated 

swarm {𝑏𝑗
𝑥}. That is why we add as extra requirement for the coherence of swarm {𝑏𝑗

𝑥} that it 

owns a Fourier transform. Having a Fourier transform is a higher level coherence requirement. 

We will qualify a location swarm {𝒃𝑗
𝑥} that owns a Fourier transform as a coherent swarm. 

20.6 Coherent swarm 
The well-ordered coherent set {𝒃𝑗

𝑥}, which can be described by a dynamic continuous location 

density distribution 𝜉0(𝑞
𝑥) may via this relation also own a Fourier transform. In that case we call the 

set a coherent swarm. The coherent swarm owns a displacement generator. This means that at first 

approximation the swarm {𝒃𝑗
𝑥} moves as one unit. Owning a Fourier transform is a higher level 

coherence requirement. 

At uniform speed 𝒗 holds: 

𝝃(𝑞⓪) = 𝒗 𝜉0(𝑞
⓪) 

 

Owning a Fourier transform via a continuous location density distribution means that the swarm can 

be represented by a wave package. On movement, wave packages tend to disperse. Since the 

dynamic continuous location density distribution only describes the swarm, the density distribution is 

continuously regenerated. As a consequence, movement does not disperse the swarm’s wave 

package. Thus, due to recurrent regeneration, no danger of dispersion exists. 

On the other hand the representation by a wave package indicates that the swarm {𝑏𝑗
𝑥} may take the 

form of an interference pattern. That interference pattern is still a location swarm. It is not 

constructed by interfering waves! 

20.7 Embedding set elements 
Embedding a single element 𝑎𝑗

𝑥 of the subset {𝑎𝑗
𝑥} of the eigenspace of ℴ𝑥 in continuum ℭ involves 

first the conversion to the reference symmetry flavor. Next this element is mapped from the 

(1) 
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symmetry center to the eigenspace of ℛ⓪ in ℌ and subsequently into to the eigenspace of ℜ⓪ in 

ℋ. The symmetry related fields may have caused a relocation of the symmetry center with respect to 

ℛ⓪. Finally the discrete quaternion is embedded as a discrete artefact in continuum ℭ.  

Locally the curved continuum ℭ is represented by 𝜓, which usually is nearly flat. In that case, for 𝜓 

we can use the quaternionic nabla ∇. 

𝛻 = 𝛻0 + 𝜵 = {
𝜕

𝜕𝜏
,
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
 } ;  𝜓 =  𝜓0 + 𝝍 

As alternative we can use the Maxwell based differential calculus. This calculus uses:  

{𝛻𝑡, 𝜵} ⟺ {
𝜕

𝜕𝑡
;
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
 } ;  𝜓 ⟺ {𝜓0, 𝝍}; 𝑡 ⟺ |𝜏 + 𝒙| 

 

𝜓 is considered to cover the image of the local symmetry center. Thus, it covers the images of all 

elements of {𝑎𝑗
𝑥}. This makes 𝜓 a normalizable function. 

The duration of the embedding is very short and is quickly released. Current mathematics lacks a 

proper description of the full embedding process, but it already contains equations that properly 

describe the situation before, after and during the embedding. 

What happens under not too violent conditions and over not too long ranges can be described by the 

non-homogeneous second order partial differential equations. 

 

∇∇∗𝜓 = (∇0∇0 + ⟨𝛁,𝛁⟩)𝜓 = 𝜉 

(
𝜕

𝜕𝑡

𝜕

𝜕𝑡
− ⟨𝛁,𝛁⟩)𝜓0 = 𝜌0 

(
𝜕

𝜕𝑡

𝜕

𝜕𝑡
− ⟨𝛁,𝛁⟩)𝝍 = 𝝆 

 

For a single embedding event the right side of these equations take the form of a Dirac delta 

function. 

Directly before and after the embedding the right parts of the equations are equal to zero. In this 

condition any solution of the homogeneous second order partial differential equation will proceed as 

it did before. 

During the embedding the right parts of the equations represent the embedded discrete quaternion, 

which is treated as an artifact that can cause a local point-like discontinuity. The embedding results in 

the emission of a spherical shape keeping front, which is a solution of the homogeneous second 

order partial differential equation. The non-homogeneous second order partial differential equation 

may be limited by special conditions: 

 

∇0∇0𝜓 = −𝜆2 𝜓;  𝜓 = 𝑎(𝒙) exp (±𝑖 𝜔 𝜏) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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𝜕

𝜕𝑡

𝜕

𝜕𝑡
𝜓0 = −𝜆2 𝜓0; 𝜓0 = 𝑎0(𝒙) exp (± 𝜆 𝑡) 

 

𝜕

𝜕𝑡

𝜕

𝜕𝑡
𝝍 = −𝜆2 𝝍;  𝝍 = 𝒂(𝒙) exp (± 𝜆 𝑡) 

 

This reduces the quaternionic non-homogeneous second order partial differential equation to a 

screened Poisson equation: 

 

⟨𝛁, 𝛁⟩𝜓 − 𝜆2𝜓 =  𝜉 

 

The 3D solution of this equation is determined by the screened Green’s function 𝐺(𝑟). 

Green functions represent solutions for point sources. 

 

𝐺(𝑟) =
exp(−𝜆 𝑟)

𝑟
 

 

𝜓 =  ∭𝐺(𝒓 − 𝒓′) 𝜌(𝒓′) 𝑑3𝒓 ′ 

 

The Maxwell based differential calculus gives similar results as quaternionic differential calculus 

does. However, equations (7) and (8) differ significantly from equation (6). The frequency in equation 

(6) can be used to synchronize the embedding process with the progression step that is governing 

reference operator ℛ⓪. 

The continuum is touched and as a reaction it gets deformed. The embedded particle location will 

vanish, but traces in the continuum stay and represent the deformation. However, also these traces 

fade away. Only the recurrence of the generation and embedding processes keeps the deformation 

fairly steady. 

Solutions of the quaternionic second order partial differential equation can be found via the 

continuity equations: 

 

∇𝜓 = 𝜙 ; ∇∗𝜙 = 𝜉 

 

And 

 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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∇∗𝜓 = 𝜁 ; ∇ 𝜁 = 𝜉 

 

 Solutions of the homogeneous equation 
Solutions of the homogeneous second order partial differential equation that cover an odd number of 

dimensions are known to represent shape keeping fronts or combinations of shape keeping fronts. 

These shape keeping fronts proceed with fixed speed c. However, due to their diminishing amplitude, 

the spherical shape keeping fronts fade away. 

In addition to this the Maxwell based wave equation offers solutions that represent dynamic waves 

and dynamic oscillations. 

Embedding a single element of {𝑎𝑗
𝑥} may cause the emission of a single spherical shape keeping front. 

The amplitude of spherical shape keeping fronts diminishes as 1/r with distance r from the source. This 

is also the form of the Green’s function of the Poisson equation for the three dimensional isotropic 

case. This fact forms the origin of the deformation of the embedding continuum 𝜓. 

Embedding a single hop may cause the emission of a single one-dimensional shape keeping front. The 

amplitude of one-dimensional shape keeping fronts keeps constant. The direction of the one 

dimensional shape keeping front relates to the direction of the hop. This phenomenon may represent 

quanta that leave or enter the object that is represented by the swarm {𝑎𝑗
𝑥}. 

 Embedding hops 
The content of this section is speculative. 

A hop involves de-embedding, a space step 𝜓𝐴 ⟶ 𝜓𝐵 and re-embedding. This suggests the combined 

action of two coupling equations: 

 

∇𝜓𝐴 = 𝑚1 𝜉
∗ 

and 

∇∗𝜉∗ = 𝑚2𝜓𝐵 

Notice that 

(∇𝜉)∗ = ∇0𝜉0 − ∇0𝝃 − 𝛁𝜉0 − 〈𝛁, 𝝃〉 − 𝛁 × 𝝃 

∇∗𝜉∗ = ∇0𝜉0 − ∇0𝝃 − 𝛁𝜉0 − 〈𝛁, 𝝃〉 + 𝛁 × 𝝃 

This produces the equation: 

 

∇∗∇𝜓𝐴 =
𝜕2𝜓𝐴

𝜕𝜏2
+

𝜕2𝜓𝐴

𝜕𝑥2
+

𝜕2𝜓𝐴

𝜕𝑦2
+

𝜕2𝜓𝐴

𝜕𝑧2
= 𝑚1𝑚2𝜓𝐵 

 

With 𝑚1𝑚2 → 𝑚2 and 𝜓𝐴 ≈ 𝜓𝐵 → 𝜓 this resembles the quaternionic form of the Klein-Gordon 

equation: 

 

(13) 

(1) 

(2) 

(3) 
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𝜕2𝜓

𝜕𝜏2
+

𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
+

𝜕2𝜓

𝜕𝑧2
= 𝑚2 𝜓 

 

For curl free conditions and 𝜉 = 𝜓 , the coupling equations (1) and (2) resemble the Dirac equations 

[14]. This suggests that other elementary particles than electrons and positrons follow equations that 

are similar to equations (1) and (2), where equation (2) treats the antiparticle. 

𝜉 = 𝑚2 𝜓 

 

It is striking that in equation (4) 𝑚 appears as squared, while in the continuity equations 𝑚 appears as 

a linear factor. The model suggests that the contributions of the swarm elements just add and that 𝑚 

should be proportional to the number of swarm elements. 

20.8 Embedding the full set 
If the full set is considered, then this means that the view integrates over the full cycle of progression 

steps that represent the generation of the swarm {𝑎𝑗
𝑥}. 

If embedding of the full set {𝑎𝑗
𝑥} is considered, then 𝜉 represents the density distribution of the full 

set. In that case the continuity equations: ∇ 𝜁 = 𝜌 and ∇∗𝜙 = 𝜉 determine what happens to the 

embedding continuum 𝜓, which locally represents ℭ. As already indicated, due to the relocation of the 

source region and the deformation the map of 𝜉 may flow and deform relative to 𝜓.  

