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PREFACE 
 

 
 

 

In this book authors answer the question proposed by 

Florentin Smarandache “Does there exist neutrosophic numbers 

which are such that they take values differently and behave 

differently from I; the indeterminate?”. We have constructed a 

class  of natural neutrosophic numbers m

0I , m

xI , m

yI , m

zI  where 

m

0I  × m

0I  = m

0I ,   m

xI  × m

xI  = m

xI  and m

yI × m

yI  = m

yI  and m

yI × m

xI  = 

m

0I  and m

zI × m

zI  = m

0I .  

Here take m = 12, x = 4, y = 9 and z = 6. For more refer 

chapter one of this book. Thus we have defined or introduced 

natural neutrosophic numbers using Zm under division.  

Further there are more natural neutrosophic numbers in the 

MOD interval [0, m). This concept is thoroughly analysed in 

chapter two. Using all types of MOD planes and MOD intervals 
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we have generated both natural neutrosophic numbers and MOD 

neutrosophic numbers.  

Further the MOD intervals and MOD planes have a special 

type of zero divisors contributed by units in Zn. Such type of 

zero divisors  are termed as special pseudo zero divisors leading 

to the definition of special pseudo zero divisors and MOD 

neutrosophic numbers apart from natural (MOD) neutrosophic 

nilpotents, zero divisors and idempotents. Lots of open 

problems are suggested in this book. Certainly this paradigm of 

shift will give a new approach to the notion of neutrosophy.        

We wish to acknowledge Dr. K Kandasamy for his 

sustained support and encouragement in the writing of this 

book.  

 

  

W.B.VASANTHA KANDASAMY 

ILANTHENRAL K 

FLORENTIN SMARANDACHE 

 



 
 
 
 
Chapter One 
 

 
 
NATURAL CLASS OF NEUTROSOPHIC 

NUMBERS 
 
 
 

In this book for the first time authors define a new notion 

called natural neutrosophic numbers. They are different from I 

the indeterminate or the neutrosophic number defined by  

Florentin [3]. 

 

As we proceed on to define them one can see how different 

they are from other neutrosophic numbers. Infact they naturally 

occur. This answers a problem by Florentin Smarandache about 

the existence of a natural neutrosophic number. 

 

Throughout this book Zn will denote the ring of modulo 

integers. 

 

Clearly {Zn, +, ×} is a commutative finite ring of order n. 

 

Take Z2 = {0, 1}. 
1

1
 = 1 but 

1

0
 is not defined and 

0

1
 = 0 

and 
0

0  
 is not defined. 

 

So if we define the operation of division clearly  
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 I
2Z  = {1, 0, 

1

0
, 

0

0
} = {1, 0, 2

0I } where  

 

2
0I  = 

1

0
 = 

0

0
 that is any element divided by 0 in Z2 is an 

indeterminate and is denoted by 2
0I .  They will be known as 

natural neutrosophic numbers and n
0I  in particular the natural 

neutrosophic zero. 

 

Thus 
2
0

2
0

I

I
 = 2

0I  (by definition).  

 

This is just like 
0

n
 (n ≠ 0 for all n ∈ Z \ {0} is defined as 0). 

 

Thus { I
2Z , / } has the following table. 

 

/ 0 1 2
0I  

0 2
0I  0 2

0I  

1 2
0I  1 2

0I  

2
0I  

2
0I  2

0I  2
0I  

 

This is the way operation of division is performed on I
2Z . 

 

2
0

0

I
= 2

0I  ,  

2
0I

0
 = 

2
0I ,  

2
0

2
0

I

I
= 

2
0I ,   

 

2
0

1

I
 = 2

0I      and   

2
0I

1  
= 

2
0I . 

 

Clearly / is a non commutative operation on I
2Z . 

Is / operation associative on I
2Z ? 
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Consider 0 / (1 / 1) = (0 / 1) = 0     … I 

 

Consider (0 / 1) / 1 = (0 / 1) = 0    … II 

 

So for this triple ‘/’ is an associative operation. 

 

Now consider Z3 = {0, 1, 2}, I
3Z  = {0, 1, 2, 3

0I } is again a 

closed under /. 

 

The table for I
3Z  is as follows: 

 

 

/ 0 1 2 3
0I  

0 3
0I  0 0 3

0I  

1 3
0I  1 2 3

0I  

2 3
0I  2 1 3

0I  

3
0I  3

0I  3
0I  3

0I  3
0I  

 

 

Thus 3
0I  and 2

0I  are the natural neutrosophic elements or 

naturally neutrosophic elements of I
3Z  and I

2Z  respectively. 

 

Now consider Z4 = {0, 1, 2, 3}. 

 

I
4Z  = {0, 1, 2, 3, 4

0I , 4
2I } for 

1

2
 is not defined so is 

3

2
 also 

not defined.  

 

1

0
is not defined and

 

2

0
, 

3

0
 are all not defined and they are 

denoted by 4
0I .  
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 1 3 2 0
, , ,

2 2 2 2
 are denoted by 4

2I .  

 
4
2I  × 4

2I  = 4
0I . 

 
4
2I  × 4

0I  = 4
0I  = 4

0I  × 4
2I  

 
4
0I  × 4

0I  = 4
0I .

 
 

Thus I

4Z  has two indeterminates 4
0I  and 4

2I .  

 

They are natural neutrosophic elements of Z4. 

 

Thus if in Zn, n is not a prime we may have more than one 

natural neutrosophic element. 

 

Clearly Z4 has two natural neutrosophic elements. 

 

Next we find for  

Z5 = {0, 1, 2, 3, 4} 

 

the natural neutrosophic elements  

 
I
5Z = {0, 1, 2, 3, 4, 5

0I }. 

 

Thus o ( )I
5Z  = o ( )I

4Z  but they are not isomorphic. 

 

Consider  

Z6 = {0, 1, 2, 3, 4, 5} 

 
I
6Z = {0, 1, 2, 3, 4, 5, 6 6 6 6

0 2 4 3I , I , I , I }. 

 

Clearly 3 ∈ Z6 is such that 3
2
 = 3 but also 3 × 2 = 0 so 3 is a 

zero divisor hence 
i

3
; i ∈ Z6 are all indeterminates.  
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Hence |
I

6Z | = 10 and Z6 contributes to 4 natural 

neutrosophic numbers. 

 
6 6 6 6 6 6 6

0 2 0 4 0 3 0I I I I I I I× = = × = ×
 

 
6 6 6

2 3 0I I I ,× =
  

6 6 6

3 3 3I I I ,× =
 

 
6 6 6

4 3 0I I I ,× =
  

6 6 6

4 2 2I I I ,× =  
 

6 6 6

2 2 4I I I ,× =   
6 6 6

4 4 4I I I ,× =  

 

This is the way natural neutrosophic product is defined. 

 

But what is  
4
2

4
0

I

I
 

 and  
4
2

4
2

I

I
 

and 
4
0

4
2

I

I
 = 4

0I  and  

 
4
2

4
0

I

I
 

= 4
2I  and so on. 

 

Now product can be defined; addition can be made only in a 

very special way.  Once we write I
nZ  it implies I

nZ  contains all 

natural neutrosophic numbers from Zn. 

 

Now in case of I
2Z  = {0, 1, 2

0I } if we have to define + 

operation then the set  

 

G ={ I

2Z , +} = {0, 1, 2

0I , 1 + 2

0I } 

 

is only a semigroup under + modulo 2 as  

 
2

0I  + 2

0I  = 2

0I  (is defined) 

 

and G will be known as natural neutrosophic semigroup.  
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 { I

2Z , ×} = {0, 1, 2

0I , ×} 

 

is given by the following table.  

 

We define 0 × 2

0I  = 2

0I  only and not zero. 

 

× 0 1 
2

0I  

0 0 0 
2

0I  

1 0 1 
2

0I  

2

0I  2

0I  2

0I  2

0I  

 

 

Thus { I

2Z , ×} is a semigroup under ×, known as natural 

neutrosophic product semigroup. 

 

But  

{ I

2Z , +, ×} = {0, 1, 1 + 2

0I , 2

0I } 

is a semiring.  

 

Clearly this is not a semifield.  

 

{Z2, +, ×} is a field. 

 

Consider  

 

{ I

3Z , +} = {0, 1, 2, 3

0I , 1 + 3

0I , 2 + 3

0I } = S. 

 

Clearly S is a semigroup under +, as  

 
3

0I  + 3

0I  = 3

0I  

 

so nothing will make them equal to zero for  

 
3

0I + 3

0I  + 3

0I  = 3

0I  ≠ 0. 
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The table for I

2Z  under × is as follows: 

 

× 0 1 
2

0I  1 + 2

0I  

0 0 0 
2

0I  2

0I  

1 0 1 
2

0I  1 + 2

0I  

2

0I  2

0I  2

0I  2

0I  2

0I  

1 + 2

0I  2

0I  1 +
 

2

0I  2

0I  1 + 2

0I  

 

Thus S = {0, 1, 2

0I , 1 + 2

0I } is only a semiring in fact a 

semiring of natural neutrosophic numbers and is of finite order.  

 

This answers a very long pending question that of the 

existence of finite semirings of finite special characteristic n;  

2 ≤ n < ∞.  However it is not the classical characteristic n and 

semifields other than the ones got using distributive lattices L as 

semirings or LG the group distributive lattices or LS the 

semigroup distributive lattices. 

 

Thus from this we get a class of finite semirings which are 

not strict semirings as 1 + 1 ≡ 0 (mod 2) and 1 ≠ 0. 

 

I

3Z  = {0, 1, 2, 3

0I 3

0I , 1 + 3
0I , 2 + 3

0I  | ( )
2

3

0I  = 3
0I  and  

 
3
0I + 3

0I  = 3
0I }. 

 

(1 + 3
0I ) + 1 + 3

0I  = 2 + 3
0I . 

 

3
0I  

+ 3
0I  = 3

0I  and ( )
2

3

02 I+  = 1 + 3
0I  and so on. 

 

Thus { I

3Z , +} is only a semigroup under +.  

 

{ I

3Z , ×} is also only a semigroup.  
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 Thus { I

3Z , +, ×} is a semiring of order 6. 

 

Consider  

 
I

4Z  = {0, 1, 2, 3, 4 4 4 4 4

0 2 0 0 0I , I , 1 I , 2 I , 3 I+ + + , 2 + 4

2I , 1 + 4

2I , 

3 + 4

2I , 4

2I  + 4

0I , 1 + 4

2I  + 4

0I , 2 + 4

2I  + 4

0I , 3 + 4

2I  + 4

0I
 
/ 4

2I  × 4

0I  

= 4

0I ,  4

0I  × 4

0I  = 4

0I , 4

2I  × 4

2I  = 4

0I , 4

2I  + 4

2I  = 4

2I , 4

0I  + 4

0I  = 4

0I }. 

 

{ I

4Z , +} is a semigroup this has idempotents and { I

4Z , ×} is 

a semigroup this has zero divisors and { I

4Z , +, ×} is a semiring 

of finite order and it is not a semifield. 

 

Next we study  

 
I

5Z = {0, 1, 2, 3, 4, 5

0I , 1 + 5

0I , 2 + 5

0I , 3 + 5

0I , 4 + 5

0I } here  

 
5

0I  × 5

0I  = 5

0I , 5

0I + 5

0I = 5

0I ; 0 × 5

0I  = 5

0I  and t 5

0I  = 5

0I  for all t 

∈ Z5. 
I

5Z has 10 elements.  

 

Infact I

5Z  is a not semifield only a semiring of order 10. 

 

Consider I

6Z  = {0, 1, 2, 3, 4, 5, 6

0I , 6 6
4 2I , I , 6 6

3 0I , I +
6
4I ,  

6 6 6 6
0 2 0 3I I , I I+ + , 6

4I  + 6

2I , 6

4I  + 6

3I , 6

2I  + 6

3I ,  

 

( )
2

6

0I  = 6

0I , ( )
2

6

3I = 6

3I , 6 6 6

4 3 0I I I× = , 6 6 6

4 4 4I I I× = , 

 
6 6 6

2 2 4I I I× = , 6 6 6

3 2 0I I I× = , 6 6 6

0 0 0I I I× = , 

 
6 6 6

4 0 0I I I× = , 6 6 6

3 0 0I I I× = , 6 6 6

4 2 2I I I× = , 

 
6 6 6

0 2 0I I I× = , 6

0I  + 6

0I  = 6

0I , 6

2I  + 6

2I  = 6

2I , 

 
6

4I  + 6

4I  = 6

4I , 6

3I  + 6

3I  = 6

3I }. 
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{ I

6Z , ×, +} is only a semiring of finite order. 

