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Abstract

This paper starts from the idea that physical reality implements a network of a small number of
mathematical structures. Only in that way can be explained that observations of physical reality fit so
well with mathematical methods.

The mathematical structures do not contain mechanisms that ensure coherence. Thus apart from the
network of mathematical structures a model of physical reality must contain mechanisms that
manage coherence such that dynamical chaos is prevented.

Reducing complexity appears to be the general strategy. The structures appear in chains that start
with a foundation. The strategy asks that especially in the lower levels, the subsequent members of
the chain emerge with inescapable self-evidence from the previous member. The chains are
interrelated and in this way they enforce mutual restrictions.

As a consequence the lowest levels of a corresponding mathematical model of physical reality are
rather simple and can easily be comprehended by skilled mathematicians.

In order to explain the claimed setup of physical reality, the paper investigates the foundation of the
major chain. That foundation is a skeleton relational structure and it was already discovered and
introduced in 1936.

The paper does not touch more than the first development levels. The base model that is reached in
this way puts already very strong restrictions to more extensive models.

As part of the investigation the paper compares two sets of differential equations that both give a
description of the behavior of physical fields.

Some of the features of the base model are investigated and compared with results of contemporary
physics.

If the model introduces new science, then it has fulfilled its purpose.
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1 Introduction
Physical reality is that what physicists try to model in their theories. It appears that observations of
features and phenomena of physical reality can often be explained by mathematical structures and
mathematical methods. This is not strange, because these mathematical structures and methods are
often designed by using examples that are obtained by carefully observing reality as a guidance.

This leads to the unorthodox idea that physical reality itself incorporates a small set of mathematical
structures. In that case physical reality will show the features and phenomena of these structures.

In humanly developed mathematics, mathematical structures appear in chains that start from a
foundation and subsequent members of the chain emerge with inescapable self-evidence from the
previous member. The chains are often interrelated and impose then mutual restrictions. It is
obvious to expect a similar setup for the structures that are maintained by physical reality.

Physical reality is known to show coherence. Its behavior is far from chaotic. The incorporated
mathematical structures do not contain mechanisms that ensure coherence. The structures may only
help to ensure coherence. Thus apart from the network of mathematical structures a model of
physical reality must contain mechanisms that manage coherence such that dynamical chaos is
prevented.

In physical reality, reducing complexity appears to be the general strategy.

One chain is expected to play a major role and its foundation can be viewed as the major foundation
of the investigated model of physical reality. The discovery of this foundation is essential for
explaining how the network of incorporated mathematical structures is configured.

2 Physical theories
Physical theories support their application by describing the applied structures and the applied
phenomena. The aim of these theories is not the explanation of the origins of these structures and
phenomena. The fact that the described structures and phenomena can be applied means that these
subjects can be observed. This is the main reason behind the claim of what is called the scientific
method. The scientific method requires that every significant physical statement must be verified by
experiments.

This paper investigates deeper than physical theories tend to do. It explores the potential relation
between mathematical theories and physical reality in order to explain structures and phenomena
that follow from a selected set of mathematical foundations.

It will not be possible to prove that the corollaries of the mathematical models will represent the
observable structures and phenomena of the physical model. On the other hand, the mathematical
model might enhance the insight into corresponding physical models.

For example this paper applies quaternionic differential calculus as alternative for or addition to
Maxwell based differential calculus and it applies quaternionic Hilbert spaces in ways that are not
exploited by current physical theories.



3 The major chain

3.1 The foundation
This paper uses the skeleton relational structure that in 1936 was discovered by Garret Birkhoff and
John von Neumann as the major foundation of the model. Birkhoff and von Neumann named it
“quantum logic”[1].

The ~25 axioms that define an orthocomplemented weakly modular lattice form the first principles
on which according to this paper the model of physical reality is supposed to be built [2]. Another
name for this lattice is orthomodular lattice. Quantum logic has this lattice structure. Classical logic
has a slightly different lattice structure. Classical logic has the structure of an orthocomplemented
modular lattice. Due to this resemblance, the discoverers of the orthomodular lattice gave quantum
logic its name. The treacherous name “quantum logic” has invited many scientists to deliberate in
vain about the significance of the elements of the orthomodular lattice as logical propositions. For
our purpose it is better to interpret the elements of the orthomodular lattice as construction
elements rather than as logic propositions.

By taking this point of view, the selected foundation can be considered as part of a recipe for modular
construction. What is missing are the binding mechanism and a way to hide part of the relations that

exist inside the modules from the outside of the modules. That functionality is supposed to be realized
in higher levels of the model.

Thus, being a member of an orthomodular lattice is not enough in order to become a member of a
modular system.

3.2 Extending the major chain
The next level of the major chain of mathematical structures emerges with inescapable self-evidence
from the selected foundation.

Not only quantum logic forms an orthomodular lattice, but also the set of closed subspaces of an
infinite dimensional separable Hilbert space forms an orthomodular lattice [1].

Where the orthomodular lattice was discovered in the thirties, the Hilbert space was introduced
shortly before that time [3]. The Hilbert space is a vector space that features an inner product. The
orthomodular lattice that is formed by its set of subspaces makes the Hilbert space a very special
vector space.

The Hilbert space adds extra functionality to the orthomodular lattice. This extra functionality
concerns the superposition principle and the possibility to store numeric data in eigenspaces of
normal operators. In the form of Hilbert vectors the Hilbert space features a finer structure than the
orthomodular lattice has.

These features caused that Hilbert spaces were quickly introduced in the development of quantum
physics.

Numbers do not exist in the realm of a pure orthomodular lattice. Via the Hilbert space, number
systems emerge into the model. Number systems do not find their foundation in the major chain.
Instead they belong to another chain of mathematical structures. The foundation of that chain
concerns mathematical sets.

The Hilbert space can only handle members of a division ring for specifying superposition
coefficients, for the eigenvalues of its operators and for the values of its inner products. Only three



suitable division rings exist: the real numbers, the complex numbers and the quaternions. These facts
were already known in the thirties but became a thorough mathematical prove in the second half of
the twentieth century [4].

Separable Hilbert spaces act as structured storage media for discrete data that can be stored in real
numbers, complex numbers or quaternions. Quaternions enable the storage of 1+3D dynamic
geometric data that have an Euclidean geometric structure.

The qualification “separable” requests that eigenspaces of operators are countable. This means that
eigenvalues are restricted to the rational versions of the supported number systems.

The confinement to division rings puts strong restrictions onto the model. These restrictions reduce
the complexity of the whole model.

Thus, selecting a skeleton relational structure that is an orthomodular lattice as the foundation of the
model already puts significant restrictions to the model. On the other hand, as can be shown, this
choice promotes modular construction. In this way it eases system configuration and the choice
significantly reduces the relational complexity of the final model. Quaternions and their notations are
treated in the appendix.



4 Consequences of the currently obtained model
The orthomodular lattice can be interpreted as a part of a recipe for modular construction. What is
missing are means to bind modules and means to hide relations that stay inside the module from the
outside of the module. This functionality must be supplied by extensions of the model. It is partly
supplied by the superposition principle, which is introduced via the separable Hilbert space.

The current model does not yet support coherent dynamics and it does not support continuums. The
selected foundation and its extension to a separable Hilbert space can be interpreted in the following
ways:

e Each discrete construct in this model is supposed to expose the skeleton relational structure
that is defined as an orthomodular lattice.

e Each discrete construct in this model is either a module or a modular system.

e Every discrete construct in this model can be represented by a closed subspace of a single
infinite dimensional separable quaternionic Hilbert space.

e Every module and every modular system in this model can be represented by a closed
subspace of a single infinite dimensional separable quaternionic Hilbert space.

However

e Not every closed subspace of the separable Hilbert space represents a module or a modular
system.

Modular construction eases system design and system configuration. Modular construction handles
its resources in a very economically way. With sufficient resources present it can generate very
complicated constructs.

The modular construction recipe is certainly the most influential rule that exists in the generation
of physical reality. Even without intelligent design it achieved the construction of intelligent
species.



5 Supporting continuums

The separable Hilbert space can only handle discrete numeric data. Physical reality also supports
continuums. The eigenspaces of the operators of the separable Hilbert space are countable.
Continuums are not countable. Thus, separable Hilbert spaces cannot support continuums.

Soon after the introduction of the Hilbert space, scientists tried to extend the separable Hilbert space
to a non-separable version that supports operators, which feature continuums as eigenspaces. With
his bra-ket notation for Hilbert vectors and operators and by introducing generic functions, such as
the Dirac delta function, Paul Dirac introduced ways to handle continuums [5]. This approach became
proper mathematical support in the sixties when the Gelfand triple was introduced [6].

Every infinite dimensional separable Hilbert space owns a Gelfand triple. In fact the separable
Hilbert space can be seen as embedded inside this Gelfand triple. How this embedding occurs in
mathematical terms is still obscure. It appears that the embedding process allows a certain amount
of freedom that is exploited by the mechanisms, which are contained in physical reality and that
have the task to ensure spatial and dynamic coherence. These mechanisms apply stochastic
operators in order to perform their functionality.

This paper introduces methods that relate a category of operators, which reside in the separable
Hilbert space and corresponding operators, which reside in the Gelfand triple to continuous functions
and their parameter spaces. These methods are based on Dirac’s bra-ket notation. These methods
relate the separable Hilbert space and its Gelfand triple in a more strict way than embedding
pursues.

In the separable Hilbert space the closed subspaces have a well-defined numeric dimension. In
contrast, in the non-separable companion the dimension of closed subspaces is in general not
defined. The embedding of subspaces of the separable Hilbert space in a subspace of the non-
separable Hilbert space that represents an encapsulating composite will at least partly hide the
characteristics and interrelations of embedded constituents. This hiding is required for constituents
of modular systems.

Subspaces that represent continuum eigenspaces cannot have a countable dimension. They certainly
cannot have a finite dimension. In fact the dimension of such subspaces makes little sense.

In this paper we usually ignore the fact that operators that have countable eigenspaces also have an
equivalent in the Gelfand triple. One may ask why reality needs the separable Hilbert spaces when
the Gelfand triple can handle both discrete and continuum data. The reason is that all or most of the
mechanisms that control reality do not act on the Gelfand triple. These mechanisms only control the
separable Hilbert space. These mechanisms work in a stepwise fashion that is supported by
stochastic operators, which only reside in the separable Hilbert space. Stochastic processes supply
the eigenvalues of these operators. The non-separable Hilbert spaces appear to take care of the
support of the continuums.

1 Quaternionic Hilbert spaces
Separable Hilbert spaces are linear vector spaces in which an inner product is defined. This inner
product relates each pair of Hilbert vectors. The value of that inner product must be a member of a
division ring. Suitable division rings are real numbers, complex numbers and quaternions. This paper
uses quaternionic Hilbert spaces [2][3][4].
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Paul Dirac introduced the bra-ket notation that eases the formulation of Hilbert space habits [5].

(xly) = (ylx)* (1)
(x + yl|z) = (x|z) + (y|2) (2)
(ax|y) = a(x|y) (3)
(xlay) = (x|y) a” (4)

(x| is a bra vector. |y) is a ket vector. a is a quaternion.

This paper considers Hilbert spaces as no more and no less than structured storage media for
dynamic geometrical data that have an Euclidean signature. Quaternions are ideally suited for the
storage of such data. Quaternionic Hilbert spaces are described in “Quaternions and quaternionic
Hilbert spaces” [6].

The operators of separable Hilbert spaces have countable eigenspaces. Each infinite dimensional
separable Hilbert space owns a Gelfand triple. The Gelfand triple embeds this separable Hilbert space
and offers as an extra service operators that feature continuums as eigenspaces. In the
corresponding subspaces the definition of dimension loses its sense.

1.1 Tensor products
The tensor product of two quaternionic Hilbert spaces is a real Hilbert space [7]. For that reason this
model does not apply tensor products. As a consequence Fock spaces are not applied in this paper.

Instead the paper represents the whole model by a single infinite dimensional separable
guaternionic Hilbert space and its companion Gelfand triple. Elementary objects and their
composites will be represented by subspaces of the separable Hilbert space. Their local living spaces
coexist as eigenspaces of dedicated operators.

1.2 Representing continuums and continuous functions
Operators map Hilbert vectors onto other Hilbert vectors. Via the inner product the operator T may
be linked to an adjoint operator T.

(Tx|y) = (x|T"y) (1)

(Txly) = (y|Tx)" = (TTy|x)" (2)
A linear quaternionic operator T, which owns an adjoint operator T is normal when

THVT = TTT (3)

Ty = (T + TT)/Z is a self adjoint operatorand T = (T - TT)/Z is an imaginary normal operator.
Self adjoint operators are also Hermitian operators. Imaginary normal operators are also anti-
Hermitian operators.

By using what we will call reverse bra-ket notation, operators that reside in the Hilbert space and
correspond to continuous functions, can easily be defined by starting from an orthonormal base of
vectors. In this base the vectors are normalized and are mutually orthogonal. The vectors span a
subspace of the Hilbert space. We will attach eigenvalues to these base vectors via the reverse bra-
ket notation. This works both in separable Hilbert spaces as well as in non-separable Hilbert spaces.
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Let {q;} be the set of rational quaternions in a selected quaternionic number system and let {|g;)} be
the set of corresponding base vectors. They are eigenvectors of a normal operator R = |q;)q;{q;|-
Here we enumerate the base vectors with index B

R = 9:)q:{q;l (4)
R is the configuration parameter space operator.

Ry = (.‘R + .‘RT)/Z is a self-adjoint operator. Its eigenvalues can be used to arrange the order of the
eigenvectors by enumerating them with the eigenvalues. The ordered eigenvalues can be interpreted
as progression values.

R= (R — RT)/Z is an imaginary operator. Its eigenvalues can also be used to order the
eigenvectors. The eigenvalues can be interpreted as spatial values and can be ordered in several
ways.

Let f(g) be a mostly continuous quaternionic function. Now the reverse bra-ket notation defines
operator f as:

f=lanf(@){al (5)

f defines a new operator that is based on function f(q). Here we suppose that the target values of f
belong to the same version of the quaternionic number system as its parameter space does.

Operator f has a countable set of discrete quaternionic eigenvalues.

For this operator the reverse bra-ket notation is a shorthand for

If y) = Y (laif@iaiy) (6

In a non-separable Hilbert space, such as the Gelfand triple, the continuous function F(q) can be
used to define an operator, which features a continuum eigenspace.

F = |q)F(q){ql (7)

Via the continuous quaternionic function F(q), the operator F defines a curved continuum F. This
operator and the continuum reside in the Gelfand triple, which is a non-separable Hilbert space.

R = |q)q{ql (8)

The function F(q) uses the eigenspace of the reference operator R as a flat parameter space that is
spanned by a quaternionic number system {q}. The continuum F represents the target space of
function F(q).

12



Here we no longer enumerate the base vectors with index i. We just use the name of the parameter.
If no conflict arises, then we will use the same symbol for the defining function, the defined operator
and the continuum that is represented by the eigenspace.

For the shorthand of the reverse bra-ket notation of operator F the integral over g replaces the
summation over g;.

(x|F y) = f xlO)F@laly) dg (9)
q

Remember that quaternionic number systems exist in several versions, thus also the operators f and
F exist in these versions. The same holds for the parameter space operators. When relevant, we will
use superscripts in order to differentiate between these versions.

Thus, operator f* = |q{)f*(q){q]| is a specific version of operator f. Function f*(q;*) uses
parameter space R*.

Similarly, F* = |q*)F*(q*){q*| is a specific version of operator F. Function F*(q*) and continuum
F* use parameter space R*. If the operator F* that resides in the Gelfand triple £ uses the same
defining function as the operator F* that resides in the separable Hilbert space, then both operators
belong to the same quaternionic ordering version.

In general the dimension of a subspace loses its significance in the non-separable Hilbert space.

The continuums that appear as eigenspaces in the non-separable Hilbert space H can be considered
as quaternionic functions that also have a representation in the corresponding infinite dimensional
separable Hilbert space $. Both representations use a flat parameter space R* or R* that is spanned
by quaternions. R* is spanned by rational quaternions.