The set {𝑎𝑗
𝑥} is well-ordered with respect to progression. It means that each of its elements only exists 

during a small interval. Before that interval the element did not exist. It is generated by stochastic 

process that is controlled by a stochastic mechanism 𝔐𝑛. The stochastic process applies a stochastic 

spatial spread function 𝒮𝑛(𝖘𝑖
𝑥). After the embedding this element of {𝑎𝑗

𝑥} vanishes into history. 𝒮𝑛 can 

be interpreted as a continuous location density distribution. Only its value is stored in an eigenvalue 

of operator ℴ𝑥 = |𝑎𝑗
𝑥〉𝑎𝑗

𝑥〈𝑎𝑗
𝑥| that maps the subspace spanned by {|𝑎𝑗

𝑥〉} onto itself. The operator ℴ𝑥 

and the corresponding subspace have a dynamic definition. That definition covers a certain period, 

which represents a sliding progression window. 

The second order partial differential equation for a single embedding event is: 

 

∇0∇0𝜓 ± ⟨𝛁,𝛁⟩𝜓 = 𝜉 

 

The ± sign switches between quaternionic and Maxwell based differential calculus. This second order 

partial differential equation is integrated over the full generation cycle. As a consequence the equation 

for an averaged version 𝜒 of continuum 𝜓 is obtained. 

 

∇0𝜒 = ∫
𝜕2𝜓

𝜕𝓉2

𝓉𝑛+1

𝓉𝑛

 𝑑𝓉 

 

(4) 

(5) 

(1) 

(2) 
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𝜁 = ∫ 𝜉
𝓉𝑛+1

𝓉𝑛

 𝑑𝓉 

 

∇0𝜒 ± ⟨𝛁,𝛁⟩𝜒 = 𝜁 

 

𝓉 represents 𝜏 or 𝑡. 𝜁 represents the continuous location density distribution that represents the full 

swarm. 

 

𝐻𝜒 = ∇0𝜒 =
 𝜕𝜒

𝜕𝓉
= 𝜁 ∓ 〈𝛁,𝛁〉𝜒 = 𝜁 ∓

𝜕2𝜒

𝜕𝑥2
∓

𝜕2𝜒

𝜕𝑦2
∓

𝜕2𝜒

𝜕𝑧2
 

 

Here 𝐻 is an equivalent of the Hamiltonian. 

In the embedding continuum ℭ, the traces of what happened are the emitted vibrations and shape 

keeping fronts that independent of the progression window keep proceeding. The spherical shape 

keeping fronts do not vanish, but they fade away. With them the deformation also fades away. 

However, the recurrent embedding process keeps this deformation alive in a dynamical fashion. It 

drags the deformation with the subspace that represents the corresponding module.  

Only when they appear in huge numbers the faded spherical shape keeping fronts can form a 

noticeable influence. This may be the reason of the existence of dark matter. 

The averaged Green’s functions now indicate the averaged effects of the recurrent embedding on the 

deformation of 𝜓. The result is that the corresponding potential no longer represents a singularity.  

In ℌ the dimension of the subspace that represents the set {𝑎𝑗
𝑥} has a clear significance. In order to 

comprehend what this dimension and the spread of the set do to the function 𝜓 we use the Green’s 

function. The Green’s function represents the influence of the embedding of a single point-like 

artifact into 𝜓. That artifact can be a landing point or a hop. For a single point-like artifact at location 

 𝒙′in otherwise isotropic conditions, the Green’s function equals  

𝑔𝑗 = 1/|𝒙 − 𝒙𝑗
′|.  

We integrate over the space that is covered by density distribution 𝜉. If 𝜉 represents an isotropic 

Gaussian distribution, then 𝑁 Green’s functions contribute to the integral that will equal [8]: 

𝔊(𝒙 − 𝒙𝒄) = ∑
1

|𝒙 − 𝒙𝑗
′|
 

𝑁

0

≈ ∫
𝜉(𝒙′ − 𝒙𝒄)

|𝒙′ − 𝒙𝒄|
𝑑𝒙′

𝑉

= 𝐶 𝑁 
erf(|𝒙 − 𝒙𝒄|)

|𝒙 − 𝒙𝒄|
 

 

𝒙𝒄 =
1

𝑁
∑𝒙𝑗

′ 

𝑁

0

 

 

(3) 

(4) 

(5) 

(6) 

(7) 

(6) 
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𝐶 is a normalization constant. Here 𝑁 represents the number of elements in the {𝑎𝑗
𝑥} set. Green’s 

function 𝑔𝑗 represents the effect of the embedding of the single element 𝑎𝑗
𝑥.  

𝔊(𝒙 − 𝒙𝒄) represents the local contribution to the gravitation potential. The function on the right 

side is a smoothed version of this contribution. It represents the local impact on the embedding 

continuum ℭ. 

This indicates that subspace dimension N directly relates to mass, which together with the location 

density distribution 𝜁 determines the strength of deformation of 𝜓, which locally describes 

embedding continuum ℭ. 

 No singularity 
The integration over a full cycle removes the singularities of the individual Green’s functions. In the 

example, the resulting field is a smooth function. 

 

 

 

Figure 1. Close to the geometric center the singularities are converted in a smooth function. Further 

from the center the form of the Green’s function is retained. 

We suppose that this distribution is a good estimate for the structure of the swarm of a free electron. 

It is remarkable that this potential (the blue curve) has no singularity at 𝑅 = 0. At the same time, 

already at a short distance of the center the function very closely approaches 1/𝑅 (the orange 

curve).  

The term ERF(𝑅) indicates the influence of the spread of the embedding locations. This view can be 

used to determine the spatially averaged effect of the single embeddings. The set {𝑎𝑗
𝑥}

𝑁
 corresponds 

to 𝑁 instances of such spatially averaged contributions. This approach shows that deformation and 

thus mass is directly related to the size of the set and to dimension of the subspace that represents 

the module. 
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21 Attaching characteristics to a module 

21.1 Module subspace 
In free translation, the spectral theorem for normal operators that reside in a separable Hilbert space 

states: “If a normal operator maps a closed subspace onto itself, then the subspace is spanned by an 

orthonormal base consisting of eigenvectors of the operator.” The corresponding eigenvalues 

characterize this closed subspace. 

We take the closed subspace that is spanned by the eigenvectors of stochastic operator ℴ𝑥 as an 

example. These eigenvectors form a subspace of symmetry center 𝕾𝑛
𝑥, which itself is a subspace. The 

mechanism 𝔐𝑛 takes care that a stochastic process attaches the proper eigenvalues to these 

vectors. The mechanism takes care that the set of eigenvalues {𝑎𝑖
𝑥} obtains statistical characteristics 

that are typical for the elementary module type. The module gets its symmetry flavor, its electric 

charge, its color charge and its spin from the symmetry center. The map of the symmetry center to 

parameter space ℛ⓪ gives the set {𝑎𝑖
𝑥} its center location in ℛ⓪ and indirectly in ℜ⓪. The 

embedding process gives swarm {𝑏𝑖
𝑥}, which is the image of {𝑎𝑖

𝑥} in ℜ⓪ its mass.  

The mechanism 𝔐𝑛 that controls the stochastic process, which fills the eigenspace of operator ℴ𝑥 

with data determines the generation flavor of the elementary module. 

 Swarm characteristics 
In this paper, we use the diversity that is represented by the standard model of contemporary 

physics as reference for naming elementary object types and their properties. 

Elementary particle types have different masses. In the orthomodular base model this means that 

the corresponding closed subspaces have different dimensions and that correspondingly the swarms 

have different numbers of elements. It takes a type dependent number of progression steps for 

regenerating the corresponding swarm. 

The swarm has a central location, which in separable Hilbert space is defined as the average 𝒂 of the 

imaginary parts of the coherent set of source eigenvalues {𝑎𝑖
𝑥}. It is the geometric center of the local 

symmetry center. In the non-separable Hilbert space it is defined by the image ℘(𝒂), which is 

located in ℭ. This target value corresponds to an object source location 𝒂 in the flat parameter space 

of ℘. That parameter space is ℜ⓪.The source location may move as a function of progression.  

The speed of transfer of information is set by the speed of information carriers. These information 

carriers are one-dimensional shape keeping fronts. The quaternionic second order partial differential 

equation describes the way in which these shape keeping fronts proceed. 

In the continuum the observed image of the swarm cannot move faster than the speed with which 

information can be transported. 

The statistical characteristics of the swarm and the symmetry related properties of the symmetry 

center are sources for the properties that characterize the types of the objects that are represented 

by the coherent swarm. The symmetry flavor, the symmetry related charge, the color charge and the 

spin of the object that is represented by the swarm are mainly set by the symmetry center on which 

the swarm resides. 

Apart from the number of elements of the swarm, the properties of the swarm appear to depend on 

the generation flavor. The mechanism 𝔐𝑛 that generates the swarm determines this extra 

characteristic of the swarm. 
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21.1.1.1 Fermions 

Fermions have half-integer spin. Fermions exist as elementary objects and as composites. All 

fermions have non-zero mass. This means that their embedding deforms the embedding continuum 

ℭ. 

Elementary fermions comprise electrons, quarks, neutrinos and their antiparticles. They are listed in 

the table in the chapter on symmetry flavor.  

Embedding couples coherent swarms {𝑎𝑖
𝑥} that possess the symmetry flavor of a symmetry center 

𝕾𝑥 to an embedding continuum ℭ that has the symmetry flavor of reference operator ℜ⓪. If this 

symmetry flavor of the embedding continuum is fixed, then varying the symmetry flavor of the 

coherent swarm creates sixteen different elementary object types. Half of these types concern anti-

particles. Again half of these sub-types concern left-handed quaternions and the other half are right-

handed. Anisotropic types occur in three versions that are distinguished by the dimension in which 

the anisotropy occurs. Anisotropic types are marked by color charges. Isotropic types are colorless. 

