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Linearized Poisson-Boltzmann equation (PBE) gives us simple expressions for charge density
distribution (ρe) within fluids or plasma. A recent work of this author shows that the old boundary
conditions (BC), which are usually used to solve PBE, have serious defects. The old solutions
turned out to be non-unique, and violates charge conservation principle in some cases. There we
also derived the correct formula of ρe for a finite, rectangular geometry, using appropriate BCs.
Here we consider some other types of geometries and obtain formula of ρe, which may be useful to
analyse different experimental conditions.

I. INTRODUCTION

Linearized PBE has been used since a long time, al-
most a century [1], to obtain distribution of free elec-
tric charges within ionic solutions or plasma. It has
applications in various fields ranging from nanofluidics-
microfluidics [2, 3] to astrophysics [4, 5], covering radio-
science [6], surface chemistry [7], colloid science [8], lab-
oratory plasma/ thermo-nuclear fusion devices [9, 10],
bio-science [11, 12] etc. However, a recent work of this
author [13] shows that the Dirichlet or Neumann type
BCs that are usually used to solve the PBE, have seri-
ous defects, as they produce non-unique solutions. The
Dirichlet condition leads to violation of charge conserva-
tion principle. We have been able to remove those defects
by using different BCs to obtain ρe. There we analyzed
a 1-D problem using a ‘finite’ and ‘rectangular’ geometry
to demonstrate the essential ideas. Here, we derive the
formula of ρe for some other geometries. Firstly, we do
an 1-D analysis for a cylindrical geometry; we consider
two sub-cases, one with an annular cross-section, and the
other with a circular cross-section. Secondly, we do an 1-
D analysis for a rectangular, semi-infinite domain, where
the fluid is bounded by a single plane and the fluid ex-
tends to infinity along the direction normal to that plane.
After this, we give an ‘alternative’ derivation to the dis-
tribution formula for a finite rectangular domain that we
have derived for the first time in Ref. [14]; a minute cor-
rection was done in Ref. [15].

II. CYLINDRICAL GEOMETRY

See Ref. [16] for some formulae that we used here.
For a cylindrical geometry, the position of a point is

specified with (R, θ, z), see Ref. [17]. The meaning of
most of the other symbols can be found in Ref. ([14]),
any exception will be notified. We analyse a straight do-
main of length L, with annular and circular cross-sections
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FIG. 1. (Color online) Ionic solution within a cylindrical
geometry of annular cross-section. Two circular boundaries
have a potential difference. A typical plot that shows how
charge density varies in the radial direction, is embedded to
show the domain of our interest, see Fig. (2)

respectively. We consider only axi-symmetric problems
i.e independent of θ. When L is much greater compared
to the radius, the problems become independent of z as
well, except some end-effects. Hence, the problems de-
pend only on the radial coordinate R. We use some suit-
able scales ‘a’ and ‘ζ’ (both are positive) for distance and
electrostatic potential (ψ) respectively. Let’s define a few
quantities:

r ≡ R

a
; κ ≡

[
λD
a

]−1
; ψ∗ ≡ ψ

ζ
; ρ0 ≡

εκ2ζ

a2
; ρ∗e ≡

ρe
ρ0

(1)

Where, λD is the ‘Debye length’, ε is the permittivity of
the fluid.

A. Cylindrical geometry of annular cross-section

Here the domain is bounded by two concentric right
cylinders, see Fig. (1); the ‘inner’ and ‘outer’ radii are
Ri and Ro, normalized as: ri ≡ Ri/a; ro ≡ Ro/a; the
annular ends are also walls.



2

1 1.2 1.4 1.6 1.8 2
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8
1

κ = 10.0, q0 = 0.1, v = 0.0

r

ρ
e/
ρ
0

1

(A)

1 1.2 1.4 1.6 1.8 2
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8
1

κ = 10.0, q0 = 0.1, v = 0.6

r
ρ
e/
ρ
0

1

(B)

1 1.2 1.4 1.6 1.8 2
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8
1

κ = 10.0, q0 = 0.1, v = 1.5

r

ρ
e/
ρ
0

1

(C)

FIG. 2. (Color online) Charge density distribution within a
fluid, bounded by two concentric cylinders. κ = 10.0; q0 =
0.1. (a) v = 0; excess charges accumulate near boundaries.
(b) v = 0.6; an applied voltage redistributes charges. (c)
v = 1.5; strong voltage segregates negative charges even if
q0 > 0. Compare this figure with that in Ref. [13]

We start with a formula that we derived in Ref. [14]
(within its Supplementary Material).