The parameter space operators will be treated as reference operators. The rational quaternionic
eigenvalues {g;'} that occur as eigenvalues of the reference operator R* in the separable Hilbert
space map onto the rational quaternionic eigenvalues {g;} that occur as subset of the quaternionic
eigenvalues {q*} of the reference operator R* in the Gelfand triple. In this way the reference
operator R* in the infinite dimensional separable Hilbert space $ relates directly to the reference
operator R¥*, which resides in the Gelfand triple 7{.

All operators that reside in the Gelfand triple and are defined via a mostly continuous quaternionic
function have a representation in the separable Hilbert space.

1.3 Stochastic operators
Stochastic operators do not get their data from a continuous quaternionic function. Instead a
stochastic process delivers the eigenvalues. Again these eigenvalues are quaternions and the real
parts of these quaternions can be interpreted as progression values. The generated eigenvalues are
picked from a selected parameter space.

Stochastic operators only act in a step-wise fashion. Their eigenspace is countable. Stochastic
operators may act in a cyclic fashion.

The mechanisms that control the stochastic operator can synchronize the progression values with
the model wide progression that is set by a selected reference operator.

13



Characteristic for stochastic operators is that the imaginary parts of the eigenvalues are not smooth
functions of the real values of those eigenvalues.

1.3.1 Density operators

The eigenspace of a stochastic operator may be characterized by a continuous spatial density
distribution. In that case the corresponding stochastic process must ensure that this continuous
density distribution fits. The density distribution can be constructed afterwards or after each
regeneration cycle. Constructing the density distribution involves a reordering of the imaginary parts
of the produced eigenvalues. This act will usually randomize the real parts of those eigenvalues. A
different operator can then use the continuous density distribution in order to generate its
functionality. The old real parts of the eigenvalues may then reflect the reordering. The construction
of the density distribution is a pure administrative action that is performed as an aftermath. The
constructed density operator represents a continuous function and may reside both in the separable
Hilbert space and in the Gelfand triple. The construction of the density function involves a selected
parameter space. That parameter space need not be the same as the parameter space from which
the stochastic process picked its eigenvalues.

1.4 Fourier spaces
Via the Fourier transform of functions, operators can be defined that represent these Fourier
transforms. This also involves a change of the parameter spaces. We will use an accent in order to
indicate the Fourier space version of functions.

f@ = f@ (1)

The function §(q)turns reference operator R into reference operator R and reference operator R
into reference operator R.

R = 19:)4(q:){q;] (2)

R = 19)d(q){q (3)

These operators define the parameter spaces in Fourier space. In the Gelfand triple, the Fourier
transform version f of operator f is defined by:

f=la)f@(1al (4)
Similarly in separable Hilbert space:
f =@ f @)l (5)
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1.5 Notations
The reverse bra-ket notation enables the definition of some special operators that play an unique
role in the model. We will reserve special symbols for these operators and we will also use special
symbols in order to distinguish separable from non-separable Hilbert spaces.

Symbol | Meaning Applied in As

) Separable Hilbert space Model Structured storage

H Non-separable Hilbert space, Gelfand triple Model Structured storage

R Reference operator ) Parameter space

R Reference operator H Parameter space

() Embedding continuum operator H Field, function

A Symmetry related field operator H Field, function

S Symmetry center operator 5 Floating parameter space

o Coherent swarm operator ) Dynamic location distribution
& Mapped coherent swarm operator ) Dynamic location distribution
p Density operator H Density function

The defining function in the reverse bra-ket notation enables the definition of operators in both the
separable Hilbert space $and in the Gelfand triple H Still different symbols are used for reference
operators Rand R

o is a stochastic operator. 4 maps the eigenspace of ¢in parameter space R p is the corresponding
density operator.

2 Change of base

In quaternionic Hilbert space a change of base can be achieved by:

w7 = |c7>{ [@aor@aia dq} (@ly) da -
q q

- f *lOF@Naly) dg
q

F@) = f @la)F @)ala) dg 2)
q
R(q) = f @la)atald) dg 3)
q
i) = [ cloR@)aly) da (@
q
R = 13)q(ql (5)

However, as we see in the formulas this method merely achieves a rotation of parameter spaces and
functions. In the complex number based Hilbert space it would achieve no change at all.

2.1 Fourier transform
A Fourier transform uses a different approach. It is not a direct transform between parameter
spaces, but instead it is a transform between sets of mutually orthogonal functions, which are
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formed by inner products, which are related to different parameter spaces. The quaternionic Fourier
transform exists in three versions. The first two versions have a reverse Fourier transform.

The left oriented Fourier transform is defined by:

FL(G) = f (@l F(a) d (1)
q

Like the functions (q|q’) and (G, |G}), the functions (G, |q) and (q|G,) form sets of mutually
orthogonal functions, as will be clear from:

(qlq"y = 6(q - q") (2)
(q.gL) = 6(G, — q1) (3)

| @aae da, =56 - o) @
qL

[@ilaxala dg = o - ap s)
q

The reverse transform is:

F@ = [ @aF@ da = [ @axaler@) da,de ©
qL qL’q

L

B J{j (lqu)@.la’y qu}T(Q’) dq' = f,é‘(q ~¢)F(q") dq’
q qr q

The reverse bra-ket form of the operator F, equals:

Fr, = 1G.)FL(G.)(q, ] (7)

Operator R, provides the parameter space for the left oriented Fourier transform F; (Gy) of function
F(q) in equations (1) and (6).

ﬁL = |C~IL)C~IL(C~IL| (8)

Similarly the right oriented Fourier transform can be defined.

Fo@) = f F@)q'|G) dq’ (9)
q

The reverse transform is:

FQ) = f Fr(@)ld8) dir = f (10)

f F@)NG Gr)drlq) da’ ddn
q dr’q’
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- f f(q'){f (@' lGa)dxlq) dqR}dq'= f F(q) 8(q - q) dg’
q’ dr q’

Also here the functions (q|q"), (Gr|Gr), (Grlq) and {(q|Gr) form sets of mutually orthogonal
functions.

The reverse bra-ket form of the operator Fx equals:

Fr = 1Gr)Fr(Gr){(Gr| (11)

Operator Ry provides the parameter space for the right oriented Fourier transform F(gg) of
function F(q) in equations (9) and (10).

Rr = Gr)dr(dr| (12)

The third version of the Fourier transform is:

Fr(GL) + Fr(Gr) _
2

(13)

F Gy, Gr) = ” j {@l)F (@ + F@)ialdn)} dg
q

In contrast to the right and left version, the third version has no reverse.
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3 Well-ordered reference operators
The eigenvalues of a normal operator T that resides in a separable Hilbert space can be ordered with
respect to the real part of the eigenvalues. Operator T, = (T + TT)/Z is the corresponding self-
adjoint operator. If each real value occurs only once, then the operator T and its adjoint T can be
well-ordered. This means that the eigenvalues of T are used as enumerators for other ordering
processes. The imaginary part of the eigenvalues can then still be ordered in different ways.
Operator T = (T - TT)/Z is the corresponding anti-Hermitian operator. For example it can be
ordered according to Cartesian coordinates or according to spherical coordinates. Also each of these
orderings can be done in different ways.

The property of being well-ordered is restricted to operators with countable eigenspaces. However,
via the defining functions, the well-orderedness can be transferred to the corresponding operator in
the Gelfand triple.

3.1.1 Progression ordering
A single self-adjoint reference operator that offers an infinite set of rational eigenvalues can
synchronize a category of well-ordered normal operators. We use R, for this purpose. The ordered
eigenvalues of this self-adjoint operator act as progression values. In this way the infinite
dimensional separable Hilbert space owns a model wide clock. With this choice the separable Hilbert
space steps with model-wide progression steps.

The selected well-ordered normal reference operator R that resides in an infinite dimensional
separable quaternionic Hilbert space is used in the specification of the companion quaternionic
Gelfand triple. There it corresponds to reference operator R. In that way progression steps in the
separable Hilbert space and flows in the companion Gelfand triple. Both reference operators will be
used to provide parameter spaces.

The countable set of progression values of the Hermitian part Ry = (R + RT)/2 of the well-ordered
reference operator R can be used to enumerate other ordered sequences.

3.1.2 Cartesian ordering
The whole separable Hilbert space can at the same time be spanned by the eigenvectors of a
reference operator whose eigenvalues are well-ordered with respect to the real parts of the
eigenvalues, while the imaginary parts are ordered with respect to a Cartesian coordinate system.

For Cartesian ordering, having an origin is not necessary. In affine Cartesian ordering only the
direction of the ordering is relevant. Affine Cartesian ordering exists in eight symmetry flavors.

Cartesian ordering supposes a unique orientation of the Cartesian axes.
The well-ordered reference operator R is supposed to feature affine Cartesian ordering.

3.1.3 Spherical ordering
Spherical ordering starts with a selected Cartesian set of coordinates. In this case the originis at a
unique center location. Spherical ordering can be done by first ordering the azimuth and after that
the polar angle is ordered. Finally, the radial distance from the center can be ordered. Another
procedure is to start with the polar angle, then the azimuth and finally the radius. Such, spherical
orderings may create a symmetry center. Since the ordering starts with a selected Cartesian
coordinate system, spherical ordering will go together with affine Cartesian ordering.
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Each symmetry center is described by the eigenspaces of an anti-Hermitian operator &3 that map a
finite dimensional subspace of Hilbert space $ onto itself. Superscript * refers to the ordering type

of the symmetry center. &% has no Hermitian part. Only through its ordering it can synchronize with
progression steps. The subscript n enumerates the symmetry centers.
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4 Symmetry flavor

Quaternions can be mapped to Cartesian coordinates along the orthonormal base vectors 1, i, j and
k; with ij = k

Due to the four dimensions of quaternions, quaternionic number systems exist in 16 well-ordered
versions {g*} that differ only in their discrete Cartesian symmetry set. The quaternionic number
systems {g*} correspond to 16 versions {g;} of rational quaternions.

Half of these versions are right handed and the other half are left handed. Thus the handedness is
influenced by the symmetry flavor.

The superscript * can be @, @, @, @, @, ®, @, @, , @, , ®, @, ®, , or ®
This superscript represents the symmetry flavor of the superscripted subject.

qi@ ) qi@ <qi@

The reference operator RO = in separable Hilbert space $ maps into the reference

operator RY = |¢@)q@(q©| in Gelfand triple .

The symmetry flavor of the symmetry center &%, which is maintained by operator & = |s7)s7 (s} is
determined by its Cartesian ordering and then compared with the reference symmetry flavor, which

is the symmetry flavor of the reference operator RO, 29019
Now the symmetry related charge follows in three steps.

1. Count the difference of the spatial part of the symmetry flavor of &* with the spatial part of
the symmetry flavor of reference operator RO,

2. If the handedness changes from R to L, then switch the sign of the count.

3. Switch the sign of the result for anti-particles.

Electric charge equals symmetry related charge divided by 3.

Symmetry flavor
Ordering Super Handedness  Color Electric Symmetry center type.
Xy z t script Right/Left charge  charge *3  Names are taken from the
standard model

ot © R N +0 neutrino

A B B IENO) L R -1 down quark
L4 B IO L G -1 down quark
$$t 0B L B -1 down quark
Le a & JENO) R B +2 up quark

L d b a JENO) R G +2 up quark
23481t R R +2 up quark
raod INNG) L N -3 electron
LR R R N +3 positron
28 0O L R -2 anti-up quark
L d g L G -2 anti-up quark
3848 @ L B -2 anti-up quark
288 @ R B +1 anti-down quark
3088 ®» R R +1 anti-down quark
LAl R G +1 anti-down quark
3488 © L N -0 anti-neutrino
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Per definition, members of coherent sets {a;'} of quaternions all feature the same symmetry flavor
that is marked by superscript *.

Also continuous functions and continuums feature a symmetry flavor. Continuous quaternionic
functions ¥*(g*) and corresponding continuums do not switch to other symmetry flavors Y.

The reference symmetry flavor 1Y (¢¥) of a continuous function Y*(g¥) is the symmetry flavor of
the parameter space {q”}.

The symmetry related charge conforms to the amount of reordering that is required when the

symmetry center or one of its elements is mapped onto the reference space RO,

The concept of symmetry flavor sins against the cosmologic principle, which states that universe
does not contain specific directions. It also claims that universe has no origin. Affine Cartesian
ordering does not apply a selected spatial origin. That does not say that universe cannot have a

unique spatial origin. That origin would be the spatial origin of reference operator RO all symmetry

centers own a unique spatial origin. That origin maps onto a dynamic location in RO,
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5 Symmetry centers

Each symmetry center corresponds to a dedicated subspace of the infinite dimensional separable
Hilbert space. That subspace is spanned by the eigenvectors {|s7)} of a corresponding symmetry
center reference operator &%. Here the superscript * refers to the type of the symmetry center. The
type covers more than just the symmetry flavor.

Symmetry flavors relate to affine Cartesian ordering. Each symmetry center will own a single
symmetry flavor. The symmetry flavor of the symmetry center relates to the Cartesian coordinate
system that acts as start for the spherical ordering. The combination of affine Cartesian ordering and
spherical ordering puts corresponding axes in parallel. Spherical ordering relates to spherical
coordinates. Starting spherical ordering with the azimuth corresponds to half integer spin. The
azimuth runs from 0 to 1t radians. Starting spherical ordering with the polar angle corresponds to
integer spin. The polar angle runs from 0 to 2rt radians. These selections add to the type properties
of the symmetry centers.

The model suggests that symmetry centers {&%} are maintained by special mechanisms {I)t,,} that
ensure the spatial and dynamical coherence of the coupling of the symmetry center to the
background space. Several types of such mechanisms exist. Each symmetry center type corresponds
to a class of mechanism types. These mechanisms are not part of the separable Hilbert space.

Symmetry centers {&%} are resources where the coherence ensuring mechanisms {3t,,} can
dynamically take locations that are stored in quaternionic eigenvalues of dedicated stochastic
operators, in order to generate coherent location swarms that represent point-like objects. The type
of the point-like object corresponds to the type of the controlling mechanism. The coherent location
swarm corresponds with the eigenspace of the stochastic operator.

The basic symmetry center &} is independent of progression. Once created, a symmetry center
persists until it is annihilated. However, during creation its ordering can be synchronized with
selected progression steps. Any progression dependence that concerns a symmetry center & is
handled by a type dependent mechanism Mt,,. The type depends on the symmetry flavor and on the
spin. Further, it depends on other characteristics that will appear as properties of the point-like
object that will be supported by the controlling mechanism. An example is the generation flavor of
the point-like particle. In this way the same symmetry center type can support electrons, muons and
tau particles. Symmetry flavor and spin can be related to the ordering of the symmetry center &%.
Generation flavor is a property of the controlling mechanism 9t,,.

The mechanisms that control the usage of symmetry centers act mostly in a cyclic fashion. When
compared to mechanisms that care about particles, the cycles that occur in equivalent mechanisms
that care about corresponding anti-particles act in the reverse direction. As a consequence many of
the properties of the anti-particles are the opposite of the properties of the corresponding particles.
This holds for the sign of the symmetry related charge and it holds for the color charge, but it does
not hold for the mass and for the energy of the (anti)particle.

Symmetry centers have a well-defined spatial origin. That origin floats on the eigenspace of the

reference operator RO, Symmetry centers are formed by a dedicated category of compact anti-
Hermitian operators {S:}.

An infinite dimensional separable Hilbert space can house a huge but finite set of subspaces that
each represent such a symmetry center. Each of these subspaces then corresponds to a dedicated
spherically ordered reference operator &%. The superscript * distinguishes between symmetry
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flavors and other properties, such as spin and generation flavor. Symmetry centers correspond to
dedicated subspaces that are spanned by the eigenvectors {|s7)} of the symmetry center reference
operator &%,

&* = |sf)s s | -

Here we omitted subscript n.

Only the location of the center inside the eigenspace of reference operator RO@isa progression

dependent value. This value is not eigenvalue of operator &3. The location of the center inside R©@
is eigenvalue of a central governance operator g.

Symmetry centers feature a symmetry related charge that depends on the difference between the

symmetry flavor of the symmetry center and the symmetry flavor of the reference operator .‘R@,
which equals the symmetry flavor of the embedding continuum €. The symmetry related charges
raise a symmetry related field 2. The symmetry related field A influences the position of the center

of the symmetry center in parameter space R© and indirectly it influences the position of the map
of the symmetry center into the field that represents the embedding continuum €. Both fields, 2 and
€ use the eigenspace of the reference operator R as their parameter space.