21.1.1.2 Massive Bosons 

Bosons are known to feature integer spin. Massive bosons exist as elementary objects and as 

composites. Also massless bosons exist. Photons and gluons are massless bosons. The massless 

bosons do not deform the field in which they travel. 

The difference of spin between massive elementary bosons and elementary fermions can be 

explained when the symmetry centers of fermions are generated in an azimuthal angle first and a 

polar angle second way, while the symmetry centers of bosons are generated in an polar angle first 

and an azimuthal angle second fashion. The polar angle takes 2𝜋 radians and the azimuthal angle 

takes 𝜋 radians. 

 

Fermions and massive bosons appear to contribute to a common gravitation potential. This means 

that bosons embed in the same embedding field as fermions do. Massive bosons couple to an 

embedding continuum in a similar way as fermions do. Boson swarms feature color-neutral 

symmetry flavors.  

Massive bosons are observable as 𝑊−, 𝑊+ and 𝑍 particles. 𝑊+ is the antiparticle of 𝑊−. Until now, 

there is no indication of the existence of quark-like bosons. At least their “color” structure cannot be 

observed. 

21.1.1.3  Spin axis 

Fermion swarms and boson swarms contain a hopping path that can be walked into two directions. 

That hopping path may implement spin.  

If the swarm is at rest (does not move), then the hopping path is closed. Relative to its symmetry 

center the swarm does not move, but it might oscillate. 

For bosons the spin axis may be coupled to the polar axis. The polar angle runs from 0 through 2π. 

For fermions the spin axis may be coupled to the azimuth axis. The azimuthal angle runs from 0 

through π. 

Nothing is said yet about the fact and the corresponding influence that the number of hops can be 

even or odd. And nothing is said yet about whether the opening hop and the closing hop are coupled 

in a symmetric or asymmetric sense. 
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21.2 History, presence and future 
In the orthomodular base model, the eigenvalues of the reference operators are not touched by 

management mechanisms or by the embedding process. Also historic eigenvalues are no longer 

touched by management mechanisms. 

Presence is marked by a progression value that occurs in the real part of quaternionic eigenvalues of 

the category of well-ordered normal operators. History is marked by lower valued real parts of these 

quaternionic eigenvalues. Progression sensitive operators are members of the category of well-

ordered normal operators and are characterized by the fact that they have known and fixed 

eigenvalues when the real part of the eigenvalue is lower than the present progression value. At the 

same time the current eigenvalues of these operators are influenced by the controlling mechanisms. 

Future eigenvalues of these operators are considered to be unknown. They belong to the non-

observable part of the Hilbert space. The progression dependent management mechanisms have 

not yet touched these eigenvectors. 

In the orthomodular base model presence, history and future are artificial concepts. History is 

defined with respect to the current real value of the eigenvalues of the reference operators, which 

belong to the category of well-ordered normal operators.  

The eigenspaces of progression sensitive operators exactly describe the history. The history is fixed. 

Thus the historic eigenvalues are no longer touched by management mechanisms or by the 

embedding process. However, these operators do not yet describe the future. The future is 

constructed by the management mechanisms and the embedding process. This means that these 

mechanisms depend on the progression parameter. The mechanisms only affect the current 

eigenvalues. These eigenvalues describe the presence. 

Progression sensitive operators are related to functions that use a flat parameter space which is 

defined using the reference operators ℛ⓪ and ℜ⓪ or indirectly by using the anti-Hermitian 

reference operator 𝕾𝒙 and a synchronization signal. The quaternionic screened Poisson equation 

uses such a synchronization signal. 

The subspace that represents a module covers a sliding part of the last history. The dimension 𝑁 of 

the subspace, which is covered by operator ℴ𝑥 determines the number of covered progression 

instances. Inside the subspace progression rules the cyclic regeneration process. The subspace covers 

one cycle of that regeneration process. This period is governed by a controlling mechanism. 𝑁 is 

smaller than the (fixed) dimension of the subspaces that represent the symmetry centers. 

The progression window covers a recycling period in which the statistical properties of the set {𝑎𝑗
𝑥}

𝑁
 

stabilize. This period is a property of the stochastic generation mechanism 𝔐𝑛. The stochastic 

generation mechanisms {𝔐𝑛} exist in a series of types that each have their own characteristics.  

21.3 Model wide progression steps and cycles 
Each closed subspace that represents a coherent swarm is governed by a mechanism 𝔐𝑛 that 

ensures dynamic and spatial coherence. In fact many different types of such mechanisms exist. They 

correspond to elementary particle types. If these modules combine into composites, then the 

generation cycles must synchronize. This asks for a model wide progression step that is much shorter 

than any swarm generation cycle. A Real Time Operating System-like scheduling mechanism must 

schedule the generation of composites from completed modules. 
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21.4 Swarm behavior 
The coherent swarm moves as one unit. In fact, the represented object features three kinds of 

movement. The first kind stays internal to the swarm. During the corresponding generation process, 

the hopping speed has no significance for the movement of the swarm as a whole unit. The second 

kind is caused by the charge of the symmetry center in combination with the symmetry related field 

𝔄. The third kind concerns the relocated swarm as a whole. This concerns the image {𝑏𝑖
𝑥} of the 

original swarm {𝑎𝑖
𝑥} onto reference space ℛ⓪ or onto reference space ℜ⓪.The speed of this swarm 

makes physical sense. 

Inside the swarm {𝑏𝑖
𝑥}, the represented object hops from swarm element to swarm element. The 

hopping path is folded and if the swarm is at rest, then the hopping path is closed. Adding extra hops 

to the original swarm {𝑎𝑖
𝑥} causes movement of the {𝑏𝑖

𝑥} swarm. Adding a closed string of hops in a 

cyclic fashion to swarm {𝑎𝑖
𝑥} causes an oscillation of the {𝑏𝑖

𝑥} swarm. From observations it follows 

that in composites, such as atoms only certain oscillation modes are tolerated. Adding an arbitrary 

open string of hops may open the hopping path in swarm {𝑏𝑖
𝑥}. In that case the sum of all hops is no 

longer zero. As a consequence the swarm {𝑏𝑖
𝑥} will move. This motion gets its origin in the separable 

Hilbert space. The motion is mapped onto the continuum. The total movement is recognizable 

relative to the parameter space ℜ⓪. 

A dynamic local change of the mapping function ℘ may move the swarm relative to other swarms. 

Such changes may occur when discrete objects deform the embedding continuum. Or if the 

symmetry related field 𝔄 relocates the local symmetry center. The third kind of movement gets its 

origin in the non-separable Hilbert space. Relative to the parameter space, only the effect of the 

relocation is recognizable. 

 Partial creation and annihilation 
Removing a string of hops from the hopping path can be interpreted as a partial annihilation 

occurrence. Thus, part of the object is temporary converted into an information messenger, which 

travels with optimal speed away from its source. Complete annihilation does not occur this way. 

Complete annihilation involves annihilation of the symmetry center. 

Adding a string of hops to the hopping path can be interpreted as a partial generation occurrence. 

Thus, an information messenger is temporary converted into a new part of the object. Complete 

creation does not occur this way. Complete creation involves creation of the symmetry center. 

21.5 Mass and energy 

  Having mass 
Having mass can be interpreted as the capability to deform the continuum that embeds the 

concerned object. More mass corresponds to more deformation.  

The fact that fermions and massive bosons contribute to a common gravitation potential means that 

they deform the same embedding continuum. 

The dimension of the closed subspace, which in the separable Hilbert space ℌ represents a discrete 

object has a physical significance. Any eigenvector that contributes to spanning the closed subspace 

increases the dimension of the subspace. If all elements of the swarm contribute separately to the 

deformation of the embedding continuum, then the total deformation is proportional to the 

dimension of the subspace. In that case, this dimension relates to the mass of the object that 

corresponds to the swarm. If extra hops are added that cause movements or oscillations, then this 

adds to the mass in the form of kinetic energy. The extra hops may enter or leave in strings. Inside 
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the swarm the hops that cause oscillation are stored as closed strings. Outside of the swarm the 

strings of hops are open and appear as information messengers. 

 Information messengers 
Information messengers represent open strings of hops. At the same time they are solutions of the 

homogeneous second order partial differential equation. This means that they can be viewed as 

strings of one dimensional shape keeping fronts. One dimensional shape keeping fronts do not 

diminish their amplitude as function of the distance to their emission point. In an otherwise flat 

continuum the one dimensional shape keeping fronts and thus the information messengers proceed 

with the speed of information transfer. The energy carried by information messengers is proportional 

to the number of one-dimensional shape keeping fronts that they contain. If the duration of 

emission, absorption and passage is fixed, then the apparent frequency of information messengers is 

proportional to their energy.  

In contemporary physics the information messengers are known as photons. Photons are known to 

be able to cross huge distances and then still have sufficient amplitude left in order to be detected by 

suitable detectors. Messengers do not lose their amplitude. From experiments we know that the 

energy of photons is proportional to their frequency. Thus if photons are information messengers 

then this suggests that at least locally, the emission, the absorption and the passage of information 

messengers takes a fixed number of progression cycles.  

Spurious one-dimensional shape keeping fronts may not be detectable via experiments. Large 

numbers of spurious one-dimensional shape keeping fronts may represent dark energy. 