∴ ρ∗e = −ψ∗ (2)

We will define some useful quantities, which will be
useful later. The net charge present in the total domain
i.e QTOT is given by

∫∫∫
ρedV , where dV = R dR dθ dz.

If ρe depends only upon R, we have,

QTOT =

L∫
0

dz

2π∫
0

dθ

Ro∫
Ri

ρeR dR = 2πL

∫ Ro

Ri

ρeR dR (3)

We define a quantity Q1c, then using Eq. (1) we write
its non-dimensional form q1c; the subscript ‘1c’ means an
1-D problem in cylindrical geometry.

Q1c ≡
QTOT
2πL

=

∫ Ro

Ri

ρeR dR = ρ0a
2

∫ ro

ri

ρ∗e r dr (4)

q1c ≡
Q1c

(ρ0a2)
=

∫ ro

ri

ρ∗e r dr (5)

Q1c is the net charge present in the fluid within an angu-
lar sector of unit radian, per unit axial length. Q1c has di-
mension ‘charge per length’ e.g. Coulomb ·meter−1, un-
like in the 1-D problem for a rectangular domain, where
it had dimension Coulomb ·meter−2 (see Ref. [15]).

Now, ψ and ρe are also related by Poisson’s equation
in electrostatics (PES), which is given by,

∇2ψ = −ρe
ε

(6)

For a cylindrical geometry, ∇2 is given by,

∇2 ≡ 1

R

∂

∂R

(
R
∂

∂R

)
+

1

R2

∂2

∂θ2
+

∂2

∂z2
(7)

In the special case, where ψ varies only in the‘radial’
direction, the PES reduces to,

1

R

d

dR

(
R

dψ

dR

)
= −ρe

ε
(8)

using Eq. (1) we first make PES non-dimensional:

1

r

d

dr

(
r

dψ∗

dr

)(
ζ

a2

)
= −ρ0

ε
ρ∗e = −

(
εκ2ζ

a2ε

)
ρ∗e

⇒ 1

r

d

dr

(
r

dψ∗

dr

)
= −κ2ρ∗e (9)

Using Eq. (2) in Eq. (9) we get non-dimensional PBE in
1-D cylindrical (radial) coordinates:

1

r

d

dr

(
r

dψ∗

dr

)
= κ2ψ∗ (10)

Its general solution (see Ref. [16]), with arbitrary con-
stants A and B, is given by,

ψ∗ = AI0(κr) +BK0(κr) (11)

Where, I0 and K0 are modified Bessel functions of order
0. We need two conditions to fix A and B. We get
one condition by integrating PES i.e. Eq. (9) and using
Eq. (5),

ro∫
ri

[
1

r

d

dr

(
r

dψ∗

dr

)]
r dr = −κ2

∫ ro

ri

ρ∗e r dr

⇒
(
r

dψ∗

dr

)∣∣∣∣
r=ro

−
(
r

dψ∗

dr

)∣∣∣∣
r=ri

= −q1cκ2 (12)

We assume the potential difference (scaled with ζ) be-
tween outer and inner curved boundaries i.e. ‘v’ to be
known,

ψ∗(ro)− ψ∗(ri) = v (13)

We solve PBE i.e. Eq. (10) using two conditions given
by Eq. (12) and Eq. (13). We use the following formulae,
see Ref. [18, 19]:

dI0(ξ)

dξ
= I1(ξ) ;

dK0(ξ)

dξ
= −K1(ξ) (14)

From Eq. (11) we get,

dψ∗

dr
= A

dI0(κr)

dr
+B

dK0(κr)

dr
= κ [AI1(κr)−BK1(κr)] (15)

From Eq. (12) and Eq. (15) we get,
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roκ [AI1(κro)−BK1(κro)]− riκ [AI1(κri)−BK1(κri)] = −q1cκ2
⇒ [roI1(κro)− riI1(κri)]A− [roK1(κro)− riK1(κri)]B = −q1cκ

(16)