 

Now I

7Z  = {0, 1, 2, 3, 4, 5, 6, 7

0I , 1 + 7

0I , 2 + 7

0I , 3 + 7

0I ,  

4 + 7

0I , 5 + 7

0I , 6 + 7

0I } is a semiring of order 14 infact not a 

semifield as  4 + 3 ≡ 0 (mod 7).  

 

In view of this we have the following theorem. 

 

THEOREM 1.1: Let 
I

n
Z  = {0, 1, 2, …, n – 1, 0

n
I , 1 + 0

n
I , …, 

 n – 1 + 0

n
I }; n a prime be the natural neutrosophic set. {

I

n
Z , +, 

×} is not a semifield but only a strict semiring of order 2n. 

 

 Proof follows from simple number theoretic methods.  

 

The total number of elements generated by  
I

6Z  = {0, 1, 2, 3, 4, 5, 6

0I , 6

2I , 6

4I , 6

3I , 1 + 6

0I , 2 + 6

0I , 4 + 6

0I , 3 + 
6

0I , 1 + 6

2I , 2 + 6

2I , 4 + 6

2I , 3 + 6

2I , 1 + 6

4I , 2 + 6

4I , 3 + 6

4I , 4 + 6

4I , 

1 + 6

3I , 2 + 6

3I , 3 + 6

3I , 4 + 6

3I , 5 + 6

3I , 5 + 6

0I , 5 + 6

2I , 5 + 6

4I , 6

0I  

+ 6

2I , 6

0I  + 6

4I , 6

0I  + 6

3I , 6

2I  + 6

3I , 6

2I  + 6

4I , 6

4I  + 6

3I , 1 + 6

0I  + 6

2I , 2 

+ 6

0I  + 6

2I , 3 + 6

0I  + 6

2I , 4 + 6

0I  + 6

2I , 5 + 6

0I  + 6

2I ,  1 + 6

2I  + 6

3I , 2 

+ 6

2I  + 6

3I , 3 + 6

2I  + 6

3I , 4 + 6

2I  + 6

3I , 5 + 6

2I  + 6

3I , 1 + 6

2I  + 6

4I , 2 

+ 6

2I  + 6

4I ,  3 + 6

2I  + 6

4I , 5 + 6

2I  + 6

4I , 4 + 6

2I  + 6
4I , 1 + 6

3I  + 6

0I , 2 + 
6

3I  + 6

0I , 1 + 6

0I  + 6

4I , 3 + 6

3I  + 6

0I , 5 + 6

3I  + 6

0I , 4 + 6

3I  + 6

0I , 2 + 
6

0I  + 6

4I , 4 + 6

0I  + 6

4I , 3 + 6

0I  + 6

4I , 5 + 6

0I  + 6

4I , 1 + 6

3I  + 6

4I , 2 + 
6

3I  + 6

4I , 3 + 6

3I  + 6

4I , 4 + 6

3I  + 6

4I , 5 + 6

3I  + 6

4I , 6 6 6

0 2 3I I I+ + , 
6 6 6

0 2 4I I I+ +  , 6 6 6

0 3 4I I I+ + , 6

2I  + 6

3I  + 6

4I , 1 + 6

0I  + 6

2I  + 6

3I , 3 + 
6

0I  + 6

2I  + 6

3I , 2 + 6

0I  + 6

2I  + 6

3I , 4 + 6

0I  + 6

2I  + 6

3I , 5 + 6

0I  + 6

2I  + 
6

3I , 1 + 6

0I  + 6

2I  + 6

4I , 2 + 6

0I  + 6

2I  + 6

4I , 4 + 6

0I  + 6

2I  + 6

4I , 3 + 6

0I  

+ 6

2I  + 6

4I , 5+ 6

4I  + 6

2I  + 6

4I , 1 + 6

0I  + 6

3I  + 6

4I , 2 + 6

0I  + 6

3I  + 6

4I , 

3 + 6

4I  + 6

3I  + 6

4I , 4 + 6

0I  + 6

3I  + 6

4I , 5 + 6

0I  + 6

3I  + 6

4I , 1 + 6

2I  + 
6

3I  + 6

4I , 2 + 6

2I  + 6

3I  + 6

4I , 3 + 6

2I  + 6

3I  + 6

4I , 5 + 6

2I  + 6

3I  + 6

4I , 4 
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 + 6

2I  + 6

3I  + 6

4I , 6

0I  + 6

2I  + 6

3I  + 6

4I , 1 + 6

0I  + 6

2I  + 6

3I  + 6

4I , 2 + 6

0I  

+ 6

2I  + 6

3I  + 6

4I , 3 + 6

0I  + 6

2I  + 6

3I  + 6

4I , 4 + 6

0I  + 6

2I  + 6

3I  + 6

4I , 5 

+ 6

0I  + 6

2I  + 6

3I  + 6

4I } 

 

The semiring { I

6Z , +, ×} is of order 96. 

 

Consider I

8Z  = {0, 1, 2, 3, 4, 5, 6, 7, 8 8 8 8

0 2 4 6I , I , I , I , …,  

1 + 8 8 8 8

0 2 4 6I I I I+ + + , 2+ 8 8 8 8

0 2 4 6I I I I+ + + ,…,7 + 8 8

0 2I I+ +  
8 8

4 6I I+ }  is a semiring of order 128. We make a notational 

default by putting I

nZ  for I

nZ  can be easily understood by 

context.   

 

However { I

9Z , +, ×} is a natural neutrosophic semiring of 

order 72.  

 

Thus we cannot say with increasing n the cardinality of 
I

nZ will increase. 

 
I

10Z  = {〈0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 10 10
0 2 4I , I , I , 10 10 10

5 6 8I , I , I 〉}. 

 

The number of elements in I

10Z  is of cardinality 640. 

 
I

12Z  = {〈0, 1, 2, …, 11, 12 12 12 12 12 12 12 12

8 6 0 2 3 4 9 10I , I , I , I , I , I , I , I 〉} 

 

is a semiring.  

 

Clearly o( I

12Z ) > o( I

10Z ).  

 

In view of this we have the following theorem. 

 

THEOREM 1.2: Let {
I

nZ , +, ×} =S be a semiring. 
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 If n is the prime then S has only one natural indeterminate 

generating S. 

 

If n is a non prime which is a product of several distinct 

primes then order of S is very large. 

 

Proof is direct and hence left as an exercise to the reader. 

 

It is to be noted that at each stage for n
tI ; 0 ≤ t < n say 

n n

m sI I×  is to be defined where 0 ≤ m, s < n.  

 

So finding the table of all product is an interesting and 

innovative work. 

 

This will be first illustrated by an example or two.  

 

Three things are important to be observed. 

 

i. If on I

nZ  only product is defined. 

ii. If on I

nZ  only sum is defined. 

iii. If on I

nZ  both sum and product is defined. 

 

In all the three cases the order of them are different.  

 

First this will be illustrated by few examples. 

 

Example 1.1: Let S = { I

6Z , +} be the semigroup of natural 

neutrosophic elements.  

 
I

6Z  = {0, 1, 2, 3, 4, 5, 6

0I , 6
2I , 6

3I , 6
4I }  

 

S = I

6Z  = {0, 1, 2, 3, 4, 5, 6

0I , 6

2I , 6

3I , 6

4I , 1 + 6

0I , 2 + 6

0I , 3 + 
6

0I , 4 + 6

0I , 5 + 6

0I , 1 + 6

2I , 2 + 6

2I , 3 + 6

2I , 4 + 6

2I , 5 + 6

2I , 1 + 6

3I , 2 

+ 6

3I , 3 + 6

3I , 4 + 6

3I , 5 + 6

3I , 1 + 6

4I , 2 + 6

4I , 3 + 6

4I , 4 + 6

4I , 5 + 6

4I , 
6

0I  + 6

2I , 6

0I  + 6

3I , 6

0I  + 6

4I , 6

2I  + 6

3I , 6

2I  + 6

4I , 6

3I  + 6

4I , 6

0I + 6

2I  + 6

3I , 6

0I  
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 + 6

2I  + 6

4I , 6

0I  + 6

3I  + 6

4I , 6

2I  + 6

3I  + 6

4I , 6

0I  + 6

2I  + 6

3I  + 6

4I , 1 + 6

0I  

+ 6

2I , 2 + 6

0I  + 6

2I , 3 + 6

0I  + 6

2I , 4 + 6

0I  + 6

2I , 5 + 6

0I  + 6

2I , 1 + 6

0I  + 
6

3I , 2 + 6

0I  + 6

3I , …, 1 + 6

0I  + 6

2I  + 6

4I  + 6

3I , …, 5 + 6

0I  + 6

2I  + 6

4I  

+ 6

3I } 

 

Thus cardinality of S is  

 

6 + 4 + 4 × 5 + 6 + 6 × 5 + 4 + 4 × 5 + 1 + 5 = 96. 

 

Now R = { I

6Z , ×} = {0, 1, 2, 3, 4, 5, 6

0I , 6

2I , 6

4I , 6

3I  |  

 
6

0I  × 6

2I  = 6

0I , 6

0I  × 6

4I  = 6

0I , 6

0I  × 6

3I  = 6

0I , 6

3I  × 6

3I  = 6

3I ,  

 
6

3I  × 6

2I  = 6

0I , 6

3I  × 6

4I  = 6

0I , 6

2I  × 6

2I  = 6

4I ,  

 
6

4I  × 6

4I  = 6

4I , 6

2I  × 6

4I  = 6

2I }. 

 

This is the way product operation is performed and 

cardinality of R is only 10 and R is a semigroup under product 

×. 

 

Let Q = { I
6Z , +, ×} be the semiring; cardinality of Q is 96.  

 

Thus o(Q) = o(S) = 96.  

 

Infact we will give one more example of this situation. 

 

Example 1.2: Let S = { I

5Z , +} be a semigroup. 

 

S = {0, 1, 2, 3, 4, 5

0I , 1 + 5

0I , 2 + 5

0I , 3 + 5

0I , 4 + 5

0I } 

and o(S) = 10. 

 

Let  R = { I

5Z , ×} = {0, 1, 2, 3, 4, 5

0I }.  

 

Clearly order of R is 6.  
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Q = { I

5Z , +, ×} = {0, 1, 2, 3, 4, 5

0I ,  1 + 5

0I , 2 + 5

0I , 3 + 5

0I ,  

4 + 5

0I , +, ×} is a semiring of order 10.  

 

In view of this we have the following theorem. 

 

THEOREM 1.3: Let {
I

pZ , +} = S be a semigroup of natural 

neutrosophic numbers under +.  

 

R = {
I

pZ , ×} be the natural neutrosophic semigroup under × 

and Q = {
I

pZ , ×, +} be the natural neutrosophic semiring  

(p a prime). Then o(S) = 2p, o(R) = p + 1 and o(Q) = 2p. 

 

 Proof is left as an exercise to the reader. 

 

Next we consider the case of I

nZ where n is a non prime. 

 

Example 1.3: Let { I

8Z , +} = S be the natural neutrosophic 

semigroup under +. 

 

S = {0, 1, 2, 3, 4, 5, 6, 7, 8

0I , 8

2I , 8

4I , 8

6I , 1 + 8

0I ,  

 

1 + 8

2I , 1 + 8

4I , 1 + 8

6I , …, 7 + 8

0I  + 8

2I  + 8

4I  + 8

6I , +}  

 

is semigroup of finite order.  

 

However {Z8, 
8

0I , 8

2I , 8

4I , 8

6I , ×} is a semigroup of order 12 

only. 

 

Q = { I

8Z , +, ×} is a natural neutrosophic semiring of finite 

order. 