The closed subspaces that correspond to a symmetry center have a fixed finite dimension. This
dimension is the same for all types of symmetry centers. This ensures that symmetry related charges
all appear in the same short list.

5.1 Synchronization via coupling
The basic symmetry center &3 is independent of progression. Any progression dependence that
concerns a symmetry center is handled by a type dependent mechanism 9t,, that controls the usage
of the symmetry center. The type dependent mechanism 9t,, acts in a progression dependent
fashion. On certain progression steps the mechanism selects a location from the symmetry center
that will be used to embed a point-like object in the background space. The mechanism 9t,, selects
locations in accordance to the Poisson equation. If this is a screened Poisson equation, then that
equation defines a clock signal with frequency w, which can aid in the synchronization.

(V,Vy —w?x=p (1)

x =a(x)exp(+iwr) (2)

The background space, is maintained by reference operator RO, Embedding the symmetry center
into the eigenspace of this operator ensures the synchronization of the symmetry center with the
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background space. That is why the embedding occurs at instances that are selected from the

progression values, which are offered as eigenvalues by :Rg@ = (:R@ + IR@T) /2. However, the
controlling mechanism 9t,, does not embed the center location, but instead the mechanism I, uses
a stochastic process in order to select a location somewhere inside the symmetry center. Further, not
all eigenvalues {57} of &* will be used in the embedding process. A special operator ¢* that is
dedicated to the type of the embedded point-like object describes the selected locations in its
eigenvalues.

Eigenvalue af of operator ¢* corresponds to a mapped eigenvalue bi@ of operator 4@ in
background space RO since R© maps onto ER@, the operator 4@ has an equivalent in the
Gelfand triple. These maps are the result of a relocation of the whole location swarm {a;'}, which is
due to the independent location and movement of the symmetry center. Due to the differences in
symmetry flavor between the symmetry center and background space .‘R@, this map involves
reordering of the spatial parts of the eigenvalues. Function €(g)maps the relocated swarm elements
onto continuum €. Thus, operator 4@ has images 4@ and Qi({&@) in the Gelfand triple.

The final embedding location of swarm element aj represents a point-like object that originally
resided in the symmetry center. That embedding location is mapped onto the embedding continuum,
which resides as the eigenspace of operator € in the Gelfand triple . This continuum is defined as a

function €(q) over parameter space RO,

The locations in the symmetry center that for the purpose of the embedding are selected, form a
coherent location swarm and a hopping path that together characterize the dynamic behavior of the
point-like object. The embedding process deforms continuum €. It does not affect the parameter

spaces RO and RO, This embedding process is treated in more detail in section 11; Embedding.

5.2 Hadronic centers
Symmetry centers can bind into hadronic centers that feature isotropic symmetry. In reverse the
hadronic centers can split into symmetry centers.

Hadronic centers feature zero or full symmetry related charge. Hadronic centers exist as meson
centers and as baryon centers.

5.2.1 Baryon centers
Baryon centers are governed by tri-state switchers, which govern the states of three quarks and join
them into a colorless union.

5.2.2 Meson centers
Meson centers are colorless combinations of quarks and anti-quarks.
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6 Central governance
The eigenvalues g¢(q, n) of the central governance operator gadminister the relative locations of the
symmetry centers &% with respect to the reference operator R© which resides in the separable

Hilbert space $and maps to the reference continuum RO in the Gelfand triple . A further map
projects onto the embedding continuum €.The central governance operator gresides in the
separable Hilbert space $. Operator g has an equivalent €(g) in the Gelfand triple. Function
€(g)maps eigenvalues g(g, n) of gonto continuum €.

The reference continuum R© acts as a parameter space of the function 2(q) that specifies the
symmetry related field 2, which is eigenspace of the corresponding operator.

Each symmetry center owns a symmetry related charge, which is located at its geometric center.
Each symmetry related charge owns an individual field ¢ that contributes to the overall symmetry
related field 2.

The reference continuum R© also acts as a parameter space of the function €(q) that specifies the
embedding continuum €, which is eigenspace of the corresponding operator C.

A fundamental difference exists between field 2 and field €. However, both fields obey the same
guaternionic differential calculus. The difference originates from the kind of artifacts that cause the
discontinuities of the fields. In the symmetry related field 2 these artifacts are the symmetry related
charges. In the embedding continuum € these artifacts are the embedding events. What happens in
not too violent conditions and in not too wide ranges will be described by the second order partial
differential equation of the corresponding field and will be affected by the local and current
conditions. Since the elementary point-like objects reside inside their individual symmetry center,
the embedding continuum will also be affected by what happens to the symmetry centers.

Double differentiation of field & shows the relation between U and g.
VVA=¢g (1)

6.1 Embedding symmetry centers
The well-ordered eigenspace of a quaternionic normal operator R that resides in an infinite
dimensional separable Hilbert space acts as a reference operator from which the parameter space
RO of the embedding continuum € will be derived. This parameter space resides as continuum
eigenspace of a corresponding operator RO in the Gelfand triple. This parameter space also acts as
parameter space of a symmetry related field 2. It is sparsely covered by locations of symmetry
centers. The central governance operator g administers these locations. The symmetry centers
contain symmetry related charges. The locations of these charges are influenced by the symmetry
related field 2. Function €(q) maps both ¢ and the eigenspace of g onto continuum €.

25



7 Modules

Modules are represented by closed subspaces of the separable Hilbert space, but not every closed
subspace represents a module or modular system. In fact only a small minority of the closed
subspaces will act as actual modules. What renders a closed subspace into a module and what
combines modules into subsystems or systems? The answers to these questions can only be found by
investigating the contents of the closed subspaces.

A special category of modules are elementary modules. Elementary modules are not constituted of
other modules. They are the atoms of the orthomodular lattice, which describes the relations
between modules and modular systems. All elementary modules reside on a their own individual
symmetry center.

7.1 Module content
In free translation, the spectral theorem for normal operators that reside in a separable Hilbert space
states: “If a normal operator maps a closed subspace onto itself, then the subspace is spanned by an
orthonormal base consisting of eigenvectors of the operator.” The corresponding eigenvalues
characterize this closed subspace.

It is possible to select a quaternionic normal operator for which a subset of the eigenvectors span the
closed subspace and the corresponding eigenvalues describe the dynamic geometric data of this
module. By ordering the real values of these eigenvalues, the geometric data become functions of
what we will call progression.

7.1.1 Progression window
Here we only consider elementary modules for which the content is well-ordered. This means that
every progression value is only used once.

For the most primitive modules the closed subspace may be reduced until it covers a generation
cycle in which the statistically averaged characteristics of the module mature to fixed values. The
resulting closed subspace acts as a sliding progression window.

The sliding window separates a deterministic history from a partly uncertain future. Inside the sliding
window a dedicated mechanism I, fills the eigenspace of stochastic operator o = |aj)aj(aj | The
mechanism is a function of progression. If it is a cyclic function of progression, then the module is
recurrently regenerated.

7.2 Symmetry center as platform
All elementary modules are supposed to reside in an individual symmetry center. However, at every
progression instant the elementary module occupies only one location of the symmetry center.
During the regeneration cycle of the module the occupied locations form a coherent location swarm
and at the same time the locations form a hopping path. Symmetry centers float on an embedding
medium. That embedding continuum corresponds to a well-ordered normal reference operator,
whose eigenvectors span the whole infinite dimensional separable Hilbert space.

7.3  Map into a continuum
By imaging the discrete eigenvalues into a reference space, the discrete eigenvalues form a swarm
{a]?‘}, which is a subset of the rational quaternions {s7 } that form the symmetry center on which the

module resides. At the same time the discrete eigenvalues form a hopping path. With other words
the swarm forms a spatial map of the dynamic hopping of the point-like object. The swarm and the
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hopping path conform to a stochastic operator ¢* that is well ordered with respect to its progression
values, but is not ordered in spatial sense like reference operators R or &%.

o* = |af)af(a]?c|

This temporal ordering is installed via the quaternionic version of the screened Poisson equation. That equation involves a symmetry
center wide clock that can synchronize the location generation process with the model wide progression steps that are oppressed by
reference operator RO,

Next, we use a map M, of the swarm into the reference continuum that is the eigenspace of the

reference operator RO. This operator and its eigenspace reside in the Gelfand triple H.

In the model, two maps M; and M, are relevant. The first map M has the flat reference continuum

RO = {q@} as target. This reference continuum is not affected by the imaging. Only the locations
of the symmetry centers are affected by the influence of the symmetry related field 2. The second
map M, has the deformable continuum € as target. In contrast, € is affected by the embedding
process.

In the symmetry center the hopping path is closed. If the image of the hopping path is also closed in
the reference continuum ﬂi@, then the swarm stays at the same location in the map M; onto the

reference continuum R©. This does not need to be the case for the map M, into the embedding
continuum €. The two target continuums R and € reside as eigenspaces in the Gelfand triple.

We will interpret the two maps to work in succession. The second map M, maps the reference

continuum RO that resides in the Gelfand triple into the embedding continuum €, which also
resides in the Gelfand triple.

7.4 Coherent elementary modules
Coherent elementary modules are directly related to a symmetry center. The elements of the
coherent location swarm that characterizes the coherent elementary module are taken from the
symmetry center. These elements are ordered with respect to progression, but spatially they are
selected in a stochastic fashion. This selection is described by operator ¢-*. In the map onto the
reference continuum, coherent elementary modules feature a hopping path. Inside the symmetry
center the hopping path is closed. Further, for coherent elementary modules, the map of the location
swarm into the reference continuum corresponds to an operator p that is defined by a continuous
function. That continuous function is a normalized location density distribution and it has a Fourier
transform. As a consequence the operator that conforms to this function has a different ordering
with respect to its spatial values. That new operator p has R as its parameter space. It tends to
describe the swarm as a whole unit. It no longer describes the hopping path.

Coherence is ensured by a mechanismIlt,, that selects the eigenvalues such that a coherent swarm is
generated.

The notion of coherent swarm will be defined later. Coherent elementary modules are characterized
by the symmetry flavor of their symmetry center &%. When mapped into a reference continuum that

is eigenspace of reference operator RO = |q@)q@(q@| the module is characterized by a symmetry
related charge, which is located at the center of symmetry. The symmetry related charge is a
property of the local symmetry center .

The size and the sign of the symmetry related charge depends on the difference of the symmetry
flavor of the local symmetry center with respect to the symmetry flavor of the reference continuum

R©. The coherent swarm {af} inherits the symmetry flavor of the local symmetry center S}.
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However, the controlling mechanism 9t,, picks the elements of this set in a spatially stochastic way
instead of in a spatially ordered fashion. Thus the operator ¢-*that reflects the stochastic selection,
corresponds with another operator p* that reflects the spatial ordering and supports the coherent
stochastic mechanism Mt,, in achieving spatial coherence.

7.5 The function of coherence
Embedding of point-like objects into the affected embedding continuum spreads the reach of the
separate embedding locations and offers the possibility to bind modules. The spread of the
embedded point-like object is defined by the Green’s function of the non-homogeneous second
order partial differential equation. However, spurious embedding locations have not enough
strength and not enough reach to implement an efficient binding effect. In contrast, coherent
location swarms offer enough locality and enough strength in order to bind two coherent swarms
that are sufficiently close.

For example a Gaussian distribution of the location swarm would turn the very peaky Green’s
function into a rather broad spherical painting brush that can be described by the potential:

o) = ERF(r)

This is a smooth function without a trace of a singularity.

Imaging of the location swarm into the reference continuum is only used to define coherence and to
indicate the influence of the symmetry related charges. The embedding into the affected continuum
is used to exploit the corresponding potential binding effect of the swarm.
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8 The orthomodular base model

We have achieved a level in which the major chain of mathematical structures does no longer offer
an inescapable self-evident extension. The model uses separable and non-separable Hilbert spaces in
order to store numeric data that can describe a series of discrete objects that are embedded in a
continuum. The real parts of the parameters can be used to order the parameters and the target
values of functions. If properly ordered these descriptions can represent a sequence of static status
qguos. However, this model contains no means to control the coherence between the subsequent
members of the sequence.

We will call this stage of the model development “The orthomodular base model”. Any further
development of the model involves the insertion of mechanisms that ensure the coherence between
the subsequent members of the sequence of static status quos.

The orthomodular base model describes the relational structure of modular systems. Via the
management mechanisms it can add characteristics to the modules. These characteristics are based
on eigenvalues of normal operators that reside in the separable Hilbert space and have eigenvectors
in the closed subspace that represents the module. The Hilbert spaces only support storage and
description. The management mechanisms represent the actual drivers of the model.

The numeric data that occur in the orthonormal base model must be taken from division rings. The
most elaborate choice for these data are quaternions.

Quaternions and Hilbert spaces can represent a wider usage than just the storage of dynamic
geometric data. Quaternions can implement rotations. In this way they can shift properties between
dimensions. This is shown in section 20; Tri-state spaces.

The peculiarities of these quaternions influence the features and the behavior of the discrete objects
and the fields that occur in the orthonormal model. Many of these peculiarities are hardly known by
scientists. As far as they apply to this paper these subjects are treated in the Appendix.

Concepts such as symmetry centers and coherent location swarms are not part of the orthonormal
base model, but these features make use of the structure and the properties of the orthonormal
base model. The same holds for the symmetry related field 2 and the embedding continuum C.
However, the reference operators that can be applied as parameter spaces can be considered as
standard properties of quaternionic Hilbert spaces. They can be considered to belong to the
orthomodular base model.
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9 Fields

A category of operators can represent quaternionic functions. This is applicable both in the separable
Hilbert space and in the Gelfand triple.

In this paper, fields are continuums that are target spaces of quaternionic functions that define
eigenspaces of operators, which reside in the Gelfand triple.

Quaternionic functions and their differentials can be split in a real scalar functions and imaginary
vector functions. Here we will only consider not too violent disruptions of the continuity of the fields.
We also restrict the validity range of the equations. With these restrictions the quaternionic nabla
can be applied and the discontinuities restrict to point-like artifacts..

Quaternionic functions can represent fields and continuums, but they can also represent density
distributions of discrete dynamic locations. Quaternionic differentiation is treated in the next chapter
and in the appendix.

Double differentiation of a basic field leads to a non-homogeneous second order partial differential
equation that relates the basic field to the corresponding density distributions of discrete dynamic
locations of the artifacts that cause the local discontinuities of the basic field.

The symmetry related field A and the embedding continuum € are basic fields.

The symmetry related field 2 is based on the existence of symmetry centers. These symmetry
centers float over a background reference space.

The embedding continuum € is based on the existence of a dynamic deformable function that
describes the embedding of discrete artifacts, which reside on symmetry centers and are mapped
onto €. The artifacts are selected by a mechanism 9t,, that is dedicated to the symmetry center S3.
The acts of these mechanisms can be described by a corresponding stochastic operator.

9.1 Subspace maps
The orthomodular base model consist of two related Hilbert spaces.

e Aseparable Hilbert space $ that acts as a descriptor of the properties of all discrete objects.
e A non-separable Hilbert space H that acts as a descriptor of the properties of all continuums.
o This non-separable Hilbert space embeds its companion separable Hilbert space $.

The two Hilbert spaces are coupled by the well-ordered reference operator R© and the

corresponding reference operator R©. Both are defined by the quaternionic function R(q) = q.

Controlling mechanisms {9t,,} fill the module related subspaces of separable Hilbert space $ with
data and the contents of these subspaces are subsequently embedded into the non-separable Hilbert
space H . The fill of subspaces with data is described by dedicated stochastic operators. The
mechanisms {,,} use stochastic processes in order to generate these data.

A closed subspace in $ maps into a subspace of /. Only countable subspaces of H have a
sensible dimension. Defining functions can map countable eigenspaces in the separable Hilbert
space into continuum eigenspaces in the Gelfand triple. Mapping does not influence the flat
reference fields that are in use as parameter spaces.
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9.2 Parameter spaces

The reference operator RO that reside in the Gelfand triple delivers a simple field that can act as a
flat parameter space. This field is not affected by the embedding map. Via its defining function

i}%@(q@) = q@, it is a direct map of parameter space RO,

Symmetry centers are spanned by the eigenvectors {|s7)} of a compact symmetry center reference
operator &%. The superscript * distinguishes between properties such as symmetry flavors and spin.
Symmetry centers are special forms of parameter spaces that reside in the separable Hilbert space .
They also have a representation in the Gelfand triple. In the separable Hilbert space $ they have a

fixed finite dimension, which is the same for all symmetry centers. Reference operator RO acts as
the playground of maps of symmetry centers that define local symmetry related charges. Symmetry
centers float over this background space.