 Red-shift 
Red-shift is observed by photon detectors with photons that arrive from huge distances. This effect 

may be due to the fact that the second order partial differential equation does not hold for these 

huge ranges. If the period of emission is longer than the period of absorption, then some shape 

keeping fronts will be missed and may proceed as messengers that contain less shape keeping fronts 

or these messengers will be converted in kinetic energy of the absorbing object. The primary 

absorption will count a number of shape keeping fronts than originally were emitted. It means that 

the frequency is red-shifted. 

Other interpretations make the Doppler effect responsible for the red-shift. The Doppler effect 

considers the absorbed objects as planar waves. 

 Mass energy equivalence 
Creation and annihilation of elementary particles shows the equivalence of mass and energy. 

21.5.4.1 Suggested creation process 

Creation of elementary particles starts with the combination of two photons that came from 

opposite directions into an intermediate object. The intermediate object is a very short lived massive 

object that consists of as many paired elements as shape keeping fronts are contained in the 

constituting photons. The shape keeping fronts will convert into hops. The long chain of paired hops 

will then rip apart into two folded hopping strings that each form a coherent location swarm. Next 

the two swarms will split and move in opposite directions. At some instant in this procedure two 

symmetry centers are generated that will carry the generated particles. 

21.5.4.2 Suggested annihilation process 

Annihilation of elementary particles starts with the combination of an elementary particle and its 

anti-particle that come from opposite directions into an intermediate object. The intermediate object 
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is a very short lived massive object that consists of as many paired elements as elements are 

contained in the constituting coherent location swarms. As part of the procedure the corresponding 

symmetry centers are annihilated. The hops will convert into shape keeping fronts. The long chain of 

paired shape keeping fronts will then rip apart into two separate chains of shape keeping fronts. Next 

these photons leave in opposite directions.  

21.6 Relation to the wave function 
The concept of wave function is used by contemporary physics in order to represent the state of a 

quantum physical object. The wave function is a complex amplitude probability distribution. Its 

squared modulus is a normalized density distribution of locations where the owner of the wave 

function can be detected. The value of this continuous distribution equals the probability of finding 

the owner at the location that is defined by the value of the parameter of the distribution. 

If the detection is actually performed, then the object will be converted into something else. By the 

adherents of the Copenhagen interpretation, this fact is known as “the collapse of the wave 

function”.  

The normalized density distribution of locations where the owner of the wave function can be 

detected corresponds to the map of a coherent swarm on a flat continuum eigenspace of the 

companion operator in the orthomodular base model. 

Thus, the concept of the coherent map of a well-ordered coherent set on a flat continuum 

eigenspace of the companion operator in the orthonormal base model leads directly to an equivalent 

of the concept of the wave function in contemporary physics. Both concepts cannot be verified by 

experiments. The equivalence indicates that the suggested coherent map extension of the 

orthomodular base model runs in a sensible direction. 

The continuous density distribution does not play an active role in the model. It is only constructed 

for administrative purposes. Each of the swarm elements corresponds to an individual embedding 

occurrence. The continuous density distribution is used to compute the embedding potential. That 

potential can also be computed by using the squared modulus of the wave function in a similar way. 
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22 Traces of embedding 

22.1 Embedding potential 
The actual embedding of a discrete eigenvalue 𝑎𝑗

𝑥 in the embedding continuum does not last longer 

than a single progression step. For each object, the embedding occurs only once at every used 

progression step. The source eigenvalue 𝑎𝑗
𝑥 is taken by the controlling mechanism 𝔐𝑛 from the local 

symmetry center and is stored in the eigenspace of the location operator ℴ𝑥 that resides in the 

separable Hilbert space. Immediately afterwards the mechanism releases the embedding and 

replaces it by another embedding of a source eigenvalue, which it takes from a slightly different 

location 𝑎𝑗+1
𝑥 . This new source location is mapped onto its target location in the embedding 

continuum. This recurrent embedding process generates the map of the well-ordered coherent set of 

source eigenvalues {𝑎𝑗
𝑥}. 

In the non-separable Hilbert space the map {℘(𝑎𝑗
𝑥)} affects the target subspace of the continuum 

eigenspace. This is done in a special way. Locally, the effect is determined by the non-homogeneous 

second order partial differential equations. This holds both for the quaternionic version and for the 

Maxwell based version. 

The homogeneous second order partial differential equation and the Poisson equation are 

restrictions of the non-homogeneous second order partial differential equation. The homogeneous 

second order partial differential equation controls the situation just before and just after the actual 

embedding action. The Poisson equation determines the situation during the actual embedding 

action. The embedding results in the emission of a 3D shape keeping front. The solution of the 

Poisson equation deforms the target subspace of the embedding continuum. After release of the 

embedding, the 3D shape keeping front keeps proceeding, but it will quickly diminish its amplitude as 

function of the distance to the emission location.  

The effects of the solutions of the non-homogeneous second order partial differential equations for 

all participating elements of the swarm combine and form an embedding potential. The embedding 

potential represents a smoothed and averaged local view on continuum ℭ. 

In general can be said that the embedding of discrete artifacts trigger vibrations and deformations of 

the embedding continuum. The vibrations can be shape keeping fronts and oscillations and are 

solutions of the homogeneous second order partial differential equation. These solutions are 

restricted by local conditions and by the configuration of the triggers. For free particles these 

solutions are isotropic in one, two or three dimensions. In atoms the embedding of the electrons 

determine the configuration of triggers that cause spherical harmonics as solutions of the 

homogeneous wave equation. In that case the wave equation describes the behavior of the 

embedding field, rather than the behavior of the symmetry related field 𝔄. 

22.2 Symmetry related potential 
All elements of the coherent swarm are taken from the same symmetry center and have for that 

reason the same symmetry flavor. Embedded symmetry centers have their own dynamics, which is 

controlled by the symmetry related field 𝔄. Only the elements of the coherent swarm will be 

embedded in the embedding continuum. The effects of symmetry flavor coupling work over the 

whole reach of the symmetry center and thus over the whole reach of the coherent swarm. In the 

embedding continuum the source of this influence is located at the target value of the mapping 

function ℘(𝒂). The symmetry related charge at this location depends on the difference between the 

symmetry flavor of the coherent swarm and the symmetry flavor of the embedding continuum. 
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Also here the quaternionic second order partial differential equation describes what happens, but 

the charge stays at its center location. The governing equation is: 

 

(∇0∇0 ± ⟨𝛁, 𝛁⟩) 𝜑(𝑞) = ∑ℊ(𝑞, n)

𝑛

 

 

Here 𝜑 represents the quaternionic symmetry related potential and ℊ represents the distribution of 

symmetry related charges and currents. In general ℊ cannot be described by a continuous location 

density distribution.  

For the static symmetry related potential this reduces to 

 

⟨𝛁, 𝛁⟩𝜑(𝒒) = ∑ℊ(𝒒, n)

𝑛

 

 

Function ℭ(𝑞) maps both 𝜑 and the eigenspace of ℊ onto continuum ℭ. 

 Difference with gravitation potential 
The symmetry related potential deviates in many aspects from the gravitation potential. Where 

every element of the swarm contributes separately to the gravitation potential, will the local 

symmetry related potential only depend on the symmetry flavor of the complete swarm. It is 

generated by the symmetry center and not by the separate elements of that center. The virtual 

location of the electrostatic charge coincides with the location of the center of symmetry of the 

swarm. For elementary particles, the strength of the symmetry related potential does not depend on 

the number of involved swarm elements. The charge is set by the symmetry center on which the 

elementary particle resides. 

The gravitation potential only implements attraction between the massive objects. The symmetry 

related potential implements repel between equally signed charges and implements attraction 

between differently signed charges. 

22.3 Inertia 

 Field corresponding to symmetry center 
Dedicated mechanisms use symmetry centers as resource for the generation of the locations of 

elementary particles. Symmetry centers are interesting as a subject for studying inertia. They have a 

spherical shape and a finite active radius. The activity of the mechanisms can be characterized by a 

normalized continuous density distribution. As an example we apply a Gaussian density distribution.  

𝜌(𝒓) =
𝑄

2𝜋 𝜎3√2𝜋
 exp(−

|𝒓 − 𝒓′|2

2𝜎2 ) 

Here 𝒓′ is the location of the center of the symmetry center. The produced distribution moves 

together with the symmetry center.  

The potential of a Gaussian density distribution 𝜌(𝑟) equals: 

(1) 

(2) 

(1) 
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𝜑0(𝒓 − 𝒓′) =
𝑄

4𝜋𝑟2 erf (
𝑟2

𝜎√2
) (𝒓 − 𝒓′) ≈

𝑄(𝒓−𝒓′)

4𝜋𝑟2  for large 𝑟 = |𝒓 − 𝒓′|. 

 

Here 𝑟 stands for |𝒓 − 𝒓′|. 

 

This is not the electric potential. This potential is generated in a background embedding field ℭ due 

to the recurrent temporary embedding of artifacts that are taken from the symmetry center. This can 

be shown by computing the double differential of 𝜑0(𝒓): 

 

𝜕 erf(𝑎𝑟)

𝜕𝑟
=

2𝑎

√𝜋
exp(−𝑎2𝑟2) =  

2

𝜎√2𝜋
exp (−

𝑟2

2𝜎2) ; 𝑎 =
1

𝜎√2
 

 

1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕 (
erf(𝑎𝑟)

𝑟 )

𝜕𝑟
) =

2𝑎2

√𝜋
exp(−𝑎2𝑟2) =

1

𝜎2√𝜋
exp(−

𝑟2

2𝜎2) 

The plot of the potential proves that this potential has no singularity. It is smooth near the center 

point. 