From Eq. (11) and Eq. (13) we get,

[AI0(κro) +BK0(κro)]− [AI0(κri) +BK0(κri)] = v

⇒ [I0(κro)− I0(κri)]A+ [K0(κro)−K0(κri)]B = v

(17)

We write Eq. (16) and Eq. (17) together in a compact,
matrix form:

(
C11 C12

C21 C22

)(
A
B

)
=

(
d1
d2

)
(18)

Where,

C11 ≡ [roI1(κro)− riI1(κri)] (19)

C12 ≡ (−1)× [roK1(κro)− riK1(κri)] (20)

C21 ≡ [I0(κro)− I0(κri)] (21)

C22 ≡ [K0(κro)−K0(κri)] (22)

d1 ≡ −q1cκ (23)

d2 ≡ v (24)

The determinant ∆ of the above 2× 2 matrix is given
by,

∆ ≡ C11 · C22 − C12 · C21 (25)

Finally we write A and B in terms of known quantities,

A = (d1 · C22 − d2 · C12)/∆ (26)

B = (−d1 · C21 + d2 · C11)/∆ (27)

We plug in the expressions of A and B given by
Eq. (26) and Eq. (27) in Eq. (11) and rearrange terms;
then we use Eq. (23), Eq. (24) ; finally we use Eq. (2) i.e.
ρ∗e = −ψ∗,

ψ∗ =
(d1 · C22 − d2 · C12)

∆
I0(κr) +

(−d1 · C21 + d2 · C11)

∆
K0(κr)

=
1

∆
[d1 {C22I0(κr)− C21K0(κr)} − d2 {C12I0(κr)− C11K0(κr)}]

=
(−1)

∆
[q1cκ {C22I0(κr)− C21K0(κr)}+ v {C12I0(κr)− C11K0(κr)}] (28)

∴ ρ∗e =
1

∆
[q1cκ {C22I0(κr)− C21K0(κr)}+ v {C12I0(κr)− C11K0(κr)}] (29)

Using Eq. (29) we plot ρ∗e vs r in Fig. (2) for the range
[1 ≤ r ≤ 2] i.e. we took a = Ri and Ro = 2Ri, so
that ri = 1, and ro = 2. The explanation of the plots
goes along the same line as the rectangular geometry
(Ref. [13]); if there is a net amount of charge in the do-
main, the charges accumulate near the two boundaries.
An applied voltage redistributes the charges; positive and
negative charges move towards the walls of lower and
higher potentials respectively. A strong voltage can seg-
regate two types of charges.

B. Cylindrical geometry of circular cross-section

Here we derive the formula of ρe for a right cylindri-
cal domain of ‘circular’ cross-section, unlike the ‘annular’
one. The general solution to the PBE is given by Eq. (11).
The function K0(κr) blows up as r → 0. Hence, in order
to prevent ψ∗ from blowing up as r → 0, we must set

B = 0. We get,

ψ∗ = AI0(κr) (30)

For the special case ri = 0, we write 0q1c instead of
q1c. Using Eq. (2) in Eq. (5), with ri = 0, we get,

∫ ro

0

ψ∗ r dr = −0q1c (31)
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Using Eq. (30) we get,∫ ro

0

ψ∗ r dr = A

∫ ro

0

I0(κr)dr

= A
rI1(κr)

κ

∣∣∣∣ro
0

= A
roI1(κro)

κ
= −0q1c

⇒ A = −
0q1cκ

r0I1(κro)
(32)

⇒ ψ∗ = −
0q1cκ

r0I1(κro)
I0(κr) (33)

Using Eq. (2) we finally have the formula for ρ∗e,

ρ∗e =
0q1cκ

r0I1(κro)
I0(κr) (34)

III. SEMI INFINITE RECTANGULAR
GEOMETRY

Let’s consider a plane, which, in its one side, bounds an
infinite ocean of ionic solution. Here ρe varies only in the
direction normal to the plane (x-direction); we set the ori-
gin on the plane so that x varies from 0 to∞. The general
solution is the same as given in Ref. [13] (see the supple-
mentary materials in that reference), however, the arbi-
trary constants of integration are fixed with different con-
ditions. The non-dimensional PBE is d2ψ∗/dη2 = κ2ψ∗;
its general solution is given by:

ψ∗ = A exp(κη) +B exp(−κη) (35)