9.3 Embedding field

The elements of the eigenspace of the stochastic operator ¢, which is used by a controlling
mechanism M, will be embedded in the eigenspace of operator €. This eigenspace is deformable
and resides in the Gelfand triple . The stochastic operator resides in the separable Hilbert
space $. It is connected to an elementary module and its controlling mechanism 9t picks the
eigenvalues of this operator from a corresponding symmetry center. These eigenvalues are

mapped to parameter spaces R© and RQ. This converts operator ¢ to operator 4. Operator ¢
resides in separable Hilbert space £. Operator & resides both in the separable Hilbert space and
in Gelfand triple . The map involves a shift of the locations of the swarm elements.

Operator € can be described by a quaternionic function G(q@) that has a parameter space,

which is generated by the eigenspace of operator RO, The embedding process can be described
by quaternionic differential calculus. If the discontinuities that are generated by local
discontinuities are not too violent, then the non-homogeneous second order partial differential
equation will elucidate the embedding process.

We will show that two different non-homogeneous second order partial differential equations
exist that offer different views on the embedding process. The quaternionic differential calculus
cannot show wave behavior. However, the Maxwell based differential calculus offers a non-
homogeneous second order partial differential equation, which is also a second order partial
differential equation.

In H'the operator € = |q@)(£(q@)(q@| is defined by function (S(q@) and represents an
embedding continuum €. This continuum gets affected by the embedding process and thus
deforms dynamically.

The embedding continuum is always and everywhere present. It is deformed and vibrated by
discrete artifacts that are embedded in this field.

In H, the representations of symmetry centers float over the parameter space RO of the
embedding continuum. The symmetry related charges of the symmetry centers generate local
contributions to the symmetry related field 2. The location of the center of the symmetry center

within parameter space RO is affected by the symmetry related field 2.

The mechanism t,, that controls stochastic operator ¢ picks members of a symmetry center
and stores them in the eigenvalues of that operator. These eigenvalues are mapped to parameter

space R© and become eigenvalues of a new operator 4. This map involves relocation and re-
ordering. This fact couples the location of the symmetry related charge of this symmetry center
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with the locations that get embedded in the eigenspace of operator €. However, the parameter
location of the symmetry related charge does not coincide with the parameter location of the
eigenvalue of operator 4 ,that will be embedded in the eigenspace of operator €. This embedding
involves a map that is described by function €(q). The eigenvalues of operator & will form a
swarm whose center will coincide with the parameter location of the symmetry related charge.
That location also coincides with the location of the geometric center of the symmetry center.
This location is not embedded and therefore it does not deform the eigenspace of operator C.

9.4 Symmetry related fields
Due to their four dimensions, quaternionic number systems exist in sixteen versions that only differ
in their symmetry flavor. The elements of coherent sets of quaternions belong to the same symmetry
flavor. This is the symmetry flavor of the symmetry center that supports the original location swarm.
Differences between symmetry flavors of a symmetry center and the symmetry flavor of the

eigenspace of the surrounding reference operator RO cause the presence of a symmetry related
charge at the center location of that symmetry center. The countable reference parameter space
R@in the separable Hilbert space $ maps onto the continuum parameter space ER@, which resides
in the Gelfand triple /.

Symmetry related charges are point-like objects. These charges generate a field 2 that differs from
the embedding continuum. This symmetry related field also plays a role in the binding of modules,
but that role differs significantly from the role of the embedding continuum €. The defining function

A(q) of field A and the defining function €(q) of field € use the same parameter space RO,

Symmetry related charges are located at the geometric centers of local symmetry centers. The size
and the sign of the symmetry related charge depends on the difference of the symmetry flavor of the
symmetry center with respect to the symmetry flavor of the embedding continuum. Symmetry
centers that belong to different symmetry related charges appear to try to compensate the
symmetry differences. Equally signed charges repel and differently signed charges attract. The
attached coherent location sets that are attached to the symmetry centers will be affected by these
effects.

The symmetry related field 2 can affect the locations of the symmetry related charges in the first
map M. This means that with the centers of symmetry also the corresponding coherent swarms are
relocated. This can be interpreted as if the symmetry related field 2 acts as a deformed parameter

space for the embedding continuum €. Here we ignore this possibility and consider RO as the flat
parameter space of €.

The symmetry related charges do not directly affect the embedding continuum €. Their effects are
confined to map M. However, with their action the symmetry related charges relocate the centers
of the corresponding coherent swarms. The elements of the swarms deform the embedding
continuum.

The symmetry related charges are point charges. As a consequence the range of the field that is
generated by a single charge is rather limited. The corresponding Green’s function diminishes as 1/r
with distance r from the charge C.

Fields of point charges superpose. A wide spread uniform distribution of symmetry related point
charges can generate a corresponding wide spread symmetry related field 2. This works well if a
majority of the charges have the same sign. Still, relevant values of the symmetry related field 2
depend on the nearby existence of symmetry related charges.
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Coherent swarms are recurrently regenerated on their symmetry centers. The symmetry centers are
not recurrently generated, but instead they can get relocated. Together with these symmetry centers
the corresponding symmetry related charges and the residing swarms get relocated.

9.5 Free space

In the separable Hilbert space, the eigenvectors of the well-ordered reference operator R© that do
not belong to a module subspace together span free space. The elementary modules reside on

symmetry centers whose center locations float on the eigenspace of RO,

At every progression instant only one element of the swarm {a}} is used. Thus “free space”
surrounds all elements of the swarm. It forms most of the continuum €, which is deformed by the
embedding of the currently selected swarm element.
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10 Field dynamics

10.1 Differentiation
In the model that we selected, the dynamics of the fields can be described by quaternionic
differential calculus. Apart from the eigenspaces of reference operators and the symmetry centers
we encountered two fields that are defined by quaternionic functions and corresponding operators.
One is the symmetry related field 2 and the other is the embedding field C.

A determines the dynamics of the symmetry centers. € gets deformed and vibrated by the recurrent
embedding of point-like elementary particles that each reside on an individual symmetry center.

Apart from the way that they are affected by point-like artifacts that disrupt the continuity of the
field, both fields obey, under not too violent conditions and over not too large ranges, the same
differential calculus. However, especially field 2 is known to show wave behavior that cannot
properly be described by quaternionic differential calculus. For that reason we will also investigate
what a change of parameter space brings for the defining functions of the basic fields 2l and €.

Besides quaternionic differential calculus exists Maxwell based differential calculus. The Maxwell
equations use coordinate time instead of pure progression as one of the four parameters. The other
three parameters together form the spatial part of the Maxwell based parameter space. Coordinate
time can be interpreted as quaternionic distance. As a consequence this new parameter space has a
Minkowski signature, while the quaternionic parameter space has a Euclidean signature. This
difference is reflected in the second order partial differential equations of the two approaches. The
Maxwell based differentia calculus offers a wave equation, while the quaternionic differential
calculus does not describe dynamic waves.

Let us introduce variables At and A7 = |Ax|. In quaternionic differential calculus Az = At. In
Maxwell based differential calculus Az = |Ax|. Here in quaternion space Ax = At + Ax is a full
quaternion step.

10.2 Quaternionic differential calculus.
Under rather general conditions the change of a quaternionic function f(q) can be described by:

of z : a of @

d ~ — ——dqg" }dg* = dgh dgtdqg¥

(@) 0qu+ 5vdq, q” pdq* = c,(@)dq* + ¢, (q)dq*dq
u=0..3

Here the coefficients c#(q) and ¢, (q) are full quaternionic functions. dq* are real numbers. e”
are quaternionic base vectors.

Under more moderate and sufficiently short range conditions the function behaves more
linearly.
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o g u @)
df (@) = ——dq" = ¢,(q)dq
8qﬂ
pn=0..3
Under even stricter conditions the functions become real functions cg(q) attached to
quaternionic base vectors:
df(q) = c§ dq, + c§ i dqy + ¢ j dqy + c§ kdq, = cg(q) e, dq,, 3)
Thus, in a rather flat continuum we can use the quaternionic nabla V.
V—{aa aa}—a+'a+'a+ka—|7+|7 )
“lov'ox’ay'9z) ot lox Jay T “oz O

=P+ @ =V =Vy+ V)W + ) 4)
Dy = Vopo — (V, ) ()
D=V + V)£ VX9¢ (6)

In this form the differential equations can still describe point-like disruptions of the continuity of
the field.

Double differentiation will then result in the quaternionic non-homogeneous second order
partial differentiation equation:

§=8+E=VTY=0— VW + N+ ) ={VVo + (V,V)}Y @)

_ 0%y 0% 52¢+521/J
T 9t2  9x2  Qy?  0z2

Here ¢ is a quaternionic function that for a part p describes the density distribution of a set of
point-like artifacts that disrupt the continuity of function ¥(q).

o’y 0%y 0%y ®)
p=potp=VVy= 0x? * dy? = 0z?
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§—p =Wy 9)

In case of a single static artifact, the solution ¥ will describe the corresponding Green’s function.
Function y¥(q) describes the mostly continuous field 1.
The second order partial differential equation can be split into two continuity equations:

="y (10)

p=V'd (11)

If Y and @ are normalizable functions and |[y|| = 1, then with real m and ||{|| = 1

v =m{ (12)

10.3 Fourier equivalents
In this quaternionic differential calculus, differentiation is implemented as multiplication.

This is revealed by the Fourier equivalents of the equations (4) through (10) in the previous
paragraph:

D= +P=pP=(po+ P)WPo+P) (1)

The nabla V is replaced by operator p. @ is the Fourier transform of @.

@y = potho — (. P) (2)

® = po +pPo £p X P ®)

The equivalent of the quaternionic second order partial differential equation is:

E=&+E=ppY ={popo + (PP} (4)

p=po+p= (DY ©)

The continuity equations result in:
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@ =pyP (6)

p=p® (7)
10.4 Poisson equations

The screened Poisson equation is a special condition of the non-homogeneous second order
partial differential equation in which some terms are zero or have a special value.

VY =V Vo +(V, V)p =& €Y)
VoVop = -2 Yy=¢5—0p 2)
VAN R R 3)

The 3D solution of this equation is determined by the screened Green’s function G (7).

Green functions represent solutions for point sources.

exp(—A4r) 4)

G(r)= "

P = fff G(r 1) p(r') dr’ )

G(r) has the shape of the Yukawa potential [9]
In case of A = 0 it resembles the Coulomb or gravitation potential of a point source.

If A # 0, then a solution of equation (2) is:
Yp=ax)exp(ziwtl=tiw (6)

10.5 Solutions of the homogeneous second order partial differential equation
Solutions of the quaternionic homogeneous second order partial differential equation are of
special interest because for odd numbers of participating dimensions this equation has solutions
in the form of shape keeping fronts.

This homogeneous partial differential equation is given by:
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. 0%y 0% 0% 0%y 1
VVY =V, Vo + (V;V)l/) 912 + 0x2 ayz 9z2 0

Let us start with:
V'V, =0 2

Equation (2) has three-dimensional spherical shape keeping fronts as its solutions. 1 is a scalar
function. By changing to polar coordinates it can be deduced that a solution is given by:

_ fo(ir —c1) (3)

r

lpO (T, T)

Where ¢ = +1 and i represents a base vector in radial direction. In fact the parameter ir — ct of
fo can be considered as a complex number valued function. It keeps its shape during its travel
through the field. [ts amplitude quickly diminishes as 1/r with distance r from the trigger point.

Next we investigate:
V'V =0 (4

Here 9 is a vector function.

Equation (4) has one-dimensional shape keeping fronts as its solutions:

Y(z,1) = f(iz - c1) (5)

Again the parameter iz — ct of f can be interpreted as a complex number based function.

The imaginary i represents the base vector in the x, y plane. Its orientation 8 may be a function
of z.

That orientation determines the polarization of the one-dimensional shape keeping front.

10.6 Special formulas

Vik x) =k €Y)

k is constant.
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(V,x) =3

Vxx=0
X
Vx| =—
x|
1 B X —x'
x—x'|  |x—x']3
Xx—x' 1 1 ,
|x — x’| |x — x'| [x — x’|

Similar formulas apply to the quaternionic nabla and parameter values.
Vx=1-3;V'x=14+3;Vx*=1+3

Vix*x) =x

X
Vx| = Vi (x*x) = —

|x|
v 1 x=x
lx—x'|  |x—x'|3
pr XX _ppe 1 _(a a+(VV)) + 41 8(x — x)
lx —x'|3 lx —x'|  \otadr ’ |x — x'| Tox—X
Instead:

1 32 1 312 6r*—|x|* 57%—|x|?

V,V,+(V,V = — = =
VoVot (VYD) I = " RP VR~ P E
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t__ 1 (11)
(Vo¥o =V, V) 17 =~ 1o

1
(v, V)m = 41 §(x)

(12)

Thus, with spherical boundary conditions, pyrr is suitable as the Green’s function for the Poisson

equation, but does not represent a Green’s function for the quaternionic operator

41 |x—x'|

(VoVo +(V, V) !

For a homogeneous second order partial differential equation a Green’s function is not required.
Thus, the deficit of a green’s function does not forbid the existence of a quaternionic homogeneous
second order partial differential equation. Still equation (6) forms the base of the Poisson equation.

10.7 Field equations

We will use two sets of differential equations. Both sets use pure space as part of the parameter
space.

e Quaternionic differential equations
o These equations use progression as a parameter.
o  Maxwell based differential equations
o These equations use quaternionic distance as a parameter.

By introducing new symbols € and 8B we will turn the quaternionic differential equations into
Maxwell-like quaternionic differential equations. We introduce a simple switch & = +1 that will
turn one set into the other set.

Lo . : a
For quaternionic differential calculus is« = —1 and V= 3

For Maxwell based differential calculus is ¢ = +1 and V,= %.

In general the following differential equations hold:

¢ = {do, ¢} = {Vo, Voo, @} €Y)
$ho = —aVy o —(V, @) (2)
P=Vop+Vp, £V X@ (3)

Equations (2) and (3) are not genuine Maxwell equations. We introduce them here as extra Maxwell
equations. Choice a = 1 conforms to the Lorenz gauge.
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=-Vop — Vo, €))

Vo€ = —V,V, @ — Vo Vo (5)
(V,€) = —Vo(V, @) — (V, V) (6)
B=Vxg (7
VyB=-VxE (©))
(V,8)=0 )
VxB=VVe) —(V,V)e (10)

Also the following equations are not genuine Maxwell equations.

Voo = —aVoV 0o — Vol W, @) (11)
Voo = —aVo Voo — V(V, @) = —aV Vo —V XV X @ —(V,V) ¢ (12)
{ = {0, 8} = {Vo, —V}{¢o, ¢} (13)
(= VoV +{V, V)¢ = (o + ¢ (13)
{o = (—aVoVo +(V, V)@, = Vo g — (V, €) (14)
{ = (—aVoVy +(V,V)@ = —Veo + aVe€ — V x B (15)
po = (V, Voo = (o + a VYoo (16)
p=(V,V)p=0+aVVop 17
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Thus a simple change of a parameter and the control switch a turn quaternionic differential
equations into equivalent Maxwell based differential equations and vice versa. This makes clear that
both sets represent two different views from the same subject, which is a field that can be stored in
the eigenspace of an operator that resides in the Gelfand triple.

10.8 Solutions of the wave equation
The Maxwell based differential calculus offers second order partial differential equations in the form
of the wave equations:

62<p0_62<p0_62<p0_62<p0 _ (1)
9tz 9x?2  dy?  0z2 Po

(VoVo —(V, V), =

0’9 '@ 0°¢ 0’ (2)

10.8.1 Shape keeping fronts
Like the quaternionic second order partial differential equation this wave equation offers solutions
that represent shape keeping fronts.