The gradient of the potential equals: 

 

𝜵𝜑0 =
𝜕𝜑0

𝜕𝑟

𝒓 − 𝒓′

𝑟
 

= −
𝑄

4𝜋𝑟2
erf (

𝑟

𝜎√2
)
𝒓 − 𝒓′

𝑟
+

𝑄

2𝜋𝑟𝜎√2𝜋
exp (−

𝑟2

2𝜎2)
𝒓 − 𝒓′

𝑟
 

 

The potential 𝜑0 adds on top of the average value of the embedding field ℭ. If the observer 

position 𝒓 moves with speed 𝒗 relative to the embedding continuum ℭ then as a consequence a 

corresponding contribution to the vector potential: 

 

𝕮(𝒓) = ℭ0
̅̅̅̅ (𝒓) 𝒗 

 

appears to exist. 𝛽0̅(𝜵) is the average scalar part of the embedding field 𝛽(𝜵). Thus, locally: 

 

ℭ0(𝒓) = ℭ0
̅̅̅̅ (𝒓) + 𝜑0(𝒓 − 𝒓′) 

 

(2) 

(3) 

(4) 

(5) 
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𝕮(𝒓) = ℭ0
̅̅̅̅ (𝒓) 𝒓̇ 

 

𝛁ℭ0
̅̅̅̅  ≈ 𝟎 

 

At the observer point the embedding continuum equals: 

 

ℭ = ℭ0
̅̅̅̅ (𝒓) + 𝜑0(𝒓 − 𝒓′) + ℭ0

̅̅̅̅ (𝒓) 𝒓̇ 

 

The scalar and vector potentials go together with a field 𝕰: 

 

𝕰(𝒓) ≡ −
𝜕

𝜕𝜏
𝕮 − 𝜵ℭ(𝒓) = − ℭ0

̅̅̅̅ (𝒓) 𝒓̈ − 𝛁 𝜑0(𝒓 − 𝒓′) 

 

= − ℭ0
̅̅̅̅ (𝒓) 𝒓̈ +

𝑄

4𝜋𝑟2
erf (

𝑟

𝜎√2
)
𝒓

𝑟
−

𝑄

2𝜋𝑟𝜎√2𝜋
exp (−

𝑟2

2𝜎2)
𝒓

𝑟
  

 

For large 𝑟 = |𝒓 − 𝒓′| 

 

𝕰(𝒓 − 𝒓′) ≈ − ℭ0
̅̅̅̅ (𝒓) 𝒓̈ +  

𝑄

4𝜋
𝜵(

1

|𝒓 − 𝒓′|
) = − ℭ0

̅̅̅̅ (𝒓) 𝒓̈ +
𝑄 

4𝜋|𝒓 − 𝒓′|3
(𝒓 − 𝒓′) 

 

Here again 𝒓′ is the geometric center of the symmetry center. Both the acceleration 𝒓̈ and the 

nearness of the artifact with strength Q determine the extra field 𝕰. The first term on the left 

represents what is usually is experienced as inertia. The second term represents what is usually is 

experienced as gravitation. 

In his paper “On the Origin of Inertia”, Denis Sciama used the idea of Mach in order to construct the 

rather flat field that results from uniformly distributed charges [18]. He then uses the constructed 

field in order to generate the vector potential, which is experienced by the uniformly moving 

observer. Here we use the embedding field as the rather flat background field. 

 Forces between symmetry centers 
Two different symmetry centers represent two different contributions to field 𝕰. 

The forces between two symmetry centers are specified by. 

 

𝑭𝟏𝟐 = −𝑭𝟐𝟏 =
𝑄1 𝑄2

4𝜋|𝒓1 − 𝒓𝟐|
3
(𝒓1 − 𝒓𝟐) 

(6) 

(8) 

(9) 
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 Rotational inertia 
If the observer rotates with respect to the embedding field, then the observer experiences a curl that 

is defined by 

 

𝕭 = 𝜵 × 𝝋 

 

If the rotation changes, then this goes together with a rotation of the 𝕰 field, which counteracts the 

increase of the rotation. 

 

𝝏

𝝏𝝉
𝕭 = −𝜵 × 𝕰 

 

In this case the observer experiences rotational inertia. 

22.4 Overlapping and shared symmetry centers 
Part of the binding of particles involves the overlapping of symmetry centers and it involves the 

sharing of overlapped symmetry centers by controlling mechanisms. The symmetry related charge, 

the color charge and the spin of the symmetry center play an important role. Also the fact that the 

produced location swarm must correspond to a continuous location density distribution and that this 

distribution must own a Fourier transform plays an important role. The continuity of the density 

distribution and the existence of the Fourier transform are considered by this paper as essential for 

keeping spatial and dynamic coherence. Together, these facts are the reason of existence of the Pauli 

principle. 

Overlapping is restricted by a set of rules. When symmetry centers overlap, then they can be shared 

by the controlling mechanisms. Also this sharing must obey strict rules. For example the embedding 

continuum must be in conditions that are compatible with the pile of overlapping symmetry centers. 

One of the criteria is that it must reflect spherical harmonic oscillations in accordance with a subset 

of the accumulated symmetry centers. The symmetry related charges are not involved in these 

oscillations. 

The fact that equally signed symmetry related charges repel, counteracts the overlay of such 

symmetry centers, but the fact that the overlay receives color neutrality appears to have a greater 

priority and is achieved by tri-state switching or by conjugation of the colored symmetry centers. 

In general the overlap and sharing rules stimulate neutralizing of symmetry related charges and the 

rules stimulate color confinement. No pair of symmetry centers in the pile is allowed to represent 

particles that have the same symmetry flavor and the same half integer spin. 

23 Field interaction 
The symmetry related field 𝔄 interacts with the embedding field ℭ. In the environment of an 

elementary particle this can be expressed by the Dirac equation. 

∇ ℭ = (ℭ(𝑚 + 𝑒𝔄))
∗
= 𝑚ℭ∗ + 𝑒𝔄∗ℭ∗ 

(1) 

(2) 

(1) 
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The real value 𝑒 stands for the symmetry related charge of the local symmetry center. The symmetry 

center contributes an individual symmetry related field 𝜑 to the overall symmetry related field 𝔄. 

The symmetry related field 𝔄 is deformed by the embedding field ℭ.  
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24 Composites 
Closed subspaces can combine into wider subspaces. If in the disjunction no eigenvectors of the 

location operator are shared between the constituents, then the constituents stay independent and 

keep their characteristics. Still superposition coefficients may rule the relative contribution of these 

properties. The properties are added per property type and these sums are not affected by the 

superposition. 

24.1 Closed strings 
Elementary particles are represented by coherent location swarms that also implement a folded 

hopping path. At rest this hopping path is closed. Adding extra hops may open the hopping path. This 

means that the sum of all hops may no longer equal zero. As a consequence the swarm moves. If a 

closed string of hops is added, then on average the swarm still stays at the same location, but at the 

same time the swarm oscillates. Such oscillations occur inside atoms. 

The added hops act for the whole swarm as displacement generators. In this way, the corresponding 

quaternions can be supposed to act as superposition coefficients. 

Other quaternionic superposition coefficients may act as rotators. Special rotators can switch the 

color charge of quarks. They do not affect color-neutral swarms.  

24.2 Open strings 
The closed strings of superposition coefficients enter and leave the composite as open strings. 

Messengers are open strings that relate to particular swarm oscillations. They are known as photons. 

Messengers are also represented by strings of one-dimensional shape keeping fronts. 

Gluons are open strings that relate to swarm rotations. They can switch the color charge of quarks 

Color confinement stimulates that in composites the combined color charge is neutralized. 

24.3 Binding 
The potentials are a means to bind constituents of composites. Embedding potentials form pitches. If 

the particles move or oscillate, then the pitches become ditches. 

The orthomodular base model suggests that at every progression step in every participating 

elementary particle only one swarm element is influenced by the currently existing potentials. 

 Gravitation 
In the orthomodular base model, this is obvious for the gravitation potential which describes the 

deformation of the embedding continuum that is caused by these constituents. All embedding events 

contribute separately to the deformation of the embedding continuum. The constituents produce 

pitches into the embedding continuum and when they oscillate or rotate these pitches transform 

into ditches. The strength of the gravitation potential depends on the number and the coherence of 

the involved swarm elements. 

 Symmetry related potential 
The origin of the symmetry related potential can also take a role in the binding of constituents, but 

this is questionable. The source of the symmetry related potential is probably located at the center of 

mass of the composite and is not located at the centers of mass of the constituents. If the sources of 

this potential would be located on the centers of mass of the constituents, then in case of oscillating 

constituents, this would result in ongoing emission of electromagnetic radiation.  
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24.4 Binding in Fourier space 
In this paper binding between elementary modules is not yet touched in detail.  

If binding between modules is considered, then it is sensible to pass to Fourier space and take the 

Fourier transforms of the quaternionic functions that represent the location density distributions. In 

this way the location probability density distributions become characteristic functions and 

convolutions that represent mutual blurring convert in “simple” multiplications. This is the approach 

that is applied in quantum field dynamics. It is also the approach that is applied in Fourier optics. 

For example the second order partial differential equation for the embedding continuum and the 

corresponding continuity equations can be transformed to Fourier space. 

 

∇∗∇𝜓 = ∇0∇0𝜓 + ⟨𝛁,𝛁⟩𝜓 = 𝜌 

𝜙 = ∇𝜓 

∇∗𝜙 = 𝜌 

 

𝑝∗𝑝 𝜓̃ = 𝑝0𝑝0 𝜓̃ + ⟨𝒑, 𝒑⟩ 𝜓̃ = 𝜌̃ 

𝜙̃ = 𝑝 𝜓̃ 

𝑝∗𝜙̃ = 𝜌̃ 

 

 Comparing to Fourier optics 
In Fourier optics the lenses play the role of boundary conditions and the Fourier transform of the 

Point Spread Function is used as imaging quality characteristic for the lens. It is known as the Optical 

Transfer Function (OTF) of the lens. Thus the Point Spread Function acts as a kind of Green’s function 

for the lens. The Fourier transform of the target picture equals the product of the OTF and the 

Fourier transform of the object distribution. The OTF depends on the angular and chromatic 

distribution of the participating objects. The OTF also depend on the homogeneity of the phases of 

the participating probability waves. The OTF of a series of subsequent imaging components equals 

the product of the OTF’s of the separate components. This simple rule only holds for ideal conditions 

in which angular distributions, chromatic distributions and phase homogeneity play a negligible role. 