 

Example 1.4: Let { I

9Z , +} = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9

0I , 9

3I , 9

6I , 

1 + 9

0I , 1 + 9

3I , 1 + 9

6I , …, 8 + 9

0I  + 9

3I  + 9

6I  , +} be a natural 

neutrosophic semigroup of order 72.  
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 o({ I

8Z , +}) > o({ I

9Z , +}). 

 

R = { I

9Z , ×} = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9

0I , 9

3I , 9

6I ,  ×} 

is a semigroup of order 12. 

 

Q = { I

9Z , +, ×} is a natural neutrosophic semiring of order 

72 whereas, 

 

Q = { I

8Z , +, ×} is a natural neutrosophic semiring of order 

128.  

 

What will be the order of { I

27Z , ×} = R, the natural 

neutrosophic semigroup?  

 

R = {0, 1, 2, …, 26, 27

0I , 27

3I , 27

6I , 27

9I ,  
27

12I , 27

15I , 27

18I , 27

21I , 27

24I , ×}. 

 

Clearly o( 3

I

3
Z , ×) > o( 3

I

2
Z , ×).  

 

Similarly o( 3

I

3
Z , +) > o( 3

I

2
Z , ×).  

 

Further o( 3

I

3
Z , +, ×) > o( 3

I

2
Z , +, ×).  

 

In view of this we have the following theorem. 

 

THEOREM 1.4: Let { n

I

p
Z , +} = S1, S2 = { n

I

q
Z , +} (p and q are 

primes p > q) be natural neutrosophic semigroups.  

 

Then o(S1) > o(S2). 

 

 Proof follows from simple number theoretic arguments. 

 

THEOREM 1.5: Let P1 = { n
p

Z , ×} and P2 = { n
q

Z , ×} be any two 

natural neutrosophic semigroups under ×.  
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o(P1) > o(P2) if number of divisors of p is greater than the 

number of divisors of q. 

 

 Proof follows from simple number theoretic arguments. 

 

We will first illustrate this situation by some examples. 

 

Example 1.5: Let S1 = { I

12Z , ×} and S2 = { I

15Z , ×} be two 

natural neutrosophic semigroups under ×. 

 

o(S1) > o(S2) but 15 > 12. 

 

Consider the natural neutrosophic elements of Z12,  

 
12

2I , 12

4I , 12

6I , 12

3I , 12

8I , 12 12

9 0I , I . 

 

The natural neutrosophic elements of Z15 are  

 
15 15 15 15 15 15

0 3 5 6 9 10I , I , I , I , I , I . 

 

So o( I

12Z , ×) > o( I

15Z , ×) however 15 > 12 but number of 

divisors of 12 is 4 and that of 15 is only 2.  

 

Z12 has more number of zero divisors than that of Z15 that is 

why ( I

12Z , ×) has more number of zero divisors so is a natural 

neutrosophic semigroup of larger order. 

 

 

Example 1.6: Let { I

16Z } = {0, 1, 2, 3, …, 15, 16

0I , 16

2I , 16

4I , 16

8I , 
16

10I , 16

12I , 16

14I , 16

6I }.  

 

Sum of any two elements is 16

2I  + 16

8I  and so on. 

  
16

2I × 16

2I  = 16

4I , 16

2I  × 16

8I  = 16

0I , 

 



22 Natural Neutrosophic Numbers and MOD Neutrosophic… 

 

 

 
16

4I  × 16

4I  = 16

0I , 16

2I  × 16

10I  = 16

4I , 

 
16

2I  × 16

2I  = 16

8I , 16

0I  × 16

xI  = 16

0I  

 

for all x ∈ {2, 4, 6, 8, I0, 12, 14}. 

 

 
16 16 16

2 14 12I I I ,× =
  

16 16 16

2 6 12I I I ,× =  

 
16 16 16

4 10 8I I I ,× =
  

16 16 16

2 4 8I I I ,× =
 

 
16 16 16

4 8 0I I I ,× =
  

16 16 16

4 12 0I I I ,× =   

 
16 16 16

4 14 8I I I ,× =
  

16 16 16

6 4 8I I I ,× =  

 
16 16 16

6 6 4I I I ,× =
  

16 16 16

6 8 0I I I ,× =  

 
16 16 16

6 10 12I I I ,× =
  

16 16 16

6 12 8I I I ,× =  

 
16 16 16

6 14 4I I I ,× =
  

16 16 16

8 8 0I I I ,× =  

 
16 16 16

8 10 0I I I ,× =
  

16 16 16

8 12 0I I I ,× =  

 
16 16 16

8 14 0I I I ,× =
  

16 16 16

10 12 8I I I ,× =  

 
16 16 16

10 14 12I I I ,× =
  

16 16 16

10 10 4I I I ,× =
 

 
16 16 16

12 12 0I I I ,× =
  

16 16 16

12 14 8I I I ,× =  

 
16 16 16

14 14 4I I I .× =
 

 

Thus { I

16Z , ×} is a natural neutrosophic semigroup of order 

24.  
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Now  

 

{ I

16Z , +} is a natural neutrosophic semigroup under +. 

o( I

16Z , +) is a very large natural neutrosophic semigroup. 

 

 

Let x = 8 + 16

2I  + 16

6I  and y = 3 + 16

8I  + 16

6I  ∈ I

16Z , 

 

x + y = 11 + 16

8I  + 2 16

6I  + 16

2I  

 

Example 1.7: Let I

20Z  be the natural neutrosophic numbers. 

 
I

20Z  = {0, 1, 2, …, 19, 20

0I , 20

2I , 20

4I , 20

6I , 20

8I , 20

10I , 20

12I , 20

14I ,  

 
20

16I , 20

18I , 20

5I , 20

15I }. Product can be defined for  

 
20

15I  × 20

2I  = 20

10I  and so on.  

 

However sum of 20

2I  + 20

5I  is taken as it is for every 20

xI ;  

 

x ∈ {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 5, 15} ⊆ Z20. 

 

Thus o( I

20Z , ×) = o( I

20Z ) however o( I

20Z , +) ≠ o( I

20Z ). 

 

We will illustrate this situation in case of  

 
I

10Z  = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

0I , 10

2I , 10

2I , 10

6I , 10

8I , 10

5I }. 

 

{ I

10Z , +} = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

0I , 10

2I , 10

4I , 10

6I , 10

8I , 

10

5I , a + 10

0I , a + 10

2I , a + 10

2I
 
, a + 10

8I , a + 10

6I , a + 10

5I , b + 10

0I  + 

10

2I , b + 10

0I  + 10

4I , …, b + 10

8I  + 10

5I , d + 10

0I  + 10

2I  + 10

4I , e + 10

0I  

+ 10

2I  + 10

4I  + 10

6I , …, d + 10

8I  + 10

6I  + 10

5I , e + 10

8I  + 10

5I  + 10

6I  + 



24 Natural Neutrosophic Numbers and MOD Neutrosophic… 

 

 

 
10

4I , f + 10

0I  + 10

2I  + 10

4I  + 10

6I  + 10

8I , …, f + 10

8I  + 10

6I  + 10

5I  + 10

4I , 

g + 10

0I  + 10

2I  + 10

4I  + 10

6I  + 10

8I , …, g + 10

2I  + 10

4I  + 10

6I  + 10

8I  + 

10

5I , h + 10

0I  + 10

2I  + 10

4I  + 10

6I  + 10

8I  + 10

5I  , a ∈ Z10 \ {0}, b, c, d, 

e, f, g, h ∈ Z10} is only a semigroup under +.  

 

For 10

2I  + 10

2I  = 10

2I ; 10

2I  × 10

2I  = 10

4I  and  

 

10

xI  + 10

xI  = 10

xI  for all x ∈ {0, 2, 4 6, 8, 5}. 

 

Infact { I

10Z , +} is only a natural neutrosophic semigroup of 

finite order which is commutative.  

 

Clearly the set NI = { 10

xI  | x ∈ {0, 2, 4, 6, 8, 5}} also forms 

a subsemigroup under + called as pure natural neutrosophic 

semigroup.  

 

Infact NI is an idempotent semigroup.  

 

However all subsemigroups of { I

10Z , +} are not idempotent 

subsemigroups under +.  

 

Infact even natural neutrosophic semigroup is a 

Smarandache semigroup as {Zn, +} ⊆ { I

nZ , +} is a group.  

 

But { I

nZ , ×} is a natural neutrosophic commutative 

semigroup but is a Smarandache semigroup if and only if Zn is a 

S-semigroup.  

 

Several interesting properties in this direction can be 

derived.  
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Finding ideals, zero divisors, units, idempotents of { I

nZ , ×} 

happens to be  a matter of routine.  

 

Here we give one or two illustrative examples of them. 

 

Example 1.8: Let S = { I

7Z , +} be the natural neutrosophic 

semigroup. S is a S-semigroup. 

 

S = {0, 1, 2, 3, 4, 5, 6, I0, 1 + I0, 2 + I0, 3 + I0, 4 + I0, 5 + I0, 

6 + I0, +} is a semigroup under +.  

 

Order of S is 14. Infact S is a S-semigroup. 

 

Example 1.9: Let S = { I

14Z , +} = {0, 1, 2, …, 13, 14

0I , 14

2I , 14

4I , 

14

6I , 14

8I , 14

10I , 14

12I , 14

7I , a + 14

xI , a + 14

xI  + 14

yI , …, a + 14

0I  + 14

2I  + 

14

4I  + 14

6I + 14

8I  + 14

10I  + 14

12I  + 14

7I ; a ∈ Z14; x, y ∈ {0, 2, 4, 6, 8, 

10, 12, 7}} be the natural neutrosophic semigroup.  

 

{S, +} is a S-semigroup. S has subsemigroups which are 

idempotent subsemigroup. 

 

P = {0, 14

0I  + 14

6I } ⊆ S is an idempotent natural pure 

neutrosophic subsemigroup of order two.  

 
14

0I  + 14

6I  + 14

0I  + 14

6I  = 14

0I + 14

6I  as  

 
14

0I  + 14

0I  = 14

0I  and 14

6I  + 14

6I  = 14

6I . 

 

Consider x = 7 + 14

0I  and y = 2 + 14

7I  ∈ S; 

 

x + y = 9 + 14

0I  + 14

7I . 
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 However x + x = 14

0I  and y + y = 4 + 14

7I  .  

 

So all elements of S are not idempotents.  

 

Only some of them are idempotents.  

 

Infact S has several idempotent subsemigroups.  

 

Clearly all subsemigroups of S are not idempotent 

subsemigroups. 

 

Example 1.10: Let S = { I

18Z , +} be the natural neutrosophic 

semigroup. S has subsemigroups which are idempotent 

subsemigroups.  

 

S has subsemigroups which are not idempotent 

subsemigroups. S is a Smarandache semigroup of finite order 

which is commutative. 

 

In view of this we give the following theorem. 

 

THEOREM 1.6: Let {
I
pZ , +} = S be the natural neutrosophic 

semigroup (p a prime). 

 

(i) o(S) = 2p. 

(ii) S has only one natural neutrosophic element. 

(iii) S has only two idempotent subsemigroups barring {0} 

subsemigroup. 

(iv) S is a Smarandache natural neutrosophic semigroup. 

 

Proof is direct and hence left as an exercise to the reader. 

 

THEOREM 1.7: Let S = {
I
nZ , +} (n a composite number) be a 

natural neutrosophic semigroup. 

 

(i) S is of finite order. 
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(ii) S is a Smarandache semigroup. 

(iii) S has subsemigroups which are idempotent  

 subsemigroups. 

(iv) S has subsemigroups which are not idempotent  

 subsemigroups. 

 

Proof is direct and hence left as an exercise to the reader. 

 

We will illustrate this situation by some examples. 

 

Example 1.11: Let S = { I

7Z , +} be the natural neutrosophic 

semigroup. 

 

P = Z7 ⊆ S is a group so S is a S-natural neutrosophic 

semigroup.  

 

P1 = {0, 7

0I } ⊆ S is an idempotent semigroup of S.  

 

P2 = { 7

0I } ⊆ S is also an idempotent subsemigroup of S.  

 

P3 = {a + 7

0I  | a ∈ Z7} ⊆ S is not an idempotent 

subsemigroup of S. 

 

Example 1.12: Let S = { I

10Z , +} be the natural neutrosophic 

semigroup.  