For isotropic conditions in three participating dimensions the shape keeping front solution runs:

@o = f(r —ct)/r,wherec = +1; f is real (3)

This follows from

1
2

v,V =
(V, 7)o r

or or T T2 0t

(i (TZ 0<p°)) _frr—ct) _ 1%, (4)
In a single participating dimension the shape keeping front solution runs:

@o = f(x —ct),wherec = +1; f isreal (5)

The same solutions hold for vector function ¢.

10.8.2 Other solutions of the homogenous wave equation
Apart from the shape keeping solutions the homogeneous wave equation offers wave form solutions.
Some of these solutions are obtained by starting with:
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VoVof =(V,V)f = —w?f (1)

f(t,x) = aexp(iw(ct — |x —x']));c = £1 (2)

This leads to a category of solutions that are known as solutions of the Helmholtz equation.

10.8.3 The Maxwell based Poisson equations
The screened Poisson equation in Maxwell based differential calculus runs:

% 0%p 0%¢ (1)
_ )2 — _ _ _ N
W) =2 =g~ —mg Ao =—p
0%¢ (2)
ot? =2
@ = a(x) exp(£At) (3)

This differs significantly from the quaternion differential calculus version of the screened Poisson
equation.

10.9 Asymmetric tensor
The Maxwell-based equation

¢ = {po, @} = {Vo, Voo, @3} = {Vo, —VHA,, A} (1)
$p=—-C+B (2)
dpo 0y (3)

C = _<axv MY ) = —Foy = 094y — 0,Ap;v =1..3

99u 09y (4)

ox, 0xy

B =VxX@) = < ) =0,A, — A n=13v=1.3;

corresponds with the asymmetric tensor £,

0 -G -G -G, (5)
-
€, FB, 0 T3,
[@y +8B, FB, oJ

E

w =04, — 0,4, =

For the quaternionic differential calculus the same tensor can be generated. The tensor does not
show the nature of the partial derivatives that are contained in the €, terms. The tensor hides the
real parts of the differential.

This means that equation

o = —aVy @y —(V, @) (6)

is ignored. This equation contains the sign switch a.
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10.1 The space-progression model
This paper supports two space progression models. Quaternions, quaternionic functions and
guaternionic differential equations support parameter spaces that have an Euclidean signature and
correspond to a metric tensor:

100 0 (1)
“lo 1 0 0
9o =10 0 1 0

000 1

Elements of this model can directly be stored as eigenvalues in quaternionic Hilbert spaces.

The Maxwell based equations and the parameter space of these equations support a space-time
model with Minkowski signature and correspond to a metric tensor:

1 0 0 0 2)
lo =1 0 o
9o =10 0 -1 o0
0 0 0 -1

Elements of this model must first be dismantled into their real components before they can be
stored as eigenvalues in Hilbert spaces.

The fact that the quaternionic field can be stored in the eigenspace of an operator that resides in a
non-separable quaternionic Hilbert space and that after dismantling into real components the same
can be done for a Maxwell based field means that the stored fields can represent one and the same
object. It also means that both differential equation sets can investigate the same field and offer
different views onto that field that reveal different aspects of the behavior of that field.

It also means that both space-progression models represent different views of the same reality.

11 Embedding

11.1 Selection
At each progression instant only a single eigenvalue af is selected from the eigenspace of the
symmetry center reference operator . In a regeneration cycle a complete location swarm {a;}
of eigenvalues is selected. The set {a}'} correspond to sets of eigenvectors {|a})} that span a
corresponding subspace. This restricts reference operator &*= [s{)s; (s} | to operator
o* = |a}‘)a}‘(aj‘|. The corresponding closed subspace acts as a sliding window within a larger
subspace that covers all progression values, including the history of the sliding window. The
sliding window covers the recurrent regeneration of the set {a;'}. During this period the
statistical properties of the set stabilize. The set {a;} inherits the symmetry flavor of the
symmetry center. Its elements are selected in a stochastic fashion that is independent of the
spatial ordering of the symmetry center.

11.2 Suggested generation process
The mechanism 9, which controls the generation of the set of eigenvalues {a;'} of stochastic
operator ¢*, might apply a Poisson process in combination with a binomial process. The mechanism
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works in sync with the progression steps that are defined by reference operator RO, At regular
instances, the Poisson process produces germs that are spread by the binomial process, which
implements a spread function that converts the germs into the spatial location swarm {a;}. The
spread function produces locations that are selected from the symmetry center &%. The binomial
process effectively attenuates the spatial effectivity of the Poisson process. A Poisson process in
combination with a binomial process can be considered as a new Poisson process. This time the
stochastic process is spatially distributed. We shall refer to this special stochastic process as a
stochastic spatial spread function S, (s}) that blurs the location of the geometric center of the
swarm. This geometric center coincides with the geometric center of the symmetry center.

The spread function is spherical symmetric and is best treated in spherical coordinates. The
generated location is specified in the independent variables radius r, polar angle ¢ and azimuth 6.
The order of these specifications may vary between mechanism types. This order and the direction in
which the angles run influence the generated hopping path.

This view makes it possible to treat the swarm as a point spread function that can be handled in a
similar way as the point spread function in an imaging process. This means that optical Fourier
methodology can be used in order to handle the movement and mappings of the swarm. For that
purpose it is necessary that the point spread function owns a Fourier transform. We will apply that
Fourier transform as a coherence quality characteristic of the generated swarm. The swarm is
mapped onto the embedding continuum. This map will be considered as the imaging process. The
map will treated as an Optical Transfer Function. This means that the Fourier transform of the
mapped swarm equals product of the Fourier transform of the generated swarm and the Optical
Transfer Function of the map.

For a swarm, owning a Fourier transfer means owning a displacement generator. It means that in
first approximation the swarm can be considered as moving as one unit.

After finishing the generation cycle the stochastic spatial spread function can be considered as a
location density distribution.

11.3 Regeneration and detection
The regeneration of an elementary particle by the controlling mechanism 9t,, involves the creation
of a new embedding location. Detection stops this regeneration process. At detection, the set {a}'} is
no longer filled by taking locations from the members of the set {s}}. No more elements of the set
are stored in the separable Hilbert space. With other words, afterwards detection occurred at a
precisely known location. However, that location was not known beforehand.

A virtual map images the completely regenerated set {a; } onto parameter space RO This involves
the reordering from the stochastic generation order to the ordering of this new parameter space.
This first map turns the location swarm into the eigenspace of a virtual operator 4. A continuous
location density distribution £(q) describes the virtual map of the swarm into parameter space RO,
Actually each element of the original swarm is embedded into the deformable embedding continuum
€ where that element is blurred with the Green’s function of this embedding continuum.

This indirectly converts the operator ¢, which describes the regeneration in the symmetry center &}
into a differently ordered operator £ that resides in the Gelfand triple 7. The defining function £(q)
of operator ¢ describes the triggers in the non-homogeneous quaternionic second order partial
differential equation, which describes the embedding behavior of €.

(1)
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Function £(q) uses RO as its parameter space. ¢ describes the hopping of the point-like object,
while £(q) describes the density distribution of the corresponding location swarm.

Stochastic operator ¢ describes the hopping of the point-like object, while ¢ describes the
density distribution of the image of the corresponding location swarm.

Most of the described map is virtual. Only the embedding or the detection are actual
occurrences. The consequences of detection and the consequences of the embedding can be
observed.

11.4 The mapper
The mapper function *(q) maps elements a;° of location swarms {a; } onto the continuum €,
which is defined by function €(q). The mapper g* = £*(0) maps the geometric center of the
symmetry center onto a location in the continuum €.

The action of the mapper function can be split into four steps. The intermediate steps are virtual
maps. We introduce these virtual steps in order to be able to analyze what happens.

The three first steps form a map from a subset of the eigenspace of &% to the corresponding
eigenspace of RO,

The first step stores selections into the eigenspace of stochastic selection operator o*. The
operator ¢* = |af)a}‘(af| resides in separable Hilbert space £ and represents the discrete location
distribution {aj‘} that is generated by the stochastic spatial spread function S,,(s{) during a period of
progression that covers the progression values of the set {aj‘}.Afterwards, Sn(s7) acts as a location
density distribution. Operator ¢* is a stochastic operator.

The second step maps {a}'}. onto RO,
b/ = g(aj‘,n) Y]

The second step maps the geometric center of the symmetry center onto location ¢(0, n) in RO,

The second step switches the symmetry flavor of the swarm {a]’-‘} into {b]@} and then maps onto
;30 bj@ keeps the real value of af. This involves relocation of the set of eigenvalues. The

mapped selection operator 4© = |bj@) bj@ (bj@l, resides in separable Hilbert space $ and
represents the discrete distribution {bjx} that is indirectly generated by the stochastic spatial spread
function S,,(s7) during a period of progression that covers the progression values of the set {af}.
This set is the map onto parameter space R© and it is relocated due to the displacement of the
symmetry center by field 2. Operator 4 © is in effect also a stochastic operator. The real parts of

operators ¢* and 4O were already synchronized with each other and are in sync (but not in

©

sequence order) with the progression values that are specified by the Hermitian part R~ of the

reference operator RO,

The mapper * is affected by the movements of the symmetry related charges that are initiated
by the symmetry related field 2. It means that the symmetry centers on which the coherent
location swarms reside are relocated due to the effects of the symmetry related field 2 on the

46



locations of the symmetry related charges. This influences function g in equation (1). The
symmetry related charges are located at the geometric centers of the symmetry centers. They
are point-like objects and are located at ¢(0,n). The symmetry related field is constituted from
the contributions that are generated by the individual symmetry related charges. The symmetry

related field ¥ uses R© as its parameter space. As a consequence the

The displacement can be interpreted as a usually uniform movement of the symmetry center.
This results in a distorted image {bj@} of swarm {af} on parameter space R©. The swarm is no

longer characterized by the stochastic spatial spread function §,,(s7). If the displacement is small
compared to the extension of the swarm, then the distorted swarm can still be characterized by a
continuous location density distribution. That new location density distribution is not obtained via
normal distortion of the complete original location density distribution. Instead every separate
element is displaced in an individual way that is determined by its progression order. The new shape
cannot be predicted from the old shape. We will attach a new name §,,(q) to this location density
distribution. It replaces the stochastic spatial spread function S, (s7).

This sidetrack has no influence on the mapper §*. Mapper £~ treats the relocation of the geometric
center ¢(0,n) of the symmetry center &%. However, the redistribution influences mapper function

#*(q).

The third step embeds § into H by mapping R@ onto RO. Itisa map between quaternions with
rational valued components and a continuum consisting of quaternions that have real valued
components. The discrete set and the continuum have the same symmetry flavor, which is the
reference symmetry flavor. The geometric center ¢ (0, n) of the symmetry center & has a similar

value in R©@,

In this step operator 4@ gets accompanied by operator &, which represents the continuous
density distribution that characterizes the eigenspace {bj@} of 6©, Generating the eigenspace of
operator ¢ in the separable Hilbert space involves a local averaging over the full regeneration

cycle and resampling of the generated bj@ locations. This offers a density distribution that is
characterized by £(q;). Operator ¢ plays no significant role in the embedding process. Its role is

purely administrative. It relates {bj@} to the wave function of the elementary object. Further, it

enables the computation of the embedding field potential, which is a smoothed and averaged
view of the embedding continuum. If £(g;) has a Fourier transform, then the existence of £(gq;) is
the assurance of the coherence of the location swarm. It means that the mapped swarm has a
displacement generator and at first approximation it can be considered to move as one unit.

The fourth step is performed completely inside H by operator €. This involves the blurring of
b@
J

the elements of{ } by the Green’s function G of the embedding continuum.

In the four steps, operator ¢ is transferred to operator £, reordered, relocated and smoothed,
such that operator ¢ results. The embedding process then blurs the swarm further. The result is
a rather smooth, but deformed embedding field €. For a part, the embedding process can be
described by second order partial differential equations.

The described multi-step map from generation to embedding is in fact a virtual map that occurs in
one instant. Its structure is only of interest when the generation of the swarm suddenly stops. The
smoothing effect of the Green’s function G(q) of the embedding process and the integration over
the generation cycle normally hide the structure of the route that is taken.
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The symmetry flavor switch occurs in § and the deformation of the continuum by the
embedding process occurs in H.

Apart from the conversion of the symmetry flavor and the relocation g(q, n) of the symmetry
center the mapper §*equals the map onto the embedding continuum.

Thus for the mapper function % (q) holds:

(@) = €(g(q,1) ° G(q) (1)

And for the mapper %* holds:

$* = p*(0) = E(g(0,n)) (2)

This location is not embedded, thus is not blurred by a Green’s function.

If we include the blur that is introduced by the generation process, then the total map can be
characterized by:

P(q) = p* & = €(g(q,n) °G(q) ° &,(q) = €(g(q,n)) » G(q) (3)

&n(q) is the location density distribution that replaces the stochastic spatial spread function S, (s).
The stochastic spatial spread function varies with each subsequent generation cycle. The location
density distribution &,,(q) depends on the movement of the symmetry center &5. Fourier
transformation converts convolution into multiplication.

®(q) =G(§) ° &(@ (4)

®(§) qualifies the coherence of the map.

The exact target location ?(af) is not known beforehand, but after selection of the source
eigenvalue aj‘ the image gox(af) is exactly known and is stored in the eigenspaces of the respective

operators. With other words history is no longer uncertain and is accurately stored in the separable
Hilbert space and in its companion Gelfand triple.

Averaged over all selections, P produces a blurred image of the set {af}. The blur is characterized by
®(q). The blur only concerns the imaginary parts of the involved quaternions.
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The average a* of the imaginary parts of all {af} is the center location of the set. It corresponds to

the geometric center of the symmetry center. The combination of all involved operators and the
selection mechanism 9t,, produces a blurred image of a*.

11.5 Coherence

Closed subspaces of a separable Hilbert space are characterized by a countable set of
eigenvalues of a normal operator that maps this subspace onto itself.

The eigenvalues of the operators in quaternionic Hilbert spaces are quaternions. Due to the four
dimensions of quaternions, quaternionic number systems exist in 16 versions that only differ in
their discrete symmetry set. For example right handed quaternions exist and left handed
quaternions exist.

Dedicated mechanisms {}%,,} ensure the coherence of the set of selected eigenvalues. For each
coherent set {a;’} the responsible mechanism 9, takes the eigenvalues from the eigenspace of a
symmetry center reference operator &5 and stores them in the eigenspace of the stochastic
operator o*. The swarm {a;} is characterized by a location density distribution &, (s).

In the model, coherence plays an important role. For that reason the mapping of the swarm {a}“} of
eigenvalues of stochastic operator ¢* onto the embedding continuum € is analyzed in detail in order
to ensure that coherence is not destroyed by the mapping process.

The following criteria define the set {a;} of selected discrete quaternionic eigenvalues as a
coherent set.

1. All members of the set {a}} are taken from the same symmetry center.
a. All members of the set belong to the same symmetry flavor.
b. All members of the set have the same spin value.
c. The selected set is well-ordered.

2. The set can be described by a continuous density distribution.

An ordered coherent setis ordered with respect to the real parts of its members. In a well-
ordered coherent set all members have different real parts.

The second requirement means that the spread function §,, can be considered as a continuous
location density distribution.

The well-ordered coherent set {a}} describes a well-defined hopping path. Also the hops form a
discrete distribution. The distribution of the hops is described by operator ¢*, which is the anti-
Hermitian part of operator o-*. The landing locations form a well ordered swarm and the hops
are also ordered with respect to progression. However, the subsequent hops have quite
stochastic directions and sizes. Like the Hermitian part, the anti-Hermitian part of o* has no
continuous defining function! The location density distribution §,,(s{) that describes the set of
locations also characterizes the distribution of the hop landing locations.

The real valued continuous location density distribution &, (q@) describes the density

distribution of set {b}‘} with respect to parameter space RO, In fact this density distribution is

the real part of the defining function of operator £. However, in the eigenspace of &, the spatial
eigenvalues are reordered, relocated and smoothed when compared to the eigenvalues {a;} of
the stochastic operator ¢~.

Function E(q@) describes the defining function of operator ¢. The only purpose of this operator

is to show the coherence of the generated and relocated swarm {bjx}. Function E(q@) has a
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Fourier transform. This Fourier transform is used to qualify the coherence of the relocated
swarm {bj?‘ } That is why we add as extra requirement for the coherence of swarm {bj‘} that it
owns a Fourier transform. Having a Fourier transform is a higher level coherence requirement.