Not only the modulus of the characteristic is important, but also the transfer of phases matters. The 

modulus determines what part of the energy of the investigated object is present in the direct 

vicinity of the center of the image. The phase transfer determines the dispersion of the wave 

package that constitutes the object. It depends on the location where the image is observed. Due to 

the fact that the swarm is recurrently regenerated, the dispersion does not play a significant role. 

In quantum physics the generated swarm acts as a first imaging element It includes the starting 

conditions. The embedding continuum 𝜓 presents the boundary conditions. Its Fourier transform 𝜓̃ 

acts as a corresponding mapping quality characteristic. In this way it forms the next component of 

the imaging chain. In rather flat conditions the Fourier transform of the Green’s function of the 

embedding field acts as the imaging quality characteristic of this  field. Together the Fourier 

transform of the location density distribution of the swarm and the (local) Fourier transform of the 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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embedding continuum form the imaging quality characteristic of the moving particle(s). This quality 

characteristic qualifies the capability to keep the coherence of the particles and the composites. 

24.5 Contemporary physics 
Here we compare with results of contemporary physics. 

 Atoms 
For stable composites, such as atoms, an ongoing emission of electromagnetic radiation is obviously 

not the case. Still the behavior of atoms with respect to absorption and emission of photons indicate 

that the electrons cause an oscillation in concordance with the patterns of spherical harmonics. 

However, this oscillation occurs in the embedding continuum and does not concern the “location” of 

the electron charges. 

For atoms and its composites, the strength of the symmetry related potential does not depend on 

the number of involved swarm elements. That number influences the deformation of the field, which 

embeds the elementary particles that together constitute the atom. 

The behavior of the shell of atoms is described by spherical harmonics that are solutions of the 

homogeneous second order partial differential equation. This equation describes vibrations of the 

embedding continuum. These vibrations are caused by (non-isotropic) recurrent embedding of the 

electrons. These vibrations are described by the Helmholtz equation that describes the local behavior 

of the embedding field. 

 Hadrons 
In hadrons the situation is different. There the binding is also regulated by gluons. Gluons are capable 

of rotating quarks such that their color charge switches to another value. Gluons can join in strings. 

As rotators they act in pairs. Gluons do not affect isotropic swarms. 

 Standard model 
In the standard model of contemporary physics the symmetry related potential that governs the 

binding of electrons in atoms is considered to be the electromagnetic potential. 

The standard model suggests the existence of other potentials that implement weak and strong 

forces. Gluons play a role in the strong force. Massive bosons play a role in the weak force. 

Introducing strong and weak forces suggests that the potentials act on the full swarm and not on the 

individual swarm elements.  
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25 Tri-state spaces 
Quaternions not only fit in the representation of dynamic geometric data. They also match in 

representing three-fold states such as the RGB colors of quarks and the three generation flavors of 

fermions. In all these roles the real part of the quaternion plays the role of progression. Thus 

quaternions can also be used to model neutrino flavor mixing. 

Say that a property is distributed over three mutually independent modes and these modes exist in a 

combination that superposes these three modes. 

The property distribution is characterized by 𝑝𝑥 , 𝑝𝑦, 𝑝𝑧 

cos2( 𝜃𝑥) =
𝑝𝑥

𝑝𝑥 + 𝑝𝑦 + 𝑝𝑧
 

cos2(𝜃𝑥) + cos2(𝜃𝑦) + cos2(𝜃𝑧) = 1 

 

The angles 𝜃𝑥 , 𝜃𝑦, 𝜃𝑧 indicate a direction vector 𝐧 = {𝑛𝑥, 𝑛𝑦, 𝑛𝑧} in three dimensional state 

space. 

|𝑛𝑥|
2 =

𝑝𝑥

𝑝𝑥 + 𝑝𝑦 + 𝑝𝑧
 

cos( 𝜃𝑥) =  𝑛𝑥; |𝒏| = 1 

If state mixing is a dynamic process, then the axis along direction vector 𝒏 acts as the rotation axis. 

The concerned subsystem rotates smoothly as a function of progression. This is not a rotation in 

configuration space. Instead it is a rotation in tri-state space. 

The fact that quaternions can rotate the imaginary part of other quaternions or of complete 

quaternionic functions also holds for tri-states. The quaternions that have equal real and imaginary 

size play a special role. They can shift an anisotropic property to another dimension. They can play a 

role in tri-state flavor switching. 

E.M. Lipmanov has indicated that generation flavor mixing is related to a special direction vector in 

ordered three dimensional space [22][23]. This singles out a direction vector in the 3D phase space. 

That direction vector is defined by the angles of this vector with respect to the base vectors of the 

Cartesian coordinate system of that phase space. 

cos2(2 𝜃12) + cos2(2 𝜃23) + cos2(2 𝜃31) = 1 

cos2(2 𝜃𝑒) + cos2(2 𝜃𝜇) + cos2(2 𝜃𝜏) = 1 

cos2(2 𝜃𝑢) + cos2(2 𝜃𝑐) + cos2(2 𝜃𝑡) = 1 

cos2(2 𝜃𝑑) + cos2(2 𝜃𝑠) + cos2(2 𝜃𝑏) = 1 

The projection of the direction vector on the coordinate base vectors appears to relate to generation 

masses. Generation flavor mixing is well known as a phenomenon that occurs for neutrinos when 

they travel through space. 

In the orthomodular base model the rest mass of the elementary particle is related to the number of 

the elements in the location swarm that the mechanism 𝔐𝑛 picks from the symmetry center. 
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26 Photons 
Photons are configured by solutions of the quaternionic second order partial differential equation. 

For odd numbers of participating dimensions the solutions of the homogeneous second order partial 

differential equation are combinations of shape keeping fronts. In three dimensions the spherical 

shape keeping fronts diminish their amplitude as 1/𝑟 with distance 𝑟 of the trigger point. One-

dimensional wave fronts keep their amplitude. As a consequence these shape keeping fronts can 

travel huge distances through the field that supports them. Each shape keeping front can carry a bit 

of information and/or energy. In order to reach these distances the carrying field must exist long 

enough and it must reach far enough.  

The symmetry related field 𝔄 does not fulfil the requirements for long distance travel. It depends on 

the nearby existence of symmetry related charges and its amplitude also diminishes as 1/r with 

distance from the charge. 

The embedding field ℭ is a better candidate for long distance transfer of energy and information. ℭ 

exists always and everywhere. One-dimensional shape keeping fronts vibrate the ℭ field, but do not 

deform this field. They just follow existing deformations.  

Creating a string of one-dimensional shape keeping fronts requires a recurrent shape keeping front 

generation process. Such processes do not underlay the generation of symmetry related charges that 

support the 𝔄 field. However, such processes exist during the recurrent embedding of artifacts that 

occurs in the ℭ field. 

Recurrent generation of spherical shape keeping fronts is capable to deform the corresponding field. 

It has similar effects as a stationary deformation by a point-like artifact has. 

The fixed speed of shape keeping fronts translates in the same fixed speed for the photons. A string 

of one-dimensional shape keeping fronts can carry a quantized amount of energy. The relation 𝐸 =

ℎ 𝜈 and the fixed speed of photons indicate that at least at relative short range the string of shape 

keeping fronts takes a fixed amount of progression steps for its creation, for its passage and for its 

absorption.  

However, observations of long range effects over cosmological distances reveal that these relations 

do not hold over huge distances. Red-shift of patterns of “old” photons that are emitted by atoms 

and arrive from distant galaxies indicate that the spatial part of field ℭ is extending as a function of 

progression. 

With the interpretation of photons as strings of shape keeping fronts this means that the duration of 

emission and the duration of absorption are also functions of progression. As a consequence, some 

of the emitted wave fronts are “missed” at later absorption. The detected photon corresponds to a 

lower energy and a lower frequency than the emitted photon has. According to relation 𝐸 = ℎ 𝜈 that 

holds locally, the detected photon appears to be red-shifted. The energy of the “missed” shape 

keeping fronts is converted into other kinds of energy or the missed shape keeping fronts keep 

proceeding as lower energy photons. Spurious shape keeping fronts may stay undetected. 

Thus, the quaternionic second order partial differential equation may be valid in the vicinity of the 

images of symmetry centers inside ℭ, but does not properly describe the long range behavior of ℭ. 

Due to its restricted range and the non-recurrent generation of its charges, the 𝔄 field does not show 

the equivalents of photons and red-shift phenomena. 
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The long range phenomena of photons indicate that the parameter space ℜ⓪ of ℭ may actually own 

an origin. For higher progression values and for most of the spatial reach of field ℭ, that origin is 

located at huge distances. Information coming from low progression values arrives with photons that 

have travelled huge distances. They report about a situation in which symmetry centers were located 

on average at much smaller inter-distances. 

Instead of photons the 𝔄 field may support waves, such as radio waves and microwaves. These 

waves are solutions of the wave equation, which is part of Maxwell based differential calculus. 

On the other hand the wave equation also has shape keeping fronts as its solutions. 
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27 Inertia 

27.1 Field corresponding to symmetry center 
Dedicated mechanisms use symmetry centers as resource for the generation of the locations of 

elementary particles. Symmetry centers are interesting as a subject for studying inertia. They have a 

spherical shape and a finite active radius. The activity of the mechanisms can be characterized by a 

normalized continuous density distribution. As an example we apply a Gaussian density distribution.  