 

S is a Smarandache semigroup as Z10 ⊆ S is a group under 

+.  

 

{ 10

xI } are idempotent subsemigroups x ∈ {0, 2, 4, 6, 8, 5} of 

order one we have six such subsemigroups.  

 

{0, 10

xI } where x ∈ {0, 2, 4, 6, 8, 5} are idempotent 

subsemigroups of order 2. 

 



28 Natural Neutrosophic Numbers and MOD Neutrosophic… 

 

 

 P1 = { 10

0I  + 10

2I , 0} is a subsemigroup. There exists 15 

idempotent subsemigroups of order two.  

 

R1 = { 10

0I  + 10

6I } ⊆ S is a subsemigroup. There are 15 such 

subsemigroups which are idempotent subsemigroups.  

 

T1 = { 10

0I  + 10

6I  + 10

5I } ⊆ S is an idempotent subsemigroup 

of order one.  

 

There exists 20 such idempotent subsemigroups.  

 

L = { 10

0I  + 10

6I  + 10

2I  + 10

4I  + 10

8I  + 10

5I } is again an 

idempotent subsemigroup.  

 

Infact the largest idempotent subsemigroup is given by  

V = {0, 10

0I , 10

2I , 10

4I , 10

6I , 10

8I , 10

5I , 10

0I  + 10

2I , …, 10

8I  + 10

5I , 10

0I  + 

10

2I  + 10

4I , …, 10

6I  + 10

8I  + 10

5I , 10

0I  + 10

2I  + 10

4I  + 10

6I , …, 10

4I  + 

10

8I  + 10

6I  + 10

5I , 10

0I  + 10

2I  + 10

6I  + 10

8I  + 10

4I , …, 10

0I  + 10

4I  + 10

6I  + 

10

8I  + 10

5I , 10

0I  + 10

2I  + 10

4I  + 10

6I  + 10

8I  + 10

5I } ⊆ S.  

 

Every proper subsemigroup of V is also an idempotent 

subsemigroup of S.  

 

Several interesting results can be got.  

 

Next we proceed onto give examples of the notion of 

natural neutrosophic semigroup under product. 

 

Example 1.13: Let  

 

S = { I

12Z , ×} = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

0I , 12

2I , 

12

4I , 12

6I , 12

8I , 12

10I ,  12

3I , 12

9I } be a natural neutrosophic semigroup. 
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S has several zero divisors. 4 × 3 = 0, 2 × 6 = 0, 6 × 4 = 0 

and so on.  

 

Certainly the indeterminates cannot lead to zeros. For 

product of two natural neutrosophic numbers are never zero.  

 

However 12

0I  × 12

xI  = 12

0I , 12

6I  × 12

6I  = 12

0I  so these natural 

neutrosophic numbers are not idempotents in general that is 

their product is not the same.  

 

But some of them can be; for 12

4I  × 12

4I  = 12

4I ,  

 
12

9I  × 12

9I  = 12

9I , 12

8I  × 12

8I  = 12

4I , 12

3I  × 12

3I  = 12

9I  and so on.  

 

S has idempotent subsemigroups.  

 

For take T1 = { 14

4I }, T1 is an idempotent subsemigroup of 

order one.  

 

T2 = {0, 4, 9} is also an idempotent subsemigroup of order 

three.  

 

T3 = { 12

0I , 12

4I , 12

9I } is also an natural neutrosophic 

idempotent subsemigroup of order three. 

 

T4 = { 12

0I , 12

3I , 12

9I } is a natural neutrosophic subsemigroup 

which is not an idempotent subsemigroup of S.  

 

{ 12

0I , 12

6I } = T5 is a natural neutrosophic subsemigroup of 

order three but is not an idempotent subsemigroup.  

 

T6 = {0, 1, 12

0I , 12

6I } is again a natural neutrosophic 

subsemigroup of order four and is not an idempotent 

subsemigroup.  
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 Thus { I

12Z , ×} has idempotents, units and zero divisors.  

 

This semigroup is a S-semigroup which has idempotent 

subsemigroups. 

 

Example 1.14: Let S = { I

19Z , ×} be the natural neutrosophic 

semigroup.  

 

Clearly o(S) = 38. S has no zero divisors. 

  

S is a S-semigroup of finite order. S has only  

 

P = {0, 1, 19

0I , 1 + 19

0I } to be idempotents.  

 

Infact P is an idempotent subsemigroup as  

 
19

0I  × 19

0I  = 19

0I  and (1 + 19

0I ) × (1 + 19

0I ) = 1 + 19

0I .  

 

If S is assumed to have addition also then by o(S) = 38. If S1 

is just {0, 1, 2, …, 19, 19

0I } then o(S1) = 20 and x 19

0I  = 19

0I  and 

has {0, 1, 19

0I } to be the set of idempotents.  

 

All elements in S1 \ {0, 19

0I } are units and S1 has no 

nontrivial zero divisors. S1 has subsemigroups given by  

 

P1 = {0, 1, 19

0I },  

 

P2 = {0, 1, 19

0I , 18},  

 

P3 = {1, 19

0I },  

 

P4 = {0, 19

0I },  

 

P5 = {1, 19

0I , 18} and so on. 
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In view of these two examples the following theorems can 

be proved by any interested reader. 

 

THEOREM 1.8: Let S = {
I
pZ , ×} be the natural neutrosophic 

semigroup (p a prime). Then the following are true. 

  

(i) S is of order p + 1. 

(ii) S is a S-semigroup. 

(iii) S has no zero divisors. 

(iv) S has only three idempotents. 

(v) S has (p – 1) number of units including 1. 

(vi) S has idempotent subsemigroups. 

(viii) S has also subsemigroups which are not idempotent 

subsemigroups. 

 

Proof is direct and hence left as an exercise to the reader. 

 

THEOREM 1.9: Let S = {
I
nZ , ×} be the natural neutrosophic 

semigroup, n a positive composite number.  

 

i. o(S) is finite and the order of S depends on the number 

of zero divisors and idempotents of Zn. 

ii. S is a Smarandache semigroup if and only if Zn is a S-

semigroup. 

iii. S has idempotents. 

iv. S has zero divisors. 

v. S has units. 

vi. S has subsemigroups which idempotent  

  subsemigroups. 

vii. S is not an idempotent semigroup. 

viii. S has subsemigroups which are not idempotent  

  subsemigroups. 
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Proof is left as an exercise to the reader. 

 

Next we proceed on to define both the operations + and × 

on I

nZ .  

 

Already examples of them are given and I

nZ  under + and × 

is defined as the natural neutrosophic semiring of finite order.  

 

Now we make a formal definition.  

 

DEFINITION 1.1: Let S = 〈 I
nZ , +, ×〉; clearly {〈 I

nZ , +〉} is an 

abelian natural neutrosophic semigroup with 0 as the identity. 

 

〈 I

n
Z , ×〉 is a semigroup of natural neutrosophic numbers 

which is commutative.  

 

Thus 〈S, +, ×〉 is defined as the natural neutrosophic 

semiring of finite order of special characteristic n.  

 

We will first illustrate this situation by some examples. 

 

Example 1.15: Let  

S = {〈 I

nZ , +, ×〉} = {0, 1, 2, …, 9, 10

0I , 10

2I , 10

5I , 10

6I , 10

4I , 10

8I , 

a + 10

xI , a1 + 10

xI  + 10

yI , a2 + 10

xI  + 10

yI  + 10

zI , a3 + 10

xI  + 10

yI  + 10

zI  

+ 10

uI , a4 + 10

xI  + 10

yI  + 10

zI  + 10

uI  + 10

sI , a5 + 10

0I  + 10

2I + 10

5I  + 10

6I  

+ 10

4I + 10

8I  | a ∈ Z10 \ {0}, x, y, z, u, s ∈ {0, 2, 4, 6, 8, 5}, a1, a2, 

a3, a4, a5 ∈ Z10, +, ×} is the natural neutrosophic semiring.  

 

Clearly S is not a semifield as S has zero divisors.  
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Further a + b = 0 is not true with a ≠ 0 and b ≠ 0. So S can 

never be a semifield for any I

nZ ; n any positive integer. 

 

Let  

x = 9 + 10

8I  + 10

5I  + 10

6I  

and  

y = 3 + 10

2I  + 10

4I  ∈ S 

 

x + y  = 2 + 10

8I  + 10

5I  + 10

6I  + 10

2I  + 10

4I  

and  

 

x × y  = (9 + 10

8I  + 10

5I  + 10

6I ) × (3 + 10

2I  + 10

4I ) 

= 7 + 10

8I  + 10

5I  + 10

6I  + 10

2I  + 10

0I  + 10

4I  ∈ S. 

 

This is the way + and × operations are performed on S.  

 

This natural neutrosophic semiring has zero divisors, units 

and idempotents.  

 

Let  

y = 10

6I  + 10

4I  + 10

2I  and x = ( 10

8I + 10

6I ) ∈ S, 

 

x + y = 10

6I  + 10

4I  + 10

2I  + 10

8I  

 

x × x = ( 10

8I + 10

6I ) × ( 10

8I + 10

6I ) = 10

4I  + 10

8I  + 10

6I  ≠ x. 

 

So this element x in S is not an idempotent.  

 

However 10

5I  and 10

6I  are idempotents of S.  

 

y × y = ( 10

6I + 10

4I  + 10

2I ) × ( 10

6I + 10

4I  + 10

2I )  

= 10

6I  + 10

4I  + 10

2I  + 10

8I  ≠ y. 

 

So y ∈ S is also not an idempotent of S.  
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10

6I  × 10

6I  = 10

6I . 

Let  

s = 10

6I  + 10

4I  ∈ S 

 

s × s = ( 10

6I + 10

4I ) × ( 10

6I + 10

4I ) = 10

6I  + 10

4I . 

 

Thus s is an idempotent of S. S has idempotents all 10

xI ;  

 

x ∈ {0, 2, 4, 6, 8, 5} are not in general idempotents. 

 
10

6I  × 10

6I  = 10

6I  and 10

5I  × 10

5I  = 10

5I . 

Let  

x = 10

6I  + 10

5I  ∈ S; 

 

x × x  = ( 10

6I + 10

5I ) × ( 10

6I + 10

5I ) 

 

= 10

6I  + 10

5I  = x ∈ S. 

 

Thus x is an idempotent of S.  

 

 Next we can study the ideals and subsemirings of S. 

 

Example 1.16: Let S = {〈 I

11Z , +, ×〉} be the natural neutrosophic 

semiring.  

 

S = {0, 1, 2, 3, …, 10, 11

0I , x + 11

0I ; x ∈ Z11 \ {0}} be the 

natural neutrosophic semiring. 

Let  

t = 11

0I  ∈ S; t × t = 11

0I  × 11

0I  = 11

0I  = t. 

Let  

x = 7 + 11

0I  ∈ S; 

 

x × x = (7 + 11

0I ) × (7 + 11

0I ) = 5 + 11

0I  ≠ x. 

 

Thus x is not an idempotent. 
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T = {0, 11

0I , 1, 1 + 11

0I } is a collection of idempotents in S.  

 

It is clearly verified T is not a subsemiring; however (T, ×) 

is an idempotent semigroup of order 4. S has no other 

idempotents.  

 

We see T1 = {0, 11

0I } is a subsemiring. 

 

Example 1.17: Let S = {〈 I

23Z , +, ×〉} be the natural neutrosophic 

semiring.  

 

T = {0, 1, 1 + 23

0I , 23

0I } is the collection of all idempotents 

in S.  

 

However T is only a subsemigroup under ×.  

 

But T is not a subsemigroup under +. So T is not a 

subsemiring. 

 

Example 1.18: Let S = {〈 I

45Z , +, ×〉} be the natural neutrosophic 

semiring. S has subsemirings, idempotents, zero divisors and 

units.  

 

{ 45

3I , 45

0I , 45

6I , 45

9I , 45

12I , 45

15I , 45

18I , 45

21I , 45

24I , 45

27I , 45

30I ,  
45

33I , 45

36I , 45

39I , 45

42I , 45

5I , 45

10I , 45

20I , 45

25I , 45

35I , 45

40I } 

are all natural neutrosophic numbers.  