We will qualify a location swarm {bjx } that owns a Fourier transform as a coherent swarm.

11.1 Coherent swarm
The well-ordered coherent set {b]’-‘}, which can be described by a dynamic continuous location
density distribution &,(q*) may via this relation also own a Fourier transform. In that case we call the
set a coherent swarm. The coherent swarm owns a displacement generator. This means that at first
approximation the swarm {bjx} moves as one unit. Owning a Fourier transform is a higher level
coherence requirement.

At uniform speed v holds:

£(q®) =v£,(¢9) (1)

Owning a Fourier transform via a continuous location density distribution means that the swarm can
be represented by a wave package. On movement, wave packages tend to disperse. Since the
dynamic continuous location density distribution only describes the swarm, the density distribution is
continuously regenerated. As a consequence, movement does not disperse the swarm’s wave
package. Thus, due to recurrent regeneration, no danger of dispersion exists.

On the other hand the representation by a wave package indicates that the swarm {bjx} may take the
form of an interference pattern. That interference pattern is still a location swarm. It is not
constructed by interfering waves!

11.2 Embedding set elements
Embedding a single element a]?“ of the subset {af} of the eigenspace of ¢* in continuum € involves
first the conversion to the reference symmetry flavor. Next this element is mapped from the

symmetry center to the eigenspace of R@in $ and subsequently into to the eigenspace of RO in
H. The symmetry related fields may have caused a relocation of the symmetry center with respect to

RO, Finally the discrete quaternion is embedded as a discrete artefact in continuum C.

Locally the curved continuum € is represented by 1), which usually is nearly flat. In that case, for i
we can use the quaternionic nabla V.

d 9 9 0

_ _(0 0 0 oy (1)
V_V0+V_{6r'6x'6y’az}'¢_lpo_l_lp

As alternative we can use the Maxwell based differential calculus. This calculus uses:

d . Jd a o0
ot’ ax’ dy’ dz

(2)

{vt,v%:{ }; P Wo Pkt < v+ x]

1 is considered to cover the image of the local symmetry center. Thus, it covers the images of all
elements of {af}. This makes 1 a normalizable function.
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The duration of the embedding is very short and is quickly released. Current mathematics lacks a
proper description of the full embedding process, but it already contains equations that properly
describe the situation before, after and during the embedding.

What happens under not too violent conditions and over not too long ranges can be described by the
non-homogeneous second order partial differential equations.

VWi = (VoVo +(V, VDY =& (3)
d _ (4)
(ga -V, V)) Yo = Po
9 B (5)
G AT

For a single embedding event the right side of these equations take the form of a Dirac delta
function.

Directly before and after the embedding the right parts of the equations are equal to zero. In this
condition any solution of the homogeneous second order partial differential equation will proceed as
it did before.

During the embedding the right parts of the equations represent the embedded discrete quaternion,
which is treated as an artifact that can cause a local point-like discontinuity. The embedding results in
the emission of a spherical shape keeping front, which is a solution of the homogeneous second
order partial differential equation. The non-homogeneous second order partial differential equation
may be limited by special conditions:

VoVop = =22 1; P = a(x) exp(ti w 1) .
Jd ad

aalpo = -2 Yo; Yo = ap(x) exp(£ 1t) (7)
Jd ad o

S = A Y =a®ep(Ein

This reduces the quaternionic non-homogeneous second order partial differential equation to a
screened Poisson equation:

(VW — 2% = ¢ (9)

The 3D solution of this equation is determined by the screened Green’s function G (7).
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Green functions represent solutions for point sources.

G(r) = w (10)

Y= ﬂf Gr—r")p@) d3r’ (11)

The Maxwell based differential calculus gives similar results as quaternionic differential calculus
does. However, equations (7) and (8) differ significantly from equation (6). The frequency in equation
(6) can be used to synchronize the embedding process with the progression step that is governing

reference operator RO,

The continuum is touched and as a reaction it gets deformed. The embedded particle location will
vanish, but traces in the continuum stay and represent the deformation. However, also these traces
fade away. Only the recurrence of the generation and embedding processes keeps the deformation
fairly steady.

Solutions of the quaternionic second order partial differential equation can be found via the
continuity equations:

Vp=¢; Vp=¢ (12)

And
Vi =0;Vi=¢ (13)

11.2.1 Solutions of the homogeneous equation

Solutions of the homogeneous second order partial differential equation that cover an odd number of
dimensions are known to represent shape keeping fronts or combinations of shape keeping fronts.
These shape keeping fronts proceed with fixed speed c. However, due to their diminishing amplitude,
the spherical shape keeping fronts fade away.

In addition to this the Maxwell based wave equation offers solutions that represent dynamic waves
and dynamic oscillations.

Embedding a single element of {af} may cause the emission of a single spherical shape keeping front.
The amplitude of spherical shape keeping fronts diminishes as 1/r with distance r from the source. This
is also the form of the Green’s function of the Poisson equation for the three dimensional isotropic
case. This fact forms the origin of the deformation of the embedding continuum .
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Embedding a single hop may cause the emission of a single one-dimensional shape keeping front. The
amplitude of one-dimensional shape keeping fronts keeps constant. The direction of the one
dimensional shape keeping front relates to the direction of the hop. This phenomenon may represent
guanta that leave or enter the object that is represented by the swarm {a}‘}.

11.2.2 Embedding hops
The content of this section is speculative.

A hop involves de-embedding, a space step ¥4, — Yy and re-embedding. This suggests the combined
action of two coupling equations:

Vipy =my §° (1)
and

VT = myp (2)
Notice that

(V&) =V — Vo — V& —(V,§) —V X &
Ve =Vo&o — Vs — V& —(V,8) +V X &

This produces the equation:

0%y 0%y 62¢A+62¢A—mmlp (3)
01? ox? = 0y? 9z2 ~ 1B

V*VII)A =

With my;m, - m? and Y, ~ Yy — P this resembles the quaternionic form of the Klein-Gordon
equation:

0% 9% 521/J+@21/) N (4)

2
0t%  0x?  dy? 972 " v

For curl free conditions and & = 1), the coupling equations (1) and (2) resemble the Dirac equations
[12]. This suggests that other elementary particles than electrons and positrons follow equations that
are similar to equations (1) and (2), where equation (2) treats the antiparticle.

E=m?*y (5)

It is striking that in equation (4) m appears as squared, while in the continuity equations m appears as
a linear factor. The model suggests that the contributions of the swarm elements just add and that m
should be proportional to the number of swarm elements.
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11.3 Embedding the full set
If the full set is considered, then this means that the view integrates over the full cycle of progression
steps that represent the generation of the swarm {af}.

If embedding of the full set {af} is considered, then & represents the density distribution of the full
set. In that case the continuity equations: V{ = p and V*¢ = & determine what happens to the
embedding continuum 1, which locally represents €. As already indicated, due to the relocation of the
source region and the deformation the map of £ may flow and deform relative to .

The set {af} is well-ordered with respect to progression. It means that each of its elements only exists
during a small interval. Before that interval the element did not exist. It is generated by stochastic
process that is controlled by a stochastic mechanism 9t,,. The stochastic process applies a stochastic
spatial spread function S,,(s}). After the embedding this element of {aj‘} vanishes into history. §;, can
be interpreted as a continuous location density distribution. Only its value is stored in an eigenvalue
of operator o* = |a)aj (af| that maps the subspace spanned by {|a¥)} onto itself. The operator o*
and the corresponding subspace have a dynamic definition. That definition covers a certain period,
which represents a sliding progression window.

The second order partial differential equation for a single embedding event is:

VoVop £(V, V) =& (1)

The + sign switches between quaternionic and Maxwell based differential calculus. This second order
partial differential equation is integrated over the full generation cycle. As a consequence the equation
for an averaged version y of continuum 1 is obtained.

3 T+ C’)Zl/) (2)
VOX = -Ln W dt
Tn+1
¢=[ " ae )
in
Vox £(V,V)x =¢ (4)

t represents 7 or t. { represents the continuous location density distribution that represents the full
swarm.

oy _ 0%y _ 0%y _ 0%y (5)
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Here H is an equivalent of the Hamiltonian.

In the embedding continuum €, the traces of what happened are the emitted vibrations and shape
keeping fronts that independent of the progression window keep proceeding. The spherical shape
keeping fronts do not vanish, but they fade away. With them the deformation also fades away.
However, the recurrent embedding process keeps this deformation alive in a dynamical fashion. It
drags the deformation with the subspace that represents the corresponding module.

Only when they appear in huge numbers the faded spherical shape keeping fronts can form a
noticeable influence. This may be the reason of the existence of dark matter.

The averaged Green’s functions now indicate the averaged effects of the recurrent embedding on the
deformation of Y. The result is that the corresponding potential no longer represents a singularity.

In $ the dimension of the subspace that represents the set {aj‘} has a clear significance. In order to
comprehend what this dimension and the spread of the set do to the function 1) we use the Green’s
function. The Green’s function represents the influence of the embedding of a single point-like
artifact into 1. That artifact can be a landing point or a hop. For a single point-like artifact at location
x'in otherwise isotropic conditions, the Green’s function equals

gj = 1/]x — xj]. (6)

We integrate over the space that is covered by density distribution &. If £ represents an isotropic
Gaussian distribution, then N Green’s functions contribute to the integral that will equal [7]:

C 1 E(x' —x,) erf(|]x — x.|) o)
Ox—x.) = — = - “dx' =CN ———°2
|x — x| s |x" — x| |x — x|
0

1 N
xczﬁz:x]’-
0

C is a normalization constant. Here N represents the number of elements in the {a]?‘} set. Green'’s
function g; represents the effect of the embedding of the single element af.

®(x — x.) represents the local contribution to the gravitation potential. The function on the right
side is a smoothed version of this contribution. It represents the local impact on the embedding
continuum €.

This indicates that subspace dimension N directly relates to mass, which together with the location
density distribution { determines the strength of deformation of Y, which locally describes
embedding continuum C.

11.3.1 No singularity
The integration over a full cycle removes the singularities of the individual Green’s functions. In the
example, the resulting field is a smooth function.
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Figure 1. Close to the geometric center the singularities are converted in a smooth function. Further
from the center the form of the Green’s function is retained.

We suppose that this distribution is a good estimate for the structure of the swarm of a free electron.
It is remarkable that this potential (the blue curve) has no singularity at R = 0. At the same time,
already at a short distance of the center the function very closely approaches 1/R (the orange
curve).

The term ERF(R) indicates the influence of the spread of the embedding locations. This view can be
used to determine the spatially averaged effect of the single embeddings. The set {af}N corresponds

to N instances of such spatially averaged contributions. This approach shows that deformation and
thus mass is directly related to the size of the set and to dimension of the subspace that represents
the module.

12 Attaching characteristics to a module

12.1 Module subspace
In free translation, the spectral theorem for normal operators that reside in a separable Hilbert space
states: “If a normal operator maps a closed subspace onto itself, then the subspace is spanned by an
orthonormal base consisting of eigenvectors of the operator.” The corresponding eigenvalues
characterize this closed subspace.

We take the closed subspace that is spanned by the eigenvectors of stochastic operator ¢* as an
example. These eigenvectors form a subspace of symmetry center &%, which itself is a subspace. The
mechanism It,, takes care that a stochastic process attaches the proper eigenvalues to these
vectors. The mechanism takes care that the set of eigenvalues {a}} obtains statistical characteristics
that are typical for the elementary module type. The module gets its symmetry flavor, its electric
charge, its color charge and its spin from the symmetry center. The map of the symmetry center to

parameter space RO gives the set {a;} its center location in R©® and indirectly in RO The

embedding process gives swarm {b;*}, which is the image of {a;} in RO its mass.

The mechanism I, that controls the stochastic process, which fills the eigenspace of operator ¢*
with data determines the generation flavor of the elementary module.
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12.1.1 Swarm characteristics
In this paper, we use the diversity that is represented by the standard model of contemporary
physics as reference for naming elementary object types and their properties.

Elementary particle types have different masses. In the orthomodular base model this means that
the corresponding closed subspaces have different dimensions and that correspondingly the swarms
have different numbers of elements. It takes a type dependent number of progression steps for
regenerating the corresponding swarm.

The swarm has a central location, which in separable Hilbert space is defined as the average a of the
imaginary parts of the coherent set of source eigenvalues {a;}. It is the geometric center of the local
symmetry center. In the non-separable Hilbert space it is defined by the image g (a), which is

located in €. This target value corresponds to an object source location a in the flat parameter space

of . That parameter space is RO The source location may move as a function of progression.

The speed of transfer of information is set by the speed of information carriers. These information
carriers are one-dimensional shape keeping fronts. The quaternionic second order partial differential
equation describes the way in which these shape keeping fronts proceed.

In the continuum the observed image of the swarm cannot move faster than the speed with which
information can be transported.

The statistical characteristics of the swarm and the symmetry related properties of the symmetry
center are sources for the properties that characterize the types of the objects that are represented
by the coherent swarm. The symmetry flavor, the symmetry related charge, the color charge and the
spin of the object that is represented by the swarm are mainly set by the symmetry center on which
the swarm resides.

Apart from the number of elements of the swarm, the properties of the swarm appear to depend on
the generation flavor. The mechanism 9t,, that generates the swarm determines this extra
characteristic of the swarm.

12.1.1.1 Fermions
Fermions have half-integer spin. Fermions exist as elementary objects and as composites. All

fermions have non-zero mass. This means that their embedding deforms the embedding continuum
(O

Elementary fermions comprise electrons, quarks, neutrinos and their antiparticles. They are listed in
the table in the chapter on symmetry flavor.

Embedding couples coherent swarms {a}} that possess the symmetry flavor of a symmetry center

&* to an embedding continuum € that has the symmetry flavor of reference operator RO If this
symmetry flavor of the embedding continuum is fixed, then varying the symmetry flavor of the
coherent swarm creates sixteen different elementary object types. Half of these types concern anti-
particles. Again half of these sub-types concern left-handed quaternions and the other half are right-
handed. Anisotropic types occur in three versions that are distinguished by the dimension in which
the anisotropy occurs. Anisotropic types are marked by color charges. Isotropic types are colorless.

12.1.1.2 Massive Bosons

Bosons are known to feature integer spin. Massive bosons exist as elementary objects and as
composites. Also massless bosons exist. Photons and gluons are massless bosons. The massless
bosons do not deform the field in which they travel.
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The difference of spin between massive elementary bosons and elementary fermions can be
explained when the symmetry centers of fermions are generated in an azimuthal angle first and a
polar angle second way, while the symmetry centers of bosons are generated in an polar angle first
and an azimuthal angle second fashion. The polar angle takes 27 radians and the azimuthal angle
takes m radians.

Fermions and massive bosons appear to contribute to a common gravitation potential. This means
that bosons embed in the same embedding field as fermions do. Massive bosons couple to an
embedding continuum in a similar way as fermions do. Boson swarms feature color-neutral
symmetry flavors.

Massive bosons are observable as W_, W, and Z particles. W, is the antiparticle of W_. Until now,
there is no indication of the existence of quark-like bosons. At least their “color” structure cannot be
observed.

12.1.1.3 Spin axis
Fermion swarms and boson swarms contain a hopping path that can be walked into two directions.
That hopping path may implement spin.

If the swarm is at rest (does not move), then the hopping path is closed. Relative to its symmetry
center the swarm does not move, but it might oscillate.

For bosons the spin axis may be coupled to the polar axis. The polar angle runs from 0 through 2.
For fermions the spin axis may be coupled to the azimuth axis. The azimuthal angle runs from 0
through .

Nothing is said yet about the fact and the corresponding influence that the number of hops can be
even or odd. And nothing is said yet about whether the opening hop and the closing hop are coupled
in a symmetric or asymmetric sense.

12.2 History, presence and future
In the orthomodular base model, the eigenvalues of the reference operators are not touched by
management mechanisms or by the embedding process. Also historic eigenvalues are no longer
touched by management mechanisms.