𝜌(𝒓) =
𝑄

2𝜋 𝜎3√2𝜋
 exp(−

|𝒓 − 𝒓′|2

2𝜎2 ) 

Here 𝒓′ is the location of the center of the symmetry center. The produced distribution moves 

together with the symmetry center.  

The potential of a Gaussian density distribution 𝜌(𝑟) equals: 

 

𝜑0(𝒓 − 𝒓′) =
𝑄

4𝜋𝑟2 erf (
𝑟2

𝜎√2
) (𝒓 − 𝒓′) ≈

𝑄(𝒓−𝒓′)

4𝜋𝑟2  for large 𝑟 = |𝒓 − 𝒓′|. 

 

Here 𝑟 stands for |𝒓 − 𝒓′|. 

 

This is not the electric potential. This potential is generated in a background embedding field ℭ due 

to the recurrent temporary embedding of artifacts that are taken from the symmetry center. This can 

be shown by computing the double differential of 𝜑0(𝒓): 

 

𝜕 erf(𝑎𝑟)

𝜕𝑟
=

2𝑎

√𝜋
exp(−𝑎2𝑟2) =  

2

𝜎√2𝜋
exp (−

𝑟2

2𝜎2) ; 𝑎 =
1

𝜎√2
 

 

1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕 (
erf(𝑎𝑟)

𝑟 )

𝜕𝑟
) =

2𝑎2

√𝜋
exp(−𝑎2𝑟2) =

1

𝜎2√𝜋
exp(−

𝑟2

2𝜎2) 

The plot of the potential proves that this potential has no singularity. It is smooth near the center 

point. 

The gradient of the potential equals: 

 

𝜵𝜑0 =
𝜕𝜑0

𝜕𝑟

𝒓 − 𝒓′

𝑟
 

= −
𝑄

4𝜋𝑟2
erf (

𝑟

𝜎√2
)
𝒓 − 𝒓′

𝑟
+

𝑄

2𝜋𝑟𝜎√2𝜋
exp (−

𝑟2

2𝜎2)
𝒓 − 𝒓′

𝑟
 

 

(1) 

(2) 

(3) 

(4) 

(5) 
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The potential 𝛽0 adds on top of the average value of the embedding field ℭ. If the observer position 𝜵 

moves with speed 𝜵 relative to the embedding continuum ℭ then as a consequence a corresponding 

contribution to the vector potential: 

 

𝕮(𝒓) = ℭ0
̅̅̅̅ (𝒓) 𝒗 

 

appears to exist. ℭ0
̅̅̅̅ (𝒓) is the average scalar part of the embedding field ℭ(𝒓). Thus, locally: 

 

ℭ0(𝒓) = ℭ0
̅̅̅̅ (𝒓) + 𝜑0(𝒓 − 𝒓′) 

 

𝕮(𝒓) = ℭ0
̅̅̅̅ (𝒓) 𝒓̇ 

 

𝛁ℭ0
̅̅̅̅  ≈ 𝟎 

 

At the observer point the embedding continuum equals: 

 

ℭ = ℭ0
̅̅̅̅ (𝒓) + 𝜑0(𝒓 − 𝒓′) + ℭ0

̅̅̅̅ (𝒓) 𝒓̇ 

 

The scalar and vector potentials go together with a field 𝕰: 

 

𝕰(𝒓) ≡ −
𝜕

𝜕𝜏
𝕮 − 𝜵ℭ(𝒓) = − ℭ0

̅̅̅̅ (𝒓) 𝒓̈ − 𝛁 𝜑0(𝒓 − 𝒓′) 

 

= − ℭ0
̅̅̅̅ (𝒓) 𝒓̈ +

𝑄

4𝜋𝑟2
erf (

𝑟

𝜎√2
)
𝒓

𝑟
−

𝑄

2𝜋𝑟𝜎√2𝜋
exp (−

𝑟2

2𝜎2)
𝒓

𝑟
  

 

For large 𝑟 = |𝒓 − 𝒓′| 

 

𝕰(𝒓 − 𝒓′) ≈ − ℭ0
̅̅̅̅ (𝒓) 𝒓̈ +  

𝑄

4𝜋
𝜵(

1

|𝒓 − 𝒓′|
) = − ℭ0

̅̅̅̅ (𝒓) 𝒓̈ +
𝑄 

4𝜋|𝒓 − 𝒓′|3
(𝒓 − 𝒓′) 

 

Here again 𝒓′ is the geometric center of the symmetry center. Both the acceleration 𝒓̈ and the 

nearness of the artifact with strength Q determine the extra field 𝕰. The first term on the left 

(6) 

(8) 
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represents what is usually is experienced as inertia. The second term represents what is usually is 

experienced as gravitation. 

In his paper “On the Origin of Inertia”, Denis Sciama used the idea of Mach in order to construct the 

rather flat field that results from uniformly distributed charges [17]. He then uses the constructed 

field in order to generate the vector potential, which is experienced by the uniformly moving 

observer. Here we use the embedding field as the rather flat background field. 

27.2 Forces between symmetry centers 
Two different symmetry centers represent two different contributions to field 𝜵. 

The forces between two symmetry centers are specified by. 

 

𝑭𝟏𝟐 = −𝑭𝟐𝟏 =
𝑄1 𝑄2

4𝜋|𝒓1 − 𝒓𝟐|
3
(𝒓1 − 𝒓𝟐) 

 

27.3 Rotational inertia 
If the observer rotates with respect to the embedding field, then the observer experiences a curl that 

is defined by 

 

𝕭 = 𝜵 × 𝝋 

 

If the rotation changes, then this goes together with a rotation of the 𝕰 field, which counteracts the 

increase of the rotation. 

 

𝜕

𝜕𝜏
𝕭 = −𝜵 × 𝕰 

 

In this case the observer experiences rotational inertia. 

  

(9) 

(1) 

(2) 
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28 The dynamic picture 
The paper reveals an intimate relation between basic fields and Hilbert spaces. The dynamics of this 

relation is controlled by mechanisms that are ignored by mainstream physical theories. Via the 

Hilbert spaces and a category of operators that reside in these Hilbert spaces, the basic fields get 

related to pairs of flat parameter spaces and functions that use these parameter spaces. The reverse 

bra-ket method enables the discovery of this relation. 

Symmetry centers that float relative to a reference parameter space are characterized by electric 

charges that relate to the symmetry properties of these spherical symmetric spatial parameter 

spaces. Each of these charges generates a contribution to a corresponding basic field 𝔄. This basic 

field and the charges interact dynamically. A function that describes the behavior of this basic field 

uses the reference parameter space on which the symmetry centers float as its natural parameter 

space. 

The natural reference parameter space can be interpreted as the virgin state of the second basic field 

ℭ, which acts as a model wide embedding continuum. Controlling mechanisms recurrently pick 

artifacts from the symmetry centers. The artifacts get subsequently embedded in the continuum ℭ. 

This embedding is immediately released. 

The controlling mechanisms operate on the rim between past and future. The past is left untouched 

and is kept stored in the eigenspaces of dedicated operators, which reside in the Hilbert spaces.  

The corresponding geometrical data are stored together with a progression stamp in the form of sets 

of discrete quaternions or as quaternionic fields in the eigenspaces of these dedicated operators.  

The controlling mechanisms and the restrictions that are set by the properties of the Hilbert spaces 

take care that the dynamical coherence of the model-wide step-wise embedding of the separable 

Hilbert space into the non-separable Hilbert space is ensured.  

The dynamics is enforced by the point-like artifacts, which are generated by the actions of the 

controlling mechanisms. The embedding of these artifacts cause discontinuities and vibrations in the 

affected continuum.  

In this way the sets of differential equations can describe the evolutions of the basic fields that play a 

role in this model.  

This paints the dynamic picture that is described by the differential equations, which describe the 

behavior of the mentioned basic fields, which indirectly describe the behavior of the recurrently 

embedded artifacts. 

In this interpretation the history of the model does not start with a big bang, but instead it starts with 

the virgin states of the basic fields. These virgin states are represented by their natural parameter 

space. The basic fields share the same natural parameter space. 
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29 Action 
The set of basic fields that occur in the model form a system. These fields interact at a finite number 

of discrete locations. The symmetry related 𝔄𝑥 fields always attach to the geometrical center of a 

dedicated symmetry center. The ℭ field attaches at a stochastically determined location somewhere 

in the vicinity of this geometric center. However, integrated over the regeneration cycle of the 

corresponding particle the averaged attachment point coincides with the geometric center of the 

symmetry center. Thus, in these averaged conditions the two fields can be considered as being 

superposed. In the averaged mode the ℭ field has weak extrema. The 𝔄𝑥 fields always have strong 

extrema. In the averaged mode the fields can be superposed into a new field 𝔉 that share the 

symmetry center related extrema. 

The path of the geometric center of the symmetry center is following the least action principle. 

This is not the hopping path along which the corresponding particle can be detected. 

The coherent location swarm {𝑎𝑖
𝑥} also represents a hopping path. Its coherence means that the 

swarm owns a continuous location density distribution that characterizes this swarm. A more 

far reaching coherence requirement is that the characterizing continuous location density 

distribution also has a Fourier transform. As a consequence the swarm owns a displacement 

generator. This means that at first approximation the swarm moves as one unit. These facts have 

much impact on the hopping path and on the movement of the underlying symmetry center. The 

displacement generator that characterizes part of the dynamic behavior of the symmetry center 

is represented by the momentum operator 𝒑. 