 

S has  

 
45

10I  × 45

10I  = 45

10I , 45

15I  × 45

15I  = 45

0I , 45

30I  × 45

30I  = 45

0I  

and so on. 

 

i. All natural neutrosophic numbers in general are not 

neutrosophic idempotents. 
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 ii. A natural neutrosophic number can be natural 

neutrosophic nilpotent.  

We say n

xI  is natural neutrosophic nilpotent if  

n

xI  × n

xI  = n

0I . 

 

iii. In general n

xI  × n

xI  = n

yI ; y ≠ x and y ≠ 0 can occur 

in case of natural neutrosophic numbers. 

 

This is evident from Example 1.18.  

 

For  

45

3I × 45

3I = 45

9I , 45

5I  × 45

5I  = 45

25I , 45

6I  × 45

6I  = 45

36I , 45

9I  × 45

9I  = 45

36I  

and so on.  

45

15I  × 45

15I  = 45

0I  and 45

30I  × 45

30I  = 45

0I  

are natural neutrosophic nilpotent elements.  

 
45

10I  × 45

10I  = 45

10I  

is defined as the natural neutrosophic idempotent.  

 

As in case of the neutrosophic number I (or indeterminacy 

I) we do not always have I
2
 = I.  

 
45

36I  × 45

36I  = 45

36I  

is again a natural neutrosophic idempotent of S. 

 

We see P1 = {0, 45

36I } is a subsemiring.  

 

P2 = {0, 45

10I } is again an subsemiring.  
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P3 = {0, 45

36I , 45

10I , 45

0I , 45

36I  + I0, 
45

36I  + 45

10I , 45

10I  + 45

0I ,  

45

0I  +  45

36I  + 45

10I } 

is again a subsemiring.  

Clearly all the three subsemirings are idempotent 

subsemirings. 

 

Example 1.19: Let S = {〈 5

I

2
Z , +, ×〉} be the natural neutrosophic 

semiring.  

 

S = {〈0, 1, 2, …, 31, 32

0I , 32

2I , 32

4I , 32

6I , 32

8I , 32

10I , 32

12I , 32

14I , 32

16I , 

32

18I , 32

20I , 32

22I , 32

24I , 32

26I , 32

28I , 32

30I 〉} 

under + and × operations. 

  
32

8I  × 32

8I  = 32

0I , 32

16I  × 32

16I  = 32

0I , 32

24I  × 32

24I  = 32

0I . 

 

This has no natural neutrosophic idempotent.  

 

Further 32 32

x xI I×  = 32

4I  or 32

16I  or 32

0I  only.  

 

Clearly this semiring has no natural neutrosophic 

idempotents. 

 

 

Example 1.20: Let  

S = {〈 I

27Z , +, ×〉} = {〈0, 1, 2, …, 26, 27

0I , 27

3I , 27

9I ,  

27

6I , 27

12I , 27

15I , 27

18I , 27

21I , 27

24I 〉, +, ×} 

generates the natural MOD neutrosophic semiring. 

 
27

3I  × 27

3I  = 27

9I , 27

9I  × 27

9I  = 27

0I ,  
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27

6I  × 27

6I  = 27

9I , 27

12I  × 27

12I  = 27

9I ,  

 
27

15I  × 27

15I  = 27

9I , 27

18I  × 27

18I  = 27

0I ,  

 
27

21I  × 27

21I  = 27

9I , 27

24I  × 27

24I  = 27

9I . 

 

Clearly S has no natural neutrosophic idempotents. But S 

has natural neutrosophic nilpotents. 

 

Example 1.21: Let  

 

S = {〈 I

25Z , +, ×〉} = {〈0, 1, 2, …, 24, 25

0I , 25

5I , 25

10I , 25

15I , 25

20I 〉, 

+, ×} be the natural neutrosophic semiring. 

 
25

5I  × 25

5I  = 25

0I ,  

 
25

15I × 25

15I  = 25

0I ,  

 
25

10I  × 25

10I  = 25

0I  and  

 
25

20I × 25

20I  = 25

0I . 

 

All the natural neutrosophic elements are neutrosophic 

nilpotent.  

 

However there is no neutrosophic idempotent. 

 

Example 1.22: Let S = {〈 I

125Z , +, ×〉} = {〈0, 1, 2, …, 124, 125

0I , 

125

5I , 125

10I , 125

15I , 125

20I , 125

25I , 125

30I , 125

35I , 125

40I , 125

45I , 125

50I , 125

55I , 125

60I , 

125

65I , 125

70I , 125

75I , 125

80I , 125

85I , 125

90I , 125

95I , 125

100I , 125

105I , 125

110I , 125

115I , 125

120I 〉, +, 

×} be the natural neutrosophic semiring. 
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125

25I  × 125

25I  = 125

0I  , 

 
125

50I  × 125

50I  = 125

0I ,  

 
125

75I  × 125

75I  = 125

0I  and  

 
125

100I  × 125

100I  = 125

0I   

 

are the natural neutrosophic nilpotents.  

 

S has no neutrosophic idempotents.  

 

In view of this we leave open the following conjecture. 

 

Conjecture 1.1: Let  

 

S = {〈 n

I

p
Z , +, ×〉 | p is a prime and n a positive integer} be 

the natural neutrosophic semiring. 

 

(i) Can S contain natural neutrosophic idempotents? 

(ii) Find the number of natural neutrosophic elements 

in S. 

(iii) Find the number of natural neutrosophic nilpotents 

in S. 

 

Next we proceed onto describe the result by a theorem and 

define the new notion of natural neutrosophic zero divisors. 

 

THEOREM 1.10: Let S = {〈
I
nZ , +, ×〉} be the natural 

neutrosophic semiring. S has natural neutrosophic idempotents 

if and only if Zn has idempotents. 

 

Proof: x ∈ Zn \ {0, 1} such that x
2
 = x and (n, x) = d ≠ 0 if and 

only if n
xI  ∈ S is a natural neutrosophic idempotent of S. 
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 DEFINITION 1.2: Let S = { I
nZ , ×} be the natural neutrosophic 

semigroup.  

 

Let n
xI  and n

yI  ∈ S; if n
xI  × n

yI  = 0
n

I  (x ≠ y) then we define 

this to be the natural neutrosophic zero divisor. 

 

First we will illustrate this situation by some examples. 

 

Example 1.23: Let S = { I

12Z , ×} be the natural neutrosophic 

semigroup.  

 
12

4I , 12

3I , 12

6I , 12

8I , 12

2I , 12

10I , 12

9I  ∈ S contribute to natural 

neutrosophic zero divisors.  

 
12

6I  × 6

2I  = 12

0I ,   12

8I  × 12

6I  = 12

0I , 

 
12

6I  × 12

4I  = 12

0I ,   12

6I  × 12

10I  = 12

0I , 

 
6

2I  × 12

4I  = 12

0I ,   12

3I  × 12

8I  = 12

0I , 

 
12

4I  × 12

9I  = 12

0I  and  12

8I  × 12

9I  = 12

0I  

 

are the natural neutrosophic zero divisors of S. 

 

Example 1.24: Let S = { I

13Z , ×} be the natural neutrosophic 

semigroup. S has no natural neutrosophic zero divisors or 

natural neutrosophic nilpotents or natural neutrosophic 

idempotents. 

 

In view of this we have the following theorem. 

 

THEOREM 1.11: Let S = { I
pZ , ×}, p a prime be the natural 

neutrosophic semigroup. 

 

i. S has no natural neutrosophic nilpotents. 
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ii. S has no natural neutrosophic idempotents. 

iii. S has no natural neutrosophic zero divisors. 

 

The proof is direct and is left as an exercise to the reader. 

 

Example 1.25: Let S = { I

17Z , ×} be the natural neutrosophic 

semigroup. S has no natural neutrosophic zero divisors or 

nilpotents of order two.  

 

S has no natural neutrosophic idempotents. 

 

Example 1.26: Let S = { I

24Z , ×} be the natural neutrosophic 

semigroup. S has natural neutrosophic zero divisors. 

 
24

12I  × 24

4I  = 24

0I ,   24

6I  × 24

8I  = 24

0I , 

 
24

8I  × 24

3I  = 24

0I ,  24

18I  × 24

4I  = 24

0I
 

 

so on are all natural neutrosophic zero divisors. 

  
24

9I  × 24

9I  = 24

9I  and  24

16I  × 24

16I  = 24

16I  

 

are natural neutrosophic idempotents. 

 
24

12I  × 24

12I  = 24

0I  is the natural neutrosophic idempotent of S. 

 

In view of this example we have the following theorem. 

 

THEOREM 1.12: Let S = { I
nZ , ×}, n a composite number be the 

natural neutrosophic semigroup. 

 

i. S has natural neutrosophic idempotents if and only 

if Zn has idempotents. 
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 ii. S has natural neutrosophic nilpotents if and only if 

Zn has nilpotents.  

 

iii. S has natural neutrosophic zero divisors if and only 

if Zn has zero divisors. 

 

Proof is direct for if x, y is a zero divisor of Zn then n

xI  and 

n

yI  is a natural neutrosophic zero divisor.  

If z ∈ Zn is an idempotent then n

zI  is the natural 

neutrosophic idempotent of S.  

 

If t ∈ Zn is a nilpotent element of order two.  

n
tI  is a natural neutrosophic nilpotent element of order two.  

Hence the theorem. 

 

Example 1.27: Let S = { I

15Z , ×} be the natural neutrosophic 

semigroup.  

 

x = 10 ∈ Z15 is an idempotent of Z15.  

 
15

10I in S is a natural neutrosophic idempotent of S.  

 
15

10I × 15

10I  = 15

10I . x = 10 and  

 

y = 3 ∈ Z15 is a zero divisor in Z15.  

 

 

Clearly 15

10I , 15

3I  ∈ S is such that 15

10I  × 15

3I  = 15

0I  so is a 

natural neutrosophic zero divisor.  
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15

6I  ∈ S is a natural neutrosophic idempotent, clearly 6 is an 

idempotent of Z15.  

 

However Z15 has no nilpotent so also S has no natural 

neutrosophic nilpotent. 

 

Example 1.28: Let S = { I

81Z , ×} be the natural neutrosophic 

semigroup. 

 

x = 9 ∈ Z81 is such that 9 × 9 = 0. 81

9I  ∈ S is a natural 

neutrosophic zero divisor.  

 
81

18I  × 81

18I  = 81

0I  is again a natural neutrosophic zero divisor. 

S has no neutrosophic idempotents. 

 

In view of this we have the following theorem. 

 

THEOREM 1.13: Let S = { n

I

p
Z , ×} p a prime be the natural 

neutrosophic semigroup. 

 

i. S has natural neutrosophic zero divisors. 

ii. S has no natural neutrosophic idempotents.  

 

The proof follows from simple number theoretic techniques.  

 

Now we proceed onto give neutrosophic natural 

idempotents. 

 

Example 1.29: Let S = { I

36Z , ×} be the natural neutrosophic 

semigroup. 

 

Let x = 36

9I  ∈ S. 36

9I  × 36

9I  = 36

9I  is a natural neutrosophic 

idempotent 36

6I  ∈ S is such that  
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36

6I  × 36

6I  = 36

0I
 
so 36

6I  is a natural neutrosophic nilpotent 

element of order two.  

 
36

9I  × 36

4I  = 36

0I  is the natural neutrosophic zero divisor.  

 
6

2I  is a natural neutrosophic nilpotent of order two.  

 
36

12I  × 36

3I  = 36

0I  is a natural neutrosophic zero divisor of S. 

 

Thus S has natural neutrosophic zero divisors which are not 

natural neutrosophic nilpotents.  

 

S has natural neutrosophic nilpotents and S has natural 

neutrosophic idempotents.  

 

So in Zn if n is a composite number and is not of the form 

p
m
,  p a prime then in general the natural neutrosophic 

semigroup S = { I

nZ , ×} has natural neutrosophic idempotents, 

natural neutrosophic zero divisors which are not natural 

neutrosophic nilpotents and natural neutrosophic nilpotents of 

order two. 

 

In view of this we can say S = { I

nZ , +, ×} the natural 

neutrosophic semiring can have natural neutrosophic 

idempotents, natural neutrosophic zero divisors and natural 

neutrosophic nilpotents of order two.  