Presence is marked by a progression value that occurs in the real part of quaternionic eigenvalues of
the category of well-ordered normal operators. History is marked by lower valued real parts of these
guaternionic eigenvalues. Progression sensitive operators are members of the category of well-
ordered normal operators and are characterized by the fact that they have known and fixed
eigenvalues when the real part of the eigenvalue is lower than the present progression value. At the
same time the current eigenvalues of these operators are influenced by the controlling mechanisms.
Future eigenvalues of these operators are considered to be unknown. They belong to the non-
observable part of the Hilbert space. The progression dependent management mechanisms have
not yet touched these eigenvectors.

In the orthomodular base model presence, history and future are artificial concepts. History is
defined with respect to the current real value of the eigenvalues of the reference operators, which
belong to the category of well-ordered normal operators.

The eigenspaces of progression sensitive operators exactly describe the history. The history is fixed.
Thus the historic eigenvalues are no longer touched by management mechanisms or by the
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embedding process. However, these operators do not yet describe the future. The future is
constructed by the management mechanisms and the embedding process. This means that these
mechanisms depend on the progression parameter. The mechanisms only affect the current
eigenvalues. These eigenvalues describe the presence.

Progression sensitive operators are related to functions that use a flat parameter space which is

defined using the reference operators RO and RO or indirectly by using the anti-Hermitian
reference operator &* and a synchronization signal. The quaternionic screened Poisson equation
uses such a synchronization signal.

The subspace that represents a module covers a sliding part of the last history. The dimension N of
the subspace, which is covered by operator ¢* determines the number of covered progression
instances. Inside the subspace progression rules the cyclic regeneration process. The subspace covers
one cycle of that regeneration process. This period is governed by a controlling mechanism. N is
smaller than the (fixed) dimension of the subspaces that represent the symmetry centers.

The progression window covers a recycling period in which the statistical properties of the set {a]?‘}N

stabilize. This period is a property of the stochastic generation mechanism 9t,,. The stochastic
generation mechanisms {9, } exist in a series of types that each have their own characteristics.

12.3 Model wide progression steps and cycles
Each closed subspace that represents a coherent swarm is governed by a mechanism 9t,, that
ensures dynamic and spatial coherence. In fact many different types of such mechanisms exist. They
correspond to elementary particle types. If these modules combine into composites, then the
generation cycles must synchronize. This asks for a model wide progression step that is much shorter
than any swarm generation cycle. A Real Time Operating System-like scheduling mechanism must
schedule the generation of composites from completed modules.

12.4 Swarm behavior
The coherent swarm moves as one unit. In fact, the represented object features three kinds of
movement. The first kind stays internal to the swarm. During the corresponding generation process,
the hopping speed has no significance for the movement of the swarm as a whole unit. The second
kind is caused by the charge of the symmetry center in combination with the symmetry related field
. The third kind concerns the relocated swarm as a whole. This concerns the image {b;} of the

original swarm {a;’} onto reference space R© or onto reference space RO The speed of this swarm
makes physical sense.

Inside the swarm {b;}, the represented object hops from swarm element to swarm element. The
hopping path is folded and if the swarm is at rest, then the hopping path is closed. Adding extra hops
to the original swarm {a;’} causes movement of the {b;} swarm. Adding a closed string of hops in a
cyclic fashion to swarm {a}} causes an oscillation of the {b;} swarm. From observations it follows
that in composites, such as atoms only certain oscillation modes are tolerated. Adding an arbitrary
open string of hops may open the hopping path in swarm {b{}. In that case the sum of all hops is no
longer zero. As a consequence the swarm {b}*} will move. This motion gets its origin in the separable
Hilbert space. The motion is mapped onto the continuum. The total movement is recognizable

relative to the parameter space RO,

A dynamic local change of the mapping function o may move the swarm relative to other swarms.
Such changes may occur when discrete objects deform the embedding continuum. Or if the
symmetry related field 2 relocates the local symmetry center. The third kind of movement gets its
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origin in the non-separable Hilbert space. Relative to the parameter space, only the effect of the
relocation is recognizable.

12.4.1 Partial creation and annihilation

Removing a string of hops from the hopping path can be interpreted as a partial annihilation
occurrence. Thus, part of the object is temporary converted into an information messenger, which
travels with optimal speed away from its source. Complete annihilation does not occur this way.
Complete annihilation involves annihilation of the symmetry center.

Adding a string of hops to the hopping path can be interpreted as a partial generation occurrence.
Thus, an information messenger is temporary converted into a new part of the object. Complete
creation does not occur this way. Complete creation involves creation of the symmetry center.

12.5 Mass and energy

12.5.1 Having mass
Having mass can be interpreted as the capability to deform the continuum that embeds the
concerned object. More mass corresponds to more deformation.

The fact that fermions and massive bosons contribute to a common gravitation potential means that
they deform the same embedding continuum.

The dimension of the closed subspace, which in the separable Hilbert space $ represents a discrete
object has a physical significance. Any eigenvector that contributes to spanning the closed subspace
increases the dimension of the subspace. If all elements of the swarm contribute separately to the
deformation of the embedding continuum, then the total deformation is proportional to the
dimension of the subspace. In that case, this dimension relates to the mass of the object that
corresponds to the swarm. If extra hops are added that cause movements or oscillations, then this
adds to the mass in the form of kinetic energy. The extra hops may enter or leave in strings. Inside
the swarm the hops that cause oscillation are stored as closed strings. Outside of the swarm the
strings of hops are open and appear as information messengers.

12.5.2 Information messengers

Information messengers represent open strings of hops. At the same time they are solutions of the
homogeneous second order partial differential equation. This means that they can be viewed as
strings of one dimensional shape keeping fronts. One dimensional shape keeping fronts do not
diminish their amplitude as function of the distance to their emission point. In an otherwise flat
continuum the one dimensional shape keeping fronts and thus the information messengers proceed
with the speed of information transfer. The energy carried by information messengers is proportional
to the number of one-dimensional shape keeping fronts that they contain. If the duration of
emission, absorption and passage is fixed, then the apparent frequency of information messengers is
proportional to their energy.

In contemporary physics the information messengers are known as photons. Photons are known to
be able to cross huge distances and then still have sufficient amplitude left in order to be detected by
suitable detectors. Messengers do not lose their amplitude. From experiments we know that the
energy of photons is proportional to their frequency. Thus if photons are information messengers
then this suggests that at least locally, the emission, the absorption and the passage of information
messengers takes a fixed number of progression cycles.

Spurious one-dimensional shape keeping fronts may not be detectable via experiments. Large
numbers of spurious one-dimensional shape keeping fronts may represent dark energy.
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12.5.3 Red-shift

Red-shift is observed by photon detectors with photons that arrive from huge distances. This effect
may be due to the fact that the second order partial differential equation does not hold for these
huge ranges. If the period of emission is longer than the period of absorption, then some shape
keeping fronts will be missed and may proceed as messengers that contain less shape keeping fronts
or these messengers will be converted in kinetic energy of the absorbing object. The primary
absorption will count a number of shape keeping fronts than originally were emitted. It means that
the frequency is red-shifted.

Other interpretations make the Doppler effect responsible for the red-shift. The Doppler effect
considers the absorbed objects as planar waves.

12.5.4 Mass energy equivalence
Creation and annihilation of elementary particles shows the equivalence of mass and energy.

12.5.4.1 Suggested creation process

Creation of elementary particles starts with the combination of two photons that came from
opposite directions into an intermediate object. The intermediate object is a very short lived massive
object that consists of as many paired elements as shape keeping fronts are contained in the
constituting photons. The shape keeping fronts will convert into hops. The long chain of paired hops
will then rip apart into two folded hopping strings that each form a coherent location swarm. Next
the two swarms will split and move in opposite directions. At some instant in this procedure two
symmetry centers are generated that will carry the generated particles.

12.5.4.2 Suggested annihilation process

Annihilation of elementary particles starts with the combination of an elementary particle and its
anti-particle that come from opposite directions into an intermediate object. The intermediate object
is a very short lived massive object that consists of as many paired elements as elements are
contained in the constituting coherent location swarms. As part of the procedure the corresponding
symmetry centers are annihilated. The hops will convert into shape keeping fronts. The long chain of
paired shape keeping fronts will then rip apart into two separate chains of shape keeping fronts. Next
these photons leave in opposite directions.

13 Relation to the wave function
The concept of wave function is used by contemporary physics in order to represent the state of a
guantum physical object. The wave function is a complex amplitude probability distribution. Its
squared modulus is a normalized density distribution of locations where the owner of the wave
function can be detected. The value of this continuous distribution equals the probability of finding
the owner at the location that is defined by the value of the parameter of the distribution.

If the detection is actually performed, then the object will be converted into something else. By the
adherents of the Copenhagen interpretation, this fact is known as “the collapse of the wave
function”.

The normalized density distribution of locations where the owner of the wave function can be
detected corresponds to the map of a coherent swarm on a flat continuum eigenspace of the
companion operator in the orthomodular base model.

Thus, the concept of the coherent map of a well-ordered coherent set on a flat continuum
eigenspace of the companion operator in the orthonormal base model leads directly to an equivalent
of the concept of the wave function in contemporary physics. Both concepts cannot be verified by
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experiments. The equivalence indicates that the suggested coherent map extension of the
orthomodular base model runs in a sensible direction.

The continuous density distribution does not play an active role in the model. It is only constructed
for administrative purposes. Each of the swarm elements corresponds to an individual embedding
occurrence. The continuous density distribution is used to compute the embedding potential. That
potential can also be computed by using the squared modulus of the wave function in a similar way.

62



14 Traces of embedding

14.1 Embedding potential
The actual embedding of a discrete eigenvalue aj‘ in the embedding continuum does not last longer
than a single progression step. For each object, the embedding occurs only once at every used
progression step. The source eigenvalue aj‘ is taken by the controlling mechanism 9t,, from the local
symmetry center and is stored in the eigenspace of the location operator o-* that resides in the
separable Hilbert space. Immediately afterwards the mechanism releases the embedding and
replaces it by another embedding of a source eigenvalue, which it takes from a slightly different
location af ;. This new source location is mapped onto its target location in the embedding
continuum. This recurrent embedding process generates the map of the well-ordered coherent set of

source eigenvalues {aj‘].

In the non-separable Hilbert space the map {(a;)} affects the target subspace of the continuum
eigenspace. This is done in a special way. Locally, the effect is determined by the non-homogeneous
second order partial differential equations. This holds both for the quaternionic version and for the
Maxwell based version.

The homogeneous second order partial differential equation and the Poisson equation are
restrictions of the non-homogeneous second order partial differential equation. The homogeneous
second order partial differential equation controls the situation just before and just after the actual
embedding action. The Poisson equation determines the situation during the actual embedding
action. The embedding results in the emission of a 3D shape keeping front. The solution of the
Poisson equation deforms the target subspace of the embedding continuum. After release of the
embedding, the 3D shape keeping front keeps proceeding, but it will quickly diminish its amplitude as
function of the distance to the emission location.

The effects of the solutions of the non-homogeneous second order partial differential equations for
all participating elements of the swarm combine and form an embedding potential. The embedding
potential represents a smoothed and averaged local view on continuum €.

In general can be said that the embedding of discrete artifacts trigger vibrations and deformations of
the embedding continuum. The vibrations can be shape keeping fronts and oscillations and are
solutions of the homogeneous second order partial differential equation. These solutions are
restricted by local conditions and by the configuration of the triggers. For free particles these
solutions are isotropic in one, two or three dimensions. In atoms the embedding of the electrons
determine the configuration of triggers that cause spherical harmonics as solutions of the
homogeneous wave equation. In that case the wave equation describes the behavior of the
embedding field, rather than the behavior of the symmetry related field 2.

14.2 Symmetry related potential
All elements of the coherent swarm are taken from the same symmetry center and have for that
reason the same symmetry flavor. Embedded symmetry centers have their own dynamics, which is
controlled by the symmetry related field 2. Only the elements of the coherent swarm will be
embedded in the embedding continuum. The effects of symmetry flavor coupling work over the
whole reach of the symmetry center and thus over the whole reach of the coherent swarm. In the
embedding continuum the source of this influence is located at the target value of the mapping
function g (a). The symmetry related charge at this location depends on the difference between the
symmetry flavor of the coherent swarm and the symmetry flavor of the embedding continuum.
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Also here the quaternionic second order partial differential equation describes what happens, but
the charge stays at its center location. The governing equation is:

(V¥ £ (T, 9) (a) = ) g(q,n) (1)

Here ¢ represents the quaternionic symmetry related potential and g represents the distribution of
symmetry related charges and currents. In general g cannot be described by a continuous location
density distribution.

For the static symmetry related potential this reduces to
(V,VYo(q) = Z g(q,n) 2)
n

Function €(q) maps both ¢ and the eigenspace of gonto continuum €.

14.2.1 Difference with gravitation potential

The symmetry related potential deviates in many aspects from the gravitation potential. Where
every element of the swarm contributes separately to the gravitation potential, will the local
symmetry related potential only depend on the symmetry flavor of the complete swarm. It is
generated by the symmetry center and not by the separate elements of that center. The virtual
location of the electrostatic charge coincides with the location of the center of symmetry of the
swarm. For elementary particles, the strength of the symmetry related potential does not depend on
the number of involved swarm elements. The charge is set by the symmetry center on which the
elementary particle resides.

The gravitation potential only implements attraction between the massive objects. The symmetry
related potential implements repel between equally signed charges and implements attraction
between differently signed charges.

14.3 Inertia

14.3.1 Field corresponding to symmetry center
Dedicated mechanisms use symmetry centers as resource for the generation of the locations of
elementary particles. Symmetry centers are interesting as a subject for studying inertia. They have a
spherical shape and a finite active radius. The activity of the mechanisms can be characterized by a
normalized continuous density distribution. As an example we apply a Gaussian density distribution.

. <_ |r—r'|2> ()
PRI = 21 o3\2m exp 202

Here 1’ is the location of the center of the symmetry center. The produced distribution moves
together with the symmetry center.

The potential of a Gaussian density distribution p(r) equals:
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(2)

2 !
po(r—r) = © erf(#i)(r—r’)zQ(r—z)forlarger= [r—17'].

4712 4mr
Here r stands for [r — 7'|.

This is not the electric potential. This potential is generated in a background embedding field € due
to the recurrent temporary embedding of artifacts that are taken from the symmetry center. This can
be shown by computing the double differential of ¢, (r):

derf(ar) _ 2a 2.2y 2 Ty, 1 (3)
ar _\/EEXp( a’r®) = ax/ﬁeXp( 202)'a_m/§
erf(ar) (4)
10, 6( r ) 3 2a? (—ar?) = 1 r?
i - = \/_exp a’r Gzﬁexp 557

The plot of the potential proves that this potential has no singularity. It is smooth near the center
point.

The gradient of the potential equals:

Q f(r )r—r’+ Q < r2>r—r’
— er exp| —=—
4mr? a2/ T 2nroV2m P\"207) ¢

The potential ¢, adds on top of the average value of the embedding field €. If the observer
position r moves with speed v relative to the embedding continuum € then as a consequence a
corresponding contribution to the vector potential:

€Er) =G v

appears to exist. Bl,(B) is the average scalar part of the embedding field B(&). Thus, locally:

Co(r) =Co(r) + 9o (r — 1)
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€Er) =Co(r) ¥
VG, ~ 0
At the observer point the embedding continuum equals:

C=Co(r) +po(r—1r)+C(r) 7
(6)

The scalar and vector potentials go together with a field €:

0 _
Cr) = _EG —VE(r)=—-C,(r) -V (r—r")

ORI B B
=-C(m7 exp|—=— |-
0 V2T 2mrovzan T\ 20%)7
Forlarger = |r —r'

T R O 1 Q L (8)
Cr—r) = Go(r)r+4nl7(| ,|> Go(r)r+4 |r—r’|3(r )

Here again 1’ is the geometric center of the symmetry center. Both the acceleration # and the
nearness of the artifact with strength Q determine the extra field €. The first term on the left
represents what is usually is experienced as inertia. The second term represents what is usually is
experienced as gravitation.

In his paper “On the Origin of Inertia”, Denis Sciama used the idea of Mach in order to construct the
rather flat field that results from uniformly distributed charges [10]. He then uses the constructed
field in order to generate the vector potential, which is experienced by the uniformly moving
observer. Here we use the embedding field as the rather flat background field.

14.3.2 Forces between symmetry centers
Two different symmetry centers represent two different contributions to field €.

The forces between two symmetry centers are specified by.