We must set ‘A’ to zero to prevent the solution to blow
up when η →∞. Hence, using Eq. (2) we get

ρ∗e = −B exp(−κη) (36)

⇒
∫ ∞
0

ρ∗edη = −B
∫ ∞
0

exp(−κη)dη

= −B
(

exp(−κη)

−κ

∣∣∣∣∞
0

)
= −B

(
0− 1

−κ

)
= −B

κ
(37)

Let’s define the following quantities (the subscript ‘1r’
means 1-D and rectangular; left-superscript ‘∞’ means
infinite domain):

∞Q1r ≡
∫ ∞
0

ρe dx (38)

∞q1r ≡
∫ ∞
0

ρ∗e dη =
1

ρ0a

∫ ∞
0

ρe dx =
∞Q1r

(ρ0a)
(39)

Please note the difference between Eq. (5) and Eq. (39);
the dimensions of Q1c and ∞Q1r are different in two
cases. We get,

B = −(∞q1rκ) (40)

Finally we write the formula of ψ∗ and ρ∗e:

ψ∗ = −(∞q1rκ) exp(−κη) (41)

ρ∗e = (∞q1rκ) exp(−κη) (42)

ρe =

(∞Q1rκ

a

)
exp(−κx/a) (43)

Let’s write the formula for the potential at boundary:

ψ∗0 ≡ ψ∗|η=0 = −∞q1rκ (44)

IV. FINITE RECTANGULAR GEOMETRY: AN
ALTERNATIVE DERIVATION

For a finite, rectangular geometry we derived the for-
mula of ρe in Ref. [13, 14], where ρe varies between two
boundaries at x = ±a i.e. η = ±1; a minute correction
of the formula can be found in Ref. [15]. Here we derive
the same formula in a different way. We use a different
symbol Q1r instead of Q0. For the scaled potential dif-
ference (V/ζ) between boundaries we use the symbol v
instead of δ.

Q1r ≡
∫ +a

−a
ρedx (45)

From Eq. (38) and Eq. (45) we see that∞Q1r andQ1r dif-
fers only in the limits of integration. Integrating Eq. (2)
we get,∫ +1

−1
ψ∗dη = −

∫ +1

−1
ρ∗edη = −

∫ +a

−a

ρe
ρ0
d
(x
a

)
= − 1

(ρ0a)

∫ +a

−a
ρedx = − Q1r

(ρ0a)

⇒
∫ +1

−1
ψ∗dη = −q1r (46)

Where, q1r ≡
Q1r

(ρ0a)
(47)

We use Eq. (46) as one condition to solve PBE; the other
condition is given by,

ψ∗(+1)− ψ∗(−1) = v (48)

Integrating the general solution to the PBE i.e. Eq. (35)
and then using Eq. (46) we get,∫ +1

−1
ψ∗dη = A

[
exp(+κ)− exp(−κ)

κ

]
+B

[
exp(−κ)− exp(κ)

−κ

]
= [A+B]

2 sinh(κ)

κ
= −q1r (49)
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Using Eq. (35) and Eq. (48) we get,

[A exp(κ) +B exp(−κ)]− [A exp(−κ) +B exp(κ)] = v

⇒ A [exp(κ)− exp(−κ)]−B [exp(κ)− exp(−κ)] = v

⇒ [A−B] 2 sinh(κ) = v (50)

From Eq. (49) and Eq. (50) we get,

A+B = − q1rκ

2 sinh(κ)
(51)

A−B =
v

2 sinh(κ)
(52)

From the above two equations we solve for A and B,

A =
[v − q1rκ]

4 sinh(κ)
; B = − [v + q1rκ]

4 sinh(κ)
(53)

Plugging in these expressions for A and B in Eq. (35),
and rearranging terms we get the required expression for
ψ∗; then, using Eq. (2) we get the formula of ρ∗; then we
return to the dimensional variables:

ψ∗ =
1

2 sinh(κ)
[v · sinh(κη)− (q1rκ) · cosh(κη)] (54)

ρ∗e =
1

2 sinh(κ)
[(q1rκ) · cosh(κη)− v · sinh(κη)] (55)

ρe =
ρ0

2 sinh(κ)

[
κ

(
Q1r

ρ0a

)
cosh

(κx
a

)
−
(
V

ζ

)
sinh

(κx
a

)]
(56)
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