 

A natural question would be can natural neutrosophic 

semirings have subsemirings and ideals.  

 

Likewise can S = { I

nZ , ×} have subsemigroups and ideals.  

 

To this end we give the following examples. 

 

Example 1.30: Let S = { I

24Z , +, ×} be the natural neutrosophic 

semiring.  
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M1 = {〈0, 3, 6, 9, 12, 15, 18, 21, 24

0I , 24

3I , 24

6I , 24

9I , 24

12I , 24

15I , 

24

18I , 24

21I 〉, +, ×} is a subsemiring as well as an ideal of S.  

 

M2 = {〈0, 2, 4, 6, …, 22, 24

0I , 24 24

2 4I , I , …, 24

22I 〉} is an ideal 

of S.  

 

P = Z24 ⊆ S is just a subsemiring (or ring) which is not an 

ideal of S. 

 

Example 1.31: Let S = { I

11Z , +, ×} be a natural neutrosophic 

semiring. S has no ideals. S has subsemirings. 

 

We can derive several interesting properties about these 

natural neutrosophic semirings.  

 

We suggest the following problems for this chapter. 

 

Problems 

 

1. Find all natural idempotents of Z10. 

 

i. What is the order of { I

10Z , +}? 

ii. What is the order of { I

10Z , ×}? 

iii. What are the algebraic structures enjoyed by { I

10Z , ×} 

and { I

10Z , +}? 

 

2. Can { I

12Z , +} be a group? 

 

3. Find the order of G = { I

20Z , +}? 

 

4. Find the order of { I

20Z , ×}. 

5. Let S = { I

24Z , ×} be the natural neutrosophic semigroup. 
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 i. Find all natural neutrosophic idempotents of S. 

ii. Find all natural neutrosophic nilpotents of S. 

iii. Find all zero divisors of S. 

 

6. Let S = { I

42Z , ×} be the natural neutrosophic semigroup. 

 

i. Can S be a Smarandache semigroup? 

ii. What is the order of S? 

iii. Study questions i to iii of problem 5 for this S. 

iv. Can S have ideals? 

v. Find all subsemigroups of S which are not ideals. 

vi. Can S have S-ideals? 

 

7. Let S = { I

15Z , +} be the natural neutrosophic semigroup. 

 

i. Prove S is only a semigroup. 

ii. Can S have ideals? 

iii. Is S a S-semigroup? 

iv. Find subsemigroups which are not S-ideals. 

v. Can S have idempotents? 

vi. Can S have S-idempotents? 

vii. Can S have idempotents which are not S-idempotents? 

 

8. Let M = { I

23Z , +} be the natural neutrosophic semigroup. 

 

Study questions i to vii of problem 7 for this M. 

 

9. Let N = { I

24Z , +} be the natural neutrosophic semigroup. 

 

i. Compare M of problem 8 with this N. 

ii. Which of the semigroups M or N has more number of 

subsemigroups? 

iii. Study questions i to vii of problem 7 for this N. 

 

10. Let W = { I

140Z , +} be the natural neutrosophic semigroup. 

Study questions i to vii of problem 7 for this W. 
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11. Let S = { I

150Z , +} be the natural neutrosophic semigroup. 

 

i. Find all ideals of S. 

ii. Find all subsemigroups of S which are not ideals of S. 

iii. Can S have idempotent ideals? 

iv. Find all subsemigroups which are idempotent 

subsemigroups. 

 

12. Find any interesting property associated with the semigroup 

S = { I

nZ , +}. 

 

13. Enumerate all properties associated with the natural 

neutrosophic semigroup P = { I

nZ , ×}. 

 

14. Compare the semigroups P and S of problem 12 and 13 for 

a fixed n. 

 

15. Let S = {〈 I

49Z , +〉, ×} be the semigroup under ×. 

 

i. What is order of S? 

ii. Find all subsemigroups which are idempotent  

 subsemigroups. 

iii.  Find all idempotents of S. 

iv. Find all ideals of S which are idempotent ideals. 

v. Can S have natural neutrosophic nilpotent elements? 

vi. Find all natural neutrosophic idempotents in S. 

vii. Find all natural neutrosophic zero divisors of S. 

 

16. Let M = {〈 I

24Z , +〉, ×} be the semigroup under ×. 

 

Study questions i to vii of problem 15 for this M. 

 

17. Let S = {〈 I

24Z 〉 +, ×} be the natural neutrosophic semiring 

generated under + and ×. 

 

i. Find o(S). 

ii. Is S a semifield? 
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 iii. Is S  a S-semiring? 

iv. Find the number of natural neutrosophic idempotents in 

S. 

v. Find the number of natural neutrosophic elements in S. 

vi. Find the number of natural neutrosophic nilpotents of 

order two in S. 

vii. Find the number of natural neutrosophic zero divisors in 

S. 

viii.  Find S-ideals if any in S. 

ix. Find all ideals of S which are not S-ideals. 

x. Can S have idempotent subsemirings? 

xi. Can idempotent subsemirings of S be S-subsemirings? 

xii. Can S have S-zero divisors? 

xiii. Can S have S-idempotents? 

 

18. Find all the special features enjoyed by natural neutrosophic 

semiring S = {〈 I

nZ , +, ×〉}. 

 

19. Let M = {〈 I

98Z , +, ×〉} be a natural neutrosophic semiring. 

 

Study questions i to xiii of problem 17 for this M. 

 

20. Let N = {〈 I

48Z , +, ×〉} be the natural neutrosophic semiring. 

 

Study questions i to xiii of problem 17 for this N. 

 

21. Compare the natural neutrosophic semirings in problem 19 

and 2. 

 

i. Which semiring N or M has more number of natural 

neutrosophic elements? 

ii. Which of the semiring N or M has more number of 

neutrosophic zero divisors? 

iii. Which of the semirings M or N has more number of 

natural neutrosophic nilpotents? 

 



 
 
 
 
Chapter Two 
 

 
 
MOD NATURAL NEUTROSOPHIC 

ELEMENTS IN [0,n), [0, n)g, [0, n)h 
AND [0, n)k 
 
 
 

In this chapter for the first time we define MOD natural 

neutrosophic elements in the MOD interval or small interval [0, 

n). Several algebraic structures are built on the MOD natural 

neutrosophic elements of the MOD interval [0, n).  

 
I
[0, n) = {Collection of all elements of [0, n) together with 

[0, n )

kI  where [0, n )

kI  are MOD neutrosophic elements}.  

 

First we will represent them by examples. 

 

Example 2.1: Let S = {
I
[0, 3); [0,3)

1.5I , [0, 3)

0I } are the one of the 

MOD neutrosophic zero divisors. 

 
[0,3)

1.5I  × [0,3)

1.5I  = [0, 3)

2.25I  but 1.5 × 2 = 3 ≡ 0 (mod 3).  

 

The problem is can we put [0, 3)

1.5I  as MOD neutrosophic 

element.  
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[0, 3)

1.7320508075I  is such that  

 
[0,3)

1.7320508075I  × [0,3)

1.7320508075I  = [0, 3)

0I .  

 

We call [0, 3)

1.7320508075I  is a MOD neutrosophic nilpotent element.  

 

We do not accept [0, 3)

1.5I  as a MOD neutrosophic element but 

accept it as a pseudo MOD neutrosophic element as 2 ∈ 
I
[0, 3) is 

such that 2 × 2 = 1(mod 3). 

 

It is left as an open conjecture to find the number of MOD 

neutrosophic elements in 
I
[0, 3).  

 

Consider the MOD interval 
I
[0, 2).  

 

x = 1.4142135625 ∈ [0, 2) is such that x
2
 = 2 ≡ 0 (mod 2).  

 

Hence [0, 2)

1.4142135625I  is a MOD neutrosophic nilpotent element 

of order 2.  

 

It is still a open conjecture to find all MOD neutrosophic 

elements of 
I
[0, 2).  

 

At this stage the following are left as open conjectures. 

 

Conjecture 2.1: Given 
I
[0,n) the MOD interval to find all pseudo 

MOD neutrosophic elements. 

 

Conjecture 2.2: Given 
I
[0,n) to find the number of MOD 

neutrosophic nilpotent elements. 

 

Conjecture 2.3: Given 
I
[0,n) to find the number of MOD 

neutrosophic zero divisors. 

 

Conjecture 2.4: Given 
I
[0,n) to find the number of MOD 

neutrosophic idempotents. 
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Example 2.2: Let [0, 12) be the MOD interval. Clearly if [0, 12) 

is taken. 12

6I  is not the MOD neutrosophic nilpotent.  

 

Likewise 12

3I  and 12

8I  are not MOD neutrosophic zero 

divisors.  

 

Also 12

4I  is the natural neutrosophic idempotent but not the 

MOD neutrosophic idempotent element of [0, 12).  

 

However all natural neutrosophic elements of Z12 are also 

present in [0, 12). 

 

x = 3.464101615 ∈ [0, 12) is such that x × x ≡ 12 (mod 12) = 0. 

 

So [0, 12)

3.464101615I  is a MOD neutrosophic nilpotent element of 

order two.  

 

Consider the interval [0, 2) if we define the operation of 

division 
I
[0, 2) = {1, 0, 2, [0, 2), [0, 2)

0I , [0, 2)

1.4142135625I  and so on}.  

 

If the interval [0, 3) is considered 
I
[0,3) = {1, 0, 2, [0, 3), 

[0, 3)

0I , [0, 3)

1.5I , [0, 3)

1.7320508075I  and so on}.  

 

As said earlier all these remain as open conjectures.  

 

However for the sake of better understanding we study the 

MOD interval [0, 10). 

 

Example 2.3: Let [0, 10) be the MOD interval.  

 

We have already studied I
10Z .  

 

Now what are the special properties enjoyed by 
I
[0, 10],   
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I
[0, 10) = {0, 1, 2, …, 9, [0, 10), [0, 10)

0I , [0, 10)

2I , [0, 10)

4I , [0, 10)

8I , 

[0, 10)

6I , [0, 10)

5I , [0, 10)

2.5I , [0, 10)

1.25I , [0, 10)

8.75I , [0, 10)

3.125I , [0, 10)

7.8125I , [0, 10)

3.90625I , [0, 10)

7.5I , 

[0, 10)

6.25I , [0, 10)

1.5625I , [0, 10)

2.44140625I , [0, 10)

9.53125I , [0, 10)

8.125I , [0, 10)

5.960464478I  and so on}.  

 

At this juncture we have no other option except to 

conjecture that 
I
[0,n) can have infinite number of MOD 

neutrosophic number.  

 

The other practical problems we face are what is the product 

of a MOD neutrosophic number with a pseudo neutrosophic 

number and so on.  

 

This study is also left as an open conjecture. 

 

Example 2.4: Let 
I
[0, 5) = {0, 1, 2, …, 4, [0, 5)

0I , [0, 10)

1.25I  and so 

on}.  Clearly [0, 5)

1.25I  is a pseudo MOD neutrosophic number [0, 5)

1.5625I  

and so on. [0, 5)

1.25I  under product generates a set of pseudo MOD 

neutrosophic numbers; we just call them so as it is generated by 

a pseudo MOD neutrosophic number.  

 

Similarly 2.5 × 2 = 0 so [0, 5)

2.5I  is again a pseudo MOD 

neutrosophic number.  

 

The product of  [0, 5)

2.5I  × [0, 5)

2.5I  = [0, 5)

1.25I  is again a pseudo MOD 

neutrosophic number.  

 

[0, 5)

2.5I  × [0, 5)

1.25I  = [0, 5)
3.125I .  

 

Now it is also left as an open conjecture to find the class of 

all MOD pseudo neutrosophic numbers and the MOD 

neutrosophic numbers and their interrelations.  
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As 5 is a prime I

5Z  has no natural neutrosophic number 

other than 5

0I .  

 

In view of this first the following result is proved.  

 

THEOREM 2.1: Let 
I
[0,n) = {0, 1, …, n – 1, [0, n), …} be the 

MOD neutrosophic element interval. 
I
[0,n) contains; 

i. pseudo MOD neutrosophic elements. 

ii. natural neutrosophic elements provided; n is not a 

prime. 

iii. MOD neutrosophic elements. 