Q1 Q2

—_— = (r{ -
4‘T[|r1_r2|3( 1 2)

Fip = —F3 =
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14.3.3 Rotational inertia
If the observer rotates with respect to the embedding field, then the observer experiences a curl that
is defined by

B=VXx¢ (1)

If the rotation changes, then this goes together with a rotation of the € field, which counteracts the
increase of the rotation.

—B=-VX%XCE

In this case the observer experiences rotational inertia.

15 Overlapping and shared symmetry centers

Part of the binding of particles involves the overlapping of symmetry centers and it involves the
sharing of overlapped symmetry centers by controlling mechanisms. The symmetry related charge,
the color charge and the spin of the symmetry center play an important role. Also the fact that the
produced location swarm must correspond to a continuous location density distribution and that this
distribution must own a Fourier transform plays an important role. The continuity of the density
distribution and the existence of the Fourier transform are considered by this paper as essential for
keeping spatial and dynamic coherence. Together, these facts are the reason of existence of the Pauli
principle.

Overlapping is restricted by a set of rules. When symmetry centers overlap, then they can be shared
by the controlling mechanisms. Also this sharing must obey strict rules. For example the embedding
continuum must be in conditions that are compatible with the pile of overlapping symmetry centers.
One of the criteria is that it must reflect spherical harmonic oscillations in accordance with a subset
of the accumulated symmetry centers. The symmetry related charges are not involved in these
oscillations.

The fact that equally signed symmetry related charges repel, counteracts the overlay of such
symmetry centers, but the fact that the overlay receives color neutrality appears to have a greater
priority and is achieved by tri-state switching or by conjugation of the colored symmetry centers.

In general the overlap and sharing rules stimulate neutralizing of symmetry related charges and the
rules stimulate color confinement. No pair of symmetry centers in the pile is allowed to represent
particles that have the same symmetry flavor and the same half integer spin.

16 Field interaction

The symmetry related field 2 interacts with the embedding field €. In the environment of an
elementary particle this can be expressed by the Dirac equation.
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VG = (C(m+eA) =mE* +eAC* (1)

The real value e stands for the symmetry related charge of the local symmetry center. The symmetry
center contributes an individual symmetry related field ¢ to the overall symmetry related field .

The symmetry related field 2 is deformed by the embedding field €.

17 Composites
Closed subspaces can combine into wider subspaces. If in the disjunction no eigenvectors of the
location operator are shared between the constituents, then the constituents stay independent and
keep their characteristics. Still superposition coefficients may rule the relative contribution of these
properties. The properties are added per property type and these sums are not affected by the
superposition.

17.1 Closed strings
Elementary particles are represented by coherent location swarms that also implement a folded
hopping path. At rest this hopping path is closed. Adding extra hops may open the hopping path. This
means that the sum of all hops may no longer equal zero. As a consequence the swarm moves. If a
closed string of hops is added, then on average the swarm still stays at the same location, but at the
same time the swarm oscillates. Such oscillations occur inside atoms.

The added hops act for the whole swarm as displacement generators. In this way, the corresponding
guaternions can be supposed to act as superposition coefficients.

Other quaternionic superposition coefficients may act as rotators. Special rotators can switch the
color charge of quarks. They do not affect color-neutral swarms.

17.2 Open strings
The closed strings of superposition coefficients enter and leave the composite as open strings.

Messengers are open strings that relate to particular swarm oscillations. They are known as photons.
Messengers are also represented by strings of one-dimensional shape keeping fronts.
Gluons are open strings that relate to swarm rotations. They can switch the color charge of quarks

Color confinement stimulates that in composites the combined color charge is neutralized.

17.3 Binding
The potentials are a means to bind constituents of composites. Embedding potentials form pitches. If
the particles move or oscillate, then the pitches become ditches.

The orthomodular base model suggests that at every progression step in every participating
elementary particle only one swarm element is influenced by the currently existing potentials.

17.3.1 Gravitation

In the orthomodular base model, this is obvious for the gravitation potential which describes the
deformation of the embedding continuum that is caused by these constituents. All embedding events
contribute separately to the deformation of the embedding continuum. The constituents produce
pitches into the embedding continuum and when they oscillate or rotate these pitches transform
into ditches. The strength of the gravitation potential depends on the number and the coherence of
the involved swarm elements.
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17.3.2 Symmetry related potential

The origin of the symmetry related potential can also take a role in the binding of constituents, but
this is questionable. The source of the symmetry related potential is probably located at the center of
mass of the composite and is not located at the centers of mass of the constituents. If the sources of
this potential would be located on the centers of mass of the constituents, then in case of oscillating
constituents, this would result in ongoing emission of electromagnetic radiation.

17.4 Binding in Fourier space
In this paper binding between elementary modules is not yet touched in detail.

If binding between modules is considered, then it is sensible to pass to Fourier space and take the
Fourier transforms of the quaternionic functions that represent the location density distributions. In
this way the location probability density distributions become characteristic functions and
convolutions that represent mutual blurring convert in “simple” multiplications. This is the approach
that is applied in quantum field dynamics. It is also the approach that is applied in Fourier optics.

For example the second order partial differential equation for the embedding continuum and the
corresponding continuity equations can be transformed to Fourier space.

VIV = VoVt + (V, V)Y = p (1)
¢=Vy (2)
Vo =p (3)

P =popo ¥ + (0, 0YY =P (4)
<15 Py (5)
p'd=p (6)

17.4.1 Comparing to Fourier optics

In Fourier optics the lenses play the role of boundary conditions and the Fourier transform of the
Point Spread Function is used as imaging quality characteristic for the lens. It is known as the Optical
Transfer Function (OTF) of the lens. Thus the Point Spread Function acts as a kind of Green’s function
for the lens. The Fourier transform of the target picture equals the product of the OTF and the
Fourier transform of the object distribution. The OTF depends on the angular and chromatic
distribution of the participating objects. The OTF also depend on the homogeneity of the phases of
the participating probability waves. The OTF of a series of subsequent imaging components equals
the product of the OTF’s of the separate components. This simple rule only holds for ideal conditions
in which angular distributions, chromatic distributions and phase homogeneity play a negligible role.

Not only the modulus of the characteristic is important, but also the transfer of phases matters. The
modulus determines what part of the energy of the investigated object is present in the direct
vicinity of the center of the image. The phase transfer determines the dispersion of the wave
package that constitutes the object. It depends on the location where the image is observed. Due to
the fact that the swarm is recurrently regenerated, the dispersion does not play a significant role.

69



In quantum physics the generated swarm acts as a first imaging element It includes the starting
conditions. The embedding continuum 1 presents the boundary conditions. Its Fourier transform 1
acts as a corresponding mapping quality characteristic. In this way it forms the next component of
the imaging chain. In rather flat conditions the Fourier transform of the Green’s function of the
embedding field acts as the imaging quality characteristic of this field. Together the Fourier
transform of the location density distribution of the swarm and the (local) Fourier transform of the
embedding continuum form the imaging quality characteristic of the moving particle(s). This quality
characteristic qualifies the capability to keep the coherence of the particles and the composites.

17.5 Contemporary physics
Here we compare with results of contemporary physics.

17.5.1 Atoms

For stable composites, such as atoms, an ongoing emission of electromagnetic radiation is obviously
not the case. Still the behavior of atoms with respect to absorption and emission of photons indicate
that the electrons cause an oscillation in concordance with the patterns of spherical harmonics.
However, this oscillation occurs in the embedding continuum and does not concern the “location” of
the electron charges.

For atoms and its composites, the strength of the symmetry related potential does not depend on
the number of involved swarm elements. That number influences the deformation of the field, which
embeds the elementary particles that together constitute the atom.

The behavior of the shell of atoms is described by spherical harmonics that are solutions of the
homogeneous second order partial differential equation. This equation describes vibrations of the
embedding continuum. These vibrations are caused by (non-isotropic) recurrent embedding of the
electrons. These vibrations are described by the Helmholtz equation that describes the local behavior
of the embedding field.

17.5.2 Hadrons

In hadrons the situation is different. There the binding is also regulated by gluons. Gluons are capable
of rotating quarks such that their color charge switches to another value. Gluons can join in strings.
As rotators they act in pairs. Gluons do not affect isotropic swarms.

17.5.3 Standard model
In the standard model of contemporary physics the symmetry related potential that governs the
binding of electrons in atoms is considered to be the electromagnetic potential.

The standard model suggests the existence of other potentials that implement weak and strong
forces. Gluons play a role in the strong force. Massive bosons play a role in the weak force.
Introducing strong and weak forces suggests that the potentials act on the full swarm and not on the
individual swarm elements.
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18 Tri-state spaces

Quaternions not only fit in the representation of dynamic geometric data. They also match in
representing three-fold states such as the RGB colors of quarks and the three generation flavors of
fermions. In all these roles the real part of the quaternion plays the role of progression. Thus
gquaternions can also be used to model neutrino flavor mixing.

Say that a property is distributed over three mutually independent modes and these modes exist in a
combination that superposes these three modes.

The property distribution is characterized by py, py, p;

Px

cos?(6,) = ———
Yopetpytp,

cos?(8y) + cos?(6),) + cos?(6,) = 1

The angles 0y, 8,, 6, indicate a direction vector n = {nx, ny, nZ} in three dimensional state
space.

|2 — px

ny|® = ———r
Px t Py + D2

cos(by) = ny; In| =1

If state mixing is a dynamic process, then the axis along direction vector n acts as the rotation axis.
The concerned subsystem rotates smoothly as a function of progression. This is not a rotation in
configuration space. Instead it is a rotation in tri-state space.

The fact that quaternions can rotate the imaginary part of other quaternions or of complete
guaternionic functions also holds for tri-states. The quaternions that have equal real and imaginary
size play a special role. They can shift an anisotropic property to another dimension. They can play a
role in tri-state flavor switching.

E.M. Lipmanov has indicated that generation flavor mixing is related to a special direction vector in
ordered three dimensional space [16][17]. This singles out a direction vector in the 3D phase space.
That direction vector is defined by the angles of this vector with respect to the base vectors of the
Cartesian coordinate system of that phase space.

cos?(2 6;,) + cos?(2 0,3) + cos?(2603,) =1
cos?(2 6,) + cos?(26,) + cos?(26,) = 1
cos?(26,) + cos?(26,) + cos?(26,) =1
cos?(26,) + cos?(26,) +cos?(26,) =1

The projection of the direction vector on the coordinate base vectors appears to relate to generation
masses. Generation flavor mixing is well known as a phenomenon that occurs for neutrinos when
they travel through space.

In the orthomodular base model the rest mass of the elementary particle is related to the number of
the elements in the location swarm that the mechanism 9t,, picks from the symmetry center.
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19 Conclusion

It appears sensible to suggest that physical reality mimics a network of mathematical structures that
is used and controlled by a set of coherence ensuring management mechanisms. This setup aims at
reducing relational complexity and it prevents dynamical chaos. The network consists of chains of
structures that each start with a rather simple foundation. The major chain starts with an
orthomodular lattice.

In this way an orthomodular base model emerges with inescapable evidence. This model treats all
discrete objects as modules or modular systems that are embedded in continuums. This is supported
by an infinite dimensional separable Hilbert space and a companion non-separable Hilbert space.
Both Hilbert spaces act as structured storage media. The management mechanisms ensure the
dynamic and spatial coherence. This leads to a model in which progression steps in the discrete part
and flows in the continuous part of the model.

The introduction of symmetry centers enables the distinction between two fields that influence the
kinematics of the discrete objects that appear as modules in the model. The symmetry centers house
the artifacts that indirectly interact with the symmetry related field 2.

The embedding process creates the triggers that deforms the embedding continuum in a dynamical
way and causes vibrations in that continuum. Without these triggers the embedding continuum is
not affected.

The symmetry related field 2 can be considered to overlay the parameter space RO of the
embedding continuum € and features electric charges that are concentrated on the geometric
centers of local symmetry centers. In spherical symmetric conditions this coincides with the local
center of gravitation symmetry.

The habits and diversity of quaternions play an essential role in the extension of the orthomodular
base model. These habits cause a variety of module types that differ in their properties and in their
behavior. The generation of the modules is controlled by stochastic management mechanisms. The
behavior of the modules and of the continuums is both initiated and restricted by the embedding
process.

According to the model, history is precisely determined and stored in the Hilbert spaces. The
controlling mechanisms act in a short period around the current progression value. Each mechanism
acts in a sliding window that is represented by a closed subspace of the separable Hilbert space. The
future is unknown, but it is restricted by the capabilities of the orthomodular base model and the by
the controlling mechanisms.

This paper does not consider in depth the mutual binding of elementary modules. Nor does it treat
the effects of arbitrary boundary conditions.

The development of mathematical tools that are used by physicists did not always occur in sync with
the sometimes violent development of physical theories. Sometimes choices were made that would
not have been taken when the proper mathematical tools were developed in an earlier phase. The
paper shows that when looking back on this development, some leading physicists did not always
provide the most sensible choice. They cannot be blamed for that choice, but as a consequence, the
models of contemporary physics are more complicated than is necessary and do not reach as deep as
is possible. It will be difficult to repair that situation.
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If the target is to investigate the foundations of physical reality, then it is sensible to apply the most
advanced mathematical tools and obey the restrictions that are set by these tools.
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Appendix

20 Related historic discoveries and other references

Physical models use mathematical tools. The development of mathematical tools did not evolve in
sync with the development of the physical models that use these tools. Complicated mathematical
tools may take several decades before they mature.

[1] Quantum logic was introduced by Garret Birkhoff and John von Neumann in their 1936 paper. G.
Birkhoff and J. von Neumann, The Logic of Quantum Mechanics, Annals of Mathematics, Vol. 37,
pp. 823-843

[2] The lattices of quantum logic and classical logic are treated in detail in:
http://vixra.org/abs/1411.0175 .

[3] The Hilbert space was discovered in the first decades of the 20-th century by David Hilbert and
others. http://en.wikipedia.org/wiki/Hilbert space.

[4] In the second half of the twentieth century Constantin Piron and Maria Pia Solér proved that the
number systems that a separable Hilbert space can use must be division rings. See: “Division algebras
and quantum theory” by John Baez. http://arxiv.org/abs/1101.5690 and
http://www.ams.org/journals/bull/1995-32-02/50273-0979-1995-00593-8/

[5] Paul Dirac introduced the bra-ket notation, which popularized the usage of Hilbert spaces. Dirac
also introduced its delta function, which is a generalized function. Spaces of generalized functions
offered continuums before the Gelfand triple arrived.

[6] In the sixties Israel Gelfand and Georgyi Shilov introduced a way to model continuums via an
extension of the separable Hilbert space into a so called Gelfand triple. The Gelfand triple often gets
the name rigged Hilbert space. It is a non-separable Hilbert space.
http://www.encyclopediaofmath.org/index.php?title=Rigged Hilbert space .

[7] Potential of a Gaussian charge density:
http://en.wikipedia.org/wiki/Poisson%27s equation#Potential of a Gaussian charge density .

[8] Quaternionic function theory and quaternionic Hilbert spaces are treated in:
http://vixra.org/abs/1411.0178 .

[9] In 1843 quaternions were discovered by Rowan Hamilton.
http://en.wikipedia.org/wiki/History of guaternions

Later in the twentieth century quaternions fell in oblivion.

[10] http://en.wikipedia.org/wiki/Wave equation#fDerivation of the wave equation

[11] http://en.wikipedia.org/wiki/Yukawa potential

[12] “The Dirac equation in quaternionic format”; http://vixra.org/abs/1505.0149

[13] “Quaternionic versus Maxwell based differential calculus”; http://vixra.org/abs/1506.0111

[14] The online EMFT book of Bo Thidé contains a formula section that treats vector calculus and
vector differential calculus. http://www.plasma.uu.se/CED/Book/EMFT Book.pdf .
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[15] Different number systems and their arithmetic capabilities are treated in
http://www.scorevoting.net/WarrenSmithPages/homepage/nce2.pdf.

[16] “Neutrino Oscillations”;
http://www?2.warwick.ac.uk/fac/sci/physics/current/teach/module _home/px435/lec_oscillations.pdf .

[17] “On Radical Ph-Solution of Number 3 Puzzle and Universal Pattern of SM Large Hierarchies®;
http://arxiv.org/abs/1212.1417
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