We suppose that momentum 𝒑 is constant during the particle generation cycle. Every hop gives 

a contribution to the path. These contributions can be divided into three steps per contributing 

hop: 

1. Change to Fourier space. This involves inner product 〈𝑎𝑖|𝑝〉. 

2. Evolve during an infinitesimal progression step into the future.  

a. Multiply with the corresponding displacement generator 𝒑.  

b. The generated step in configuration space is (𝑎𝑖+1 − 𝑎𝑖). 

c. The action contribution factor in Fourier space is 〈𝒑, 𝒂𝑖+1 − 𝒂𝑖〉. 

d. The term contributes a factor 〈𝑎𝑖|𝑝〉𝑙𝑛(〈𝒑, 𝒂𝑖+1 − 𝒂𝑖〉)〈𝑝|𝑎𝑖+1〉. 

3. Change back to configuration space. This involves inner product 〈𝑝|𝑎𝑖+1〉 

Two subsequent steps give: 

 

〈𝑎𝑖|𝑝〉𝑙𝑛(〈𝒑, 𝒂𝑖+1 − 𝒂𝑖〉)〈𝑝|𝑎𝑖+1〉〈𝑎𝑖+1|𝑝〉𝑙𝑛(〈𝒑, 𝒂𝑖+1 − 𝒂𝑖〉)〈𝑝|𝑎𝑖+2〉 

 

= 〈𝑎𝑖|𝑝〉𝑙𝑛(〈𝒑, 𝒂𝑖+2 − 𝒂𝑖〉)〈𝑝|𝑎𝑖+2〉 

 

The terms in the middle turn into unity. The logarithms also join. 

Over a full particle generation cycle with N steps this results in: 

∏〈𝑎𝑖|𝑝〉𝑙𝑛(〈𝒑, 𝒂𝑖+1 − 𝒂𝑖〉)〈𝑝|𝑎𝑖+1〉

𝑁−1

𝑖=1

 

(1) 

(2) 
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= 〈𝑎1|𝑝〉𝑙𝑛(〈𝒑, 𝒂𝑁 − 𝒂1〉)〈𝑝|𝑎𝑁〉 = 〈𝑎1|𝑝〉 ln (∑〈𝒑, 𝒂𝑖+1 − 𝒂𝑖〉

𝑁

𝑖=2

) 〈𝑝|𝑎𝑁〉 

= 〈𝑎1|𝑝〉 ln(𝐿) 〈𝑝|𝑎𝑁〉 

 

𝐿 𝑑𝜏 = ∑〈𝒑, 𝒂𝑖+1 − 𝒂𝑖〉

𝑁−1

𝑖=2

= 〈𝒑, 𝑑𝒒〉 

𝐿 = 〈𝒑, 𝒒̇〉 

 

𝐿 is known as the Lagrangian. 

Equation (4) holds for the special condition in which 𝒑 is constant. If 𝒑 is not constant, then the 

Hamiltonian 𝐻 varies with location. 

 

𝜕𝐻

𝜕𝑞𝑖
= −𝑝̇𝑖 

 

𝜕𝐻

𝜕𝑝𝑖
= 𝑞̇𝑖 

 

𝜕𝐿

𝜕𝑞𝑖
= 𝑝̇ 

 

𝜕𝐿

𝜕𝑞̇𝑖
= 𝑝𝑖 

 

𝜕𝐻

𝜕𝜏
= −

𝜕𝐻

𝜕𝜏
 

 

𝑑

𝑑𝜏

𝜕𝐿

𝜕𝑞̇𝑖
=

𝜕𝐿

𝜕𝑞𝑖
 

 

𝐻 + 𝐿 = ∑𝑞̇𝑖𝑝𝑖

3

𝑖=1

 

Here we used proper time 𝜏 rather than coordinate time 𝑡. 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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30 Cosmology 
Most of the extreme locations are point-like locations. Parts 𝔔 of universe can be separated from 

other parts by borders 𝜕𝔔 that define regions were the generalized Stokes theorem holds. This 

divides universe into compartments. At the border of these compartments holds the differential 

equation that defines the relation between field 𝔉 and its exterior derivative 𝑑𝔉. However in 

absence of local discontinuities that relation must also hold for locations inside region 𝔔. 

In these regions the total action is constant. 

 

∫ 𝑑𝔉
𝔔

= ∮ 𝔉
𝜕𝔔

= 𝐴 

 

It means that inside that region the variation principle can be applied. 
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31 Conclusion 
It appears sensible to suggest that physical reality mimics a network of mathematical structures that 

is used and controlled by a set of coherence ensuring management mechanisms. This setup aims at 

reducing relational complexity and it prevents dynamical chaos. The network consists of chains of 

structures that each start with a rather simple foundation. The major chain starts with an 

orthomodular lattice. 

In this way an orthomodular base model emerges with inescapable evidence. This model treats all 

discrete objects as modules or modular systems that are embedded in continuums. This is supported 

by an infinite dimensional separable Hilbert space and a companion non-separable Hilbert space. 

Both Hilbert spaces act as structured storage media. The management mechanisms ensure the 

dynamic and spatial coherence. This leads to a model in which progression steps in the discrete part 

and flows in the continuous part of the model. 

A category of well-ordered operators is set apart as physically relevant operators. The well-ordering 

introduces a dynamic geometric model in which the eigenspaces of well-ordered operators in 

separable Hilbert space are embedded in continuum eigenspaces of corresponding operators that 

reside in the companion Gelfand triple. In this way the application of the generalized Stokes theorem 

is enforced that uses the spatial part of a quaternionic parameter space as a boundary for a part of a 

full quaternionic parameter space. In this way dynamics occurs at the rim between history and 

future. On this rim operate controlling mechanisms that generate the new data. In the form of local 

parameter spaces, symmetry centers are introduced as local platforms for these artifacts. They are 

encapsulated in a separate boundary. The symmetry centers float on the background parameter 

space. 

By introducing a background space and a set of symmetry center types, this paper exploits the way in 

which quaternionic number systems can be ordered. This distinguishes between Cartesian ordering 

and spherical ordering and it reveals that these ordered versions of the number systems exist in 

several distinct symmetry flavors. Locally, the background space needs no origin and as a 

consequence it does not feature spin. The coupling of symmetry centers onto the background space 

offers the possibility to define an algorithm that computes corresponding symmetry related charges 

that are in agreement with the short list of electric charges and other discrete properties of 

elementary particles. For example, also the diversity of color charge and spin can be explained in this 

way. This indicates that elementary particles inherit these properties from the space in which they 

were generated. 

An important role is played by controlling mechanisms that are not part of the Hilbert spaces, but 

that make use of the Hilbert spaces as a structured storage medium. The elementary particles inherit 

their properties both from the Hilbert space and from these controlling mechanisms. 

This paper also considers the embedding field ℭ. It uses the same parameter space ℜ as the 

symmetry related fields 𝔄𝑥 do. The embedding field obeys the same quaternionic differential 

calculus as the symmetry related fields, but the triggers that cause discontinuities differ 

fundamentally between these fields. That is why these fields behave differently. Still both types of 

fields determine the kinematics of elementary particles.  

The habits and diversity of quaternions play an essential role in the extension of the orthomodular 

base model. These habits cause a variety of module types that differ in their properties and in their 

behavior. The generation of the modules is controlled by stochastic management mechanisms. The 
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behavior of the modules and of the continuums is both initiated and restricted by the embedding 

process. 

According to the model, history is precisely determined and stored in the Hilbert spaces. The 

controlling mechanisms act in a short period around the current progression value. Each mechanism 

acts in a sliding window that is represented by a closed subspace of the separable Hilbert space. The 

future is unknown, but it is restricted by the capabilities of the orthomodular base model and the by 

the controlling mechanisms.  

The section about photons indicates that in contrast to what is usually suggested photons are not 

waves of the electric fields 𝔄𝑥. Instead they vibrate the embedding field ℭ and follow its 

deformations. They do not themselves deform this field. 

The behavior of “old” photons indicates that the validity range of the second order partial differential 

equations is restricted. 

This paper does not consider in depth the mutual binding of elementary modules. Nor does it treat 

the effects of arbitrary boundary conditions. 

The development of mathematical tools that are used by physicists did not always occur in sync with 

the sometimes violent development of physical theories. Sometimes choices were made that would 

not have been taken when the proper mathematical tools were developed in an earlier phase. The 

paper shows that when looking back on this development , some leading physicists did not always 

provide the most sensible choice. They cannot be blamed for that choice, but as a consequence, the 

models of contemporary physics are more complicated than is necessary and do not reach as deep as 

is possible. It will be difficult to repair that situation.  

If the target is to investigate the foundations of physical reality, then it is sensible to apply the most 

advanced mathematical tools and obey the restrictions that are set by these tools. 
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32 Timeline of developments 
Physical models use mathematical tools. The development of mathematical tools did not evolve in 

sync with the development of the physical models that use these tools. Complicated mathematical 

tools took several decades before they matured. 

In 1843 quaternions were discovered by Rowan Hamilton [10].  

Maxwell published an early form of his equations between 1861 and 1862. 

The Hilbert space was discovered in the first decades of the 20-th century by David Hilbert and others 

[4]. 

Quantum theory developed into a useful formulation in the first decades of the twentieth century. 

[1] 

Quantum logic was introduced by Garret Birkhoff and John von Neumann in their 1936 paper [2]. 

In the second half of the twentieth century Constantin Piron and Maria Pia Solèr proved that the 

number systems that a separable Hilbert space can use must be division rings [5]. 

Paul Dirac introduced the bra-ket notation, which popularized the usage of Hilbert spaces. Dirac also 

introduced its delta function, which is a generalized function. Spaces of generalized functions offered 

continuums before the Gelfand triple arrived [6]. 

In the sixties Israel Gelfand and Georgyi Shilov introduced a way to model continuums via an 

extension of the separable Hilbert space into a so called Gelfand triple. The Gelfand triple often gets 

the name rigged Hilbert space. It is a non-separable Hilbert space [7]. 

Later in the twentieth century quaternions fell in oblivion. 

Quite recently the reverse bra-ket method was introduced by the author. 
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