 

Proof: Every a = 
n

n 1−
 only realized as a decimal in [0, n) and 

not a rational paves way for a pseudo MOD neutrosophic 

element. 

For the interval [0, 6); 1.2 is such that [0, 6)

1.2I  is  a pseudo MOD 

neutrosophic element of  
I
[0, 6).  

 

If n is a prime say p then 
p

2
  realized only as a decimal in 

[0, p); is a pseudo MOD neutrosophic element of 
I
[0, p).  

 

Take p = 19, then 
p

2
 = 9.5 is a pseudo MOD neutrosophic 

element as 9.5 × 2 ≡ 0 (mod 19); 2 is a unit [0, 19). Hence proof 

of (i).  

 

To find the proof of (ii) consider n a prime only [0, n)
0I  is the 

only natural neutrosophic element. 

 

If n is not a prime every zero divisor of Zn paves way for a 

natural neutrosophic element. Hence proof of (ii). Clearly 
[0, n)
xI  
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 exists for x = 
n

2
 if n is odd it will be a MOD neutrosophic 

element.  

 

If n is even then 
n

n 1−
 is a MOD neutrosophic element.  

 

Thus the following are left as open conjecture. 

 

Conjecture 2.5: Let 
I
[0, n) be the MOD neutrosophic collection. 

 

i. Characterize those 
I
[0, n) in which product of two 

pseudo MOD neutrosophic numbers is a pseudo 

MOD neutrosophic number. 

ii. Characterize those 
I
[0, n) in which the product of 

two MOD neutrosophic numbers is a MOD 

neutrosophic number. 

 

iii. Characterize those 
I
[0, n) in which the product of 

MOD neutrosophic number and pseudo MOD 

neutrosophic number which are nilpotents. 

 

Next we study the MOD neutrosophic elements and MOD 

pseudo neutrosophic elements of the MOD dual number interval.  

 

This will be first illustrated  by an example. 

 

Example 2.5: Consider 〈Z5 ∪ g〉 = {0, 1, 2, 3, 4, g, 2g, 3g, 4g, 1 

+ g, 1 + 2g, 1 + 3g, 1 + 4g, 2 + g, 2 + 2g, 2 + 3g, 2 + 4g, 3 + g, 3 

+ 2g, 3 + 4g, 3 + 3g, 4 + g, 4 + 2g, 4 + 3g, 4 + 4g} be the 

modulo dual number g
2
 = 0; g ⋅ 2g = 0 and so on.  

 

Now 5 I
Z g∪  = {0, 1, 2, 3, 4, g, 2g, 3g, 4g, 1 + g, 2 + g, 

…, 4 + 4g, g

gI , 
g g g

2g 3g 4gI , I , I , g

0I  and so on}.  
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Thus all dual modulo integer 〈Zn ∪ g〉; g
2
 = 0 even if n is a 

prime has natural neutrosophic numbers.  

 

Several of them lead to natural neutrosophic nilpotent 

elements of order two. 

 

Example 2.6: Let  

 

〈Z3 ∪ g〉 = {0, 1, 2, g, 2g, 1 + g, 2 + g, 1 + 2g, 2 + 2g}. 

 

〈Z3 ∪ g〉I = {0, 1, 2, g

0I , g

gI , 
g

2gI }.  

 
g

gI  × 
g

2gI  = g

0I . g

gI  × g

gI  = g

0I  and 
g

2gI  × 
g

2gI  = g

0I . 

 

Example 2.7: Let 〈Z4 ∪ g〉 = {0, 1, 2, 3, g, 2g, 3g, 1 + g, 1 + 2g, 

1 + 3g, 2 + g, 2 + 2g, 2 + 3g, 3 + g, 3 + 2g, 3 + 3g}. 

 

〈Z4 ∪ g〉I = {〈Z4 ∪ g〉 , g

0I , g

gI , 
g

2gI ,
g
2I , 

g

3gI , g

2 2gI
+

, g

2 gI
+

, 

g

2 3gI
+

} are natural neutrosophic dual numbers. 

 

Clearly g

gI  × g

gI  = g

0I , 
g

2gI  × 
g

2gI  = g

0I ,  

 
g

gI  × 
g

3gI  = g

0I , g

2 2gI
+

 × g

gI  = 
g

2gI ,  

  
g

2 2gI
+

 × g

2 gI
+

 = 
g

2gI  and so on. 

 

Example 2.8: Let 〈Z6 ∪ g〉 = {0, 1, 2, …, 5, g, 2g, 3g, …, 5g,  

1 + g, 1 + 2g, …, 5g + 1, …, 5g + 2, …, 5g + 5g} be the dual 

number of modulo integers. 

 

〈Z6 ∪ g〉I = {〈Z6 ∪ g〉, 
g
0I , g

gI , 
g

2gI , 
g

3gI ,
g
3I ,

g

2I ,
g

4I , 
g g

4g 5gI , I , 

g

2 2gI
+

, g

3 3gI
+

, g

4 4gI
+

 and so on.}.  
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Clearly g

2 2gI
+

 × g

3 3gI
+

 = g

0I , g

2 2gI
+

 × g

gI  = 
g

2gI  and so on. 

 

Now it is left as an open problem. 

 

Problem 2.1: Let 〈Zn ∪ g〉I be the natural neutrosophic dual 

numbers. 

 

(i) For a given n how many such natural neutrosophic dual 

numbers exists? 

 

(ii) Find the number of natural neutrosophic dual numbers 

which are idempotents. 

 

(iii) Find the number of natural neutrosophic dual numbers 

which are nilpotents of order two.  

 

This study will yield lots of interesting results in this 

direction. 

 

However we will represent this situation by some examples. 

 

Example 2.9: Let 〈Z12 ∪ g〉 = {0, 1, 2, …, 11, g, …, 11g, 1 + g, 

1 + 2g, …, 1 + 11g, 2 + g, …, 2 + 11g, …, 11 + 11g} be the 

modulo dual numbers.  

 

〈Z12 ∪ g〉I = {〈Z12 ∪ g〉, g

2I , g

4I , g

8I , g

6I , g

10I , g

gI , 
g

2gI , …, 
g

11gI , 

g

3I , g

9I , g

2 2gI
+

, g

2 4gI
+

, g

2 6gI
+

, g

2 8gI
+

, g

2 10gI
+

, g

2 9gI
+

, g

4 2gI
+

, g

4 4gI
+

, 

g

4 6gI
+

, …, g

8 9gI
+

 and so on}.  

 

Finding order of 〈Z12 ∪ g〉I is a difficult task.  

 

Infact 〈Z12 ∪ g〉I has several neutrosophic natural dual 

number. 
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g

2 9gI
+

 × g

6I  = g

0I ,  g

2 4gI
+

 × g

6I  = g

0I  

 
g

6I  × g

6I  = g

0I  and   g

9I  × g

9I  = g

9I   

 

is a neutrosophic natural dual numbers.  

 
g
4I  × 

g g
4g 4gI I=  and so on. 

 

One of the important and interesting observations is that 

〈Z12 ∪ g〉I can have natural neutrosophic dual numbers which 

are idempotents or nilpotents of order two.  

 

However finding all these natural neutrosophic dual 

numbers is a very difficult task. Further defining on them some 

algebraic operation like + and × happens to be still difficult.  

 

However we are always guaranteed of more than one 

natural neutrosophic dual number in 〈Zn ∪ g〉I even if n is a 

prime; for when n is a prime there is one and only one natural 

neutrosophic number given by n

0I .  

 

When n is a prime 〈Zn ∪ g〉I has at least n number of natural 

neutrosophic dual numbers including g

0I .  

 

This is just illustrated by an example. 

 

Example 2.10: Let 〈Z13 ∪ g〉I be the natural neutrosophic dual 

numbers. 

 

{
g g g g

0 g 2g 12gI , I , I , , I… } are the 13 natural neutrosophic dual 

numbers.  

 

Thus the following is true. 
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 THEOREM 2.2: Let 〈Zp ∪ g〉I be the natural neutrosophic dual 

numbers p a prime. 〈Zp ∪ g〉I has at least p natural neutrosophic 

dual numbers. 

 

 Proof is direct and hence left as an exercise to the reader. 

 

Now how to define the operation + on 〈Zn ∪ g〉I.  

 

First we will describe this by some examples. 

 

Example 2.11: Let 〈Z10 ∪ g〉I be the natural neutrosophic dual 

numbers. 

 

〈Z10 ∪ g〉 = {0, 1, 2, …, 9, g, 2g, …, 9g, 1 + g, 2 + g, …, 9 + 

g, 1 + 2g, 2 + 2g, …, 9 + 2g, …, 9 + 9g} be the dual numbers.  

 

〈Z10 ∪ g〉I = {〈Z10 ∪ g〉I, 
g

0I , 
g

2gI , 
g

4gI , 
g

6gI , 
g

8gI , 
g

5gI , g

2 2gI
+

, 

g

2 4gI
+

, g

2 6gI
+

, g

2 8gI
+

, g

4 2gI
+

, g

4 4gI
+

, g

4 6gI
+

, g

4 8gI
+

, g g g g

2 4 6 8I , I , I , I  

and so on}. 

 

It is not an easy task to find the number of natural 

neutrosophic dual numbers. 

 
g

2 4gI
+

 × g

5I  = g

0I ; 

 
g

4 2gI
+

 × 
g

5gI  = g

0I  and so on.  

 

It is easily verified some of the natural neutrosophic dual 

numbers are nilpotents and some are idempotents.  

 

This study is both innovative and interesting. 

 

Example 2.12: Let 〈Z2 ∪ g〉I = {0, 1, g, 1 + g, g

0I , g

gI }. 
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〈Z2 ∪ g〉I under + generates the following.  

 

The set of natural neutrosophic dual numbers set under + is 

as follows: 

 

S = {〈Z2 ∪ g〉I, +} = {0, 1, g, 1 + g, g

0I , g

gI , 1 + g

0I , g + g

0I , 1 

+ g + g

0I , g

0I  + g

gI , g

gI  + 1, g

gI  + g, g + g

0I  + g

gI , 1 + g

0I  + g

gI , 1 + g 

+ g

gI , 1 + g + g

gI  + g

0I }.  

 

Thus order of S is 16.  

 

We define g

0I + g

0I  = g

0I  and g

gI  + g

gI  = g

gI  and there are 

idempotents. 

  

1 + g

0I  + 1 + g

0I  = g

0I  and so on.  

 

Thus this is only a semigroup as g

0I  +  g

0I  = g

0I  and is an 

idempotent so S is only defined as the natural neutrosophic dual 

number semigroup. 

 

Example 2.13: Let 〈Z4 ∪ g〉I = {1, 2, 0, 3, g, 2g, 3g, 1 + g, 1 + 

2g, 1 + 3g, 2 + g, 2 + 2g, 2 + 3g, 3 + g, 3 + 2g, 3 + 3g, g

0I , g

gI , 

g

2gI  , 
g
2I  , 

g

3gI , g

2 2gI
+

, g

2 gI
+

, g

2 3gI
+

} 

 

S = {〈Z4 ∪ g〉I , +} = {〈Z4 ∪ g〉I, 1 + g

0I , 2 + g

0I , 3 + g

0I , g + 

g

0I , 2g + g

0I , 3g + g

0I , 1 + g + g

0I , 1 + 2g + g

0I , …, 3 + 3g + g

0I  + 

g

gI  + 
g

2gI  + 
g

3gI  + g

2 2gI
+

 + g

2 gI
+

 + g

2 3gI
+

}.  

Thus S is only a natural neutrosophic dual number 

semigroup. 
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 Problem 2.2: Let S = {〈Zn ∪ g〉I, +} be the natural neutrosophic 

dual number semigroup. 

 

i. What is the order of S if n is a prime? 

 

ii. What is the order of S if n is not a prime? 

 

We have to find the subsemigroups of S.  

 

We will first illustrate this by some examples. 

 

Example 2.14: Let S = {〈Z5 ∪ g〉I, +} be the natural 

neutrosophic dual number semigroup.  

 

P1 = {Z5, +} is a subgroup of S so S is a Smarandache 

semigroup of natural neutrosophic dual numbers.  

 

P2 = {〈Z5 ∪ g〉, +} is also a subgroup of S.  

 

P3 = {Z5g = {0, g, 2g, 3g, 4g}, +} is a group under +. 

 

〈Z5 ∪ g〉I = {〈Z5 ∪ g〉, g

0I , g

gI , 
g

2gI , g

3gI , 
g

4gI , 4 + 4g + g

0I , 4 + 

4g + g

gI , 4 + 4g + 
g

2gI , …, 4 + 4g + g

0I  + g

gI  + 
g

2gI  + g

3gI  + 
g

4gI } 

has subgroups and subsemigroups which are not subgroups.  

 

For P4 = {Z5, 
g

0I , g

0I  + 1, g

0I  + 2, g

0I  + 3, g

0I  + 4} is only a 

subsemigroup of S and is not a subgroup of S as g

0I  + g

0I  = g

0I . 

 

Example 2.15: Let S = {〈Z15 ∪ g〉I, +} be the natural 

neutrosophic dual number semigroup. 

 

N1 = Z15, N2 = Z15g and N3 = 〈Z15 ∪ g〉 are all 

subsemigroups which are subgroups.  

 

So S is a Smarandache semigroup.  
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Finding order of S is a difficult job g

0I , g

3I , g

6I , g

9I , g

12I , g

10I  

and g

5I  are some of the natural neutrosophic dual numbers. 

 
g

10I  + g

10I  = g

10I , 

 
g

5I  + g

5I  = g

5I  and so on.  

 

In view of all these the following theorem can be easily proved. 

 

THEOREM 2.3: Let S = {〈Zn ∪ g〉I, +} be the natural 

neutrosophic dual number semigroup. 

 

i. S is a Smarandache semigroup. 

ii. S has idempotents. 

iii. S has subsemigroups which has group structure. 

iv. S has subsemigroups which do not have a group 

structure. 

 

Thus we by this method get natural neutrosophic dual 

number semigroups which has idempotent under +.  

 

Next we proceed onto define product operation on 〈Zn ∪ g〉I.  

 

There are two such semigroups of natural neutrosophic dual 

numbers are just generated by 〈Zn ∪ g〉I another S under the 

operation ×. 

 

We will first illustrate this situation by some examples. 

 

Example 2.16: Let  

M = {〈Z6 ∪ g〉I, ×} be the semigroup under ×. 

 

M = {0, 1, 2, 3, 4, 5, g, 2g, 3g, 4g, 5g, 
g
0I , g g g g

2 3 4 gI , I , I , I ,  

g g g g

2g 3g 4g 5gI , I , I , I , ×} and o(M) = 20. 
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 N1 = {0, 1, 2, 3, 4, 5} ⊆ M is a subsemigroup of order 6 and 

6 \/  20. 

 

N2 = {0, 1, 2, 3, 4, 5, g, 2g, 3g, 4g, 5g} ⊆ M is a 

subsemigroup of M.  

 

Now N3 = {1, 2, 3, 4, 5, 0, g

0I } ⊆ M is also a subsemigroup 

of G.  

 

N4 = {1, 5} ⊆ M is a subsemigroup which is a subgroup of 

order 2. Thus M is a Smarandache semigroup.  

 

This semigroup has zero divisors, idempotents and 

nilpotents of order two. 

 

Example 2.17: Let M = {〈Z7 ∪ g〉I, ×} be the natural 

neutrosophic dual number semigroup.  

 

M is a S-semigroup as Z7 \ {0} ⊆ M  is  a group.  

 

However M has other subsemigroups. Infact M has zero 

divisors. 

 
g
6gI  × 

g
6gI  = g

0I  is a natural neutrosophic dual number 

nilpotent element of order two.  

 
g

5gI
 
× 

g

5gI  = g

0I  so every natural neutrosophic dual number in 

M is a nilpotent element of order two. 

 

Example 2.18: Let M = {〈Z14 ∪ g〉I, ×} be the natural 

neutrosophic dual number semigroup.  

 
g

0I , g g g g g g

2 4 6 8 10 12I , I , I , I , I , I , 
g g g g

g 2g 3g 4gI , I , I , I , …, 
g

13gI , g

2 2gI
+

, 

g

2 4gI
+

, g

2 6gI
+

, g

2 8gI
+

, g

2 10gI
+

, g

2 12gI
+

, g

4 2gI
+

, g

4 4gI
+

, g

4 6gI
+

, g

4 8gI
+

, 

g

4 10gI
+

, g

4 12gI
+

, g

6 2gI
+

, g

6 4gI
+

, …, g

6 12gI
+

, …, g

12 2gI
+

, 
g
12 4gI + , …, 
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g

12 12gI
+

, 
g

7 7gI
+ , g

7 2gI
+

, …, g

7 12gI
+

, g

2 7gI
+

, …, g

12 7gI
+

 and so on} are 

all natural neutrosophic dual numbers. 

 
g

12 7gI
+

 ×  
g

2gI  = 
g

10gI  

 
g

7 7gI
+  × 

g

2gI  = g
0I   

 

so this semigroup has zero divisors.  

 

In view of all these we have the following theorem. 

 

THEOREM 2.4: Let M = {〈Zn ∪ g〉I, ×} be the natural 

neutrosophic dual number semigroup. 

 

(i) M is a S-semigroup if and only if Zn is a S-semigroup. 

(ii) M has at least (m – 1) distinct nilpotent elements of 

order two. 

(iii) M has at least (m – 1) distinct natural neutrosophic 

dual numbers which are nilpotents of order two. 

 

Proof is direct hence left as an exercise to the reader. 

 

Now having seen examples of natural neutrosophic dual 

number semigroup under product we proceed onto study natural 

neutrosophic dual number semigroup using S = {〈Zn ∪ g〉I, +}.  

 

Clearly {S, ×} is again a natural neutrosophic dual number 

semigroup under ×. Further M ⊆ {S, ×}. 

 

We will first illustrate this situation by an example or two. 

 

Example 2.19: Let M = {{〈Z10 ∪ g〉I, +}, ×} be the natural 

neutrosophic dual number semigroup.  
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g

0I , g

2I , g

4I , g

6I , g

8I , g

gI , 
g

2gI , 
g

3gI , 
g

4gI , …, 
g

9gI ,  

 
g g

3g 4gI I+ , 
g g

2g 9gI I+  and so on. 

 

( ) ( )g g g g g g

g 2g 4g 8g 2g 0I I I I I I+ + × + = .  

  

Thus M has zero divisors.  

 

5 × 2 = 0, for 5, 2 ∈ Z10 

 

5g × 2g = 0 for 5, 2 ∈ Z10 

 

g × 4g = 0 for g, 4g ∈ 〈Z10 ∪ g〉. 

 

Thus M has nilpotent elements of order two. 

 

x  = ( )g g g g

4g 2g 6g 5gI I I I+ + +  and  

 

y = ( )g g g g

3g 7g 9g gI I I I+ + +  ∈ M. 

 

x × y = g

0I
 
 is a neutrosophic nilpotent element of order two. 

 

Example 2.20: Let M = {〈Z20 ∪ g〉I, +, ×} be the natural 

neutrosophic dual number semigroup. 

 

Let x = 
g

16gI  + 
g g g

2g g 14gI I I+ +  ∈ M is such that  

 

x × x = g

0I  is only a natural neutrosophic dual number zero 

divisor. M has several nilpotent neutrosophic zero divisor.  

 

Let x = 10 + 
g

10gI  and  

 

y = 2 + g

gI  ∈ M.  
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x × y = ( )g

010 I+ . ( )g

g2 I+    

 

= 2 g

10I  + 10 g

gI  = g g

10 gI I+  ∈ M. 

 

Example 2.21: Let M = {〈〈Z19 ∪ g〉I, +〉 ×} be the natural 

neutrosophic dual number semigroup. 

 

P1 = Z19 \ {0} ⊆ M under × is a group.  

 

Thus M is a S-semigroup.  

 

P2 = {Z19g, ×} be the zero square subsemigroup.  

 

P3 = {〈Z19 ∪ g〉, ×} is the subsemigroup. 

 

Example 2.22: Let W = {〈〈Z18 ∪ g〉, +〉, ×} be the natural 

neutrosophic dual number semigroup. 

 

P1 = {Z18, ×} be the subsemigroup.  

 

P2 = {〈Z18 ∪ g〉, ×} be the subsemigroup.  

 

g

0I , g

2I , g

4I , g

6I , g

8I , …, 
g
gI , 

g

2gI , …, 
g

17gI  are some of the 

natural neutrosophic dual numbers.  

 

x = 
g

2gI + 
g

5gI + 
g

10gI  + 
g

11gI  and  

 

y = 
g

8gI  + 
g

17gI  + 
g

16gI  ∈ W.  

 

Clearly x × y = g

0I ; thus this is a natural neutrosophic dual 

number zero divisor.  

 

Also x
2
 = g

0I  and y
2
 = g

0I  are natural neutrosophic dual 

number nilpotent elements. 
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 Example 2.23: Let W = {〈〈Z11 ∪ g〉I, +〉, ×} be the natural 

neutrosophic dual number semigroup. 

 

W has nilpotent elements, natural neutrosophic nilpotent 

elements and zero divisors and natural neutrosophic zero 

divisor. 

 

Example 2.24: Let M = {〈 12 I
Z g∪ , +〉; ×} be the natural 

neutrosophic dual number semigroup. 

 

x = 3 and y = 8 ∈ M is such that x × y = 0 ∈ M.  

 

 

x = 
g

10gI  and y = 
g

2gI  ∈ M; x × y = g

0I  is natural neutrosophic 

dual number zero divisor.  

 
g

10gI  × 
g

10gI  = g

0I  is the natural neutrosophic dual number 

nilpotent element of order two. 6 × 6 = 0 (mod 12) is a nilpotent 

element of order two. 

 

Next we proceed onto describe the natural neutrosophic 

dual number semiring.  

 

S = {〈Zn ∪ g〉I, +, ×} is defined as the natural neutrosophic 

dual number semiring.  

 

Clearly S is of finite order so we get finite semirings a long 

standing problem about semirings.  

 

For semiring of finite order of finite characteristic were got 

by finite distributive lattice and lattice groups taking finite 

groups only or lattice semigroups taking finite semigroups. 

 

Now we will first describe this situation by some examples. 
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Example 2.25: Let S = {〈Z3 ∪ g〉I, +, ×} = {0, 1, 2, g, 2g, g

0I , g

gI , 

g

2gI , 1 + g

0I , 2 + g
0I , g + g

0I , 2g + g

0I , 1 + g

gI , 2 + g

gI , 2g + g

gI , g + 

g

gI , 1 + 
g

2gI , 2 + 
g

2gI , g + 
g

2gI , 2g + 
g

2gI , g

0I  + g

gI , g

0I  + 
g

2gI , g

gI  + 

g

2gI , g

0I + g
gI  + 

g

2gI , 1 + g

0I  + g

gI , 2 + g

0I  + g

gI , g + g

0I  + g

gI , 2g + 

g

0I  + g

gI , 1 + g

0I  + 
g

2gI , 2 + g

0I  + 
g

2gI , g + g

0I  + 
g

2gI , 2g + g

0I  + 
g

2gI , 

1 + g

gI  + 
g

2gI , 2 + g

gI  + 
g

2gI , g + g

gI  + 
g

2gI , 2g + g
gI  + 

g

2gI , 1 + g

0I + 

g

gI  + 
g

2gI , 2 + g

0I + g

gI  + 
g

2gI , g + g

0I + g

gI  + 
g

2gI , 2g + g

0I + g

gI  + 

g

2gI , +, ×} be the natural neutrosophic dual number semiring. 

 

o(S) = 40. 

 

Clearly S has zero divisors. S also has natural neutrosophic 

dual number zero divisors.  

 

S has also nilpotents as well as natural neutrosophic dual 

number nilpotents. 

 

2g × g = 0 is a zero divisor.  

 

g × g = 0 is a nilpotent element of order two. 

 

x = g

gI  + 
g

2gI  is such that x × x = g

0I  is a natural neutrosophic 

dual number nilpotent of order two. 

 

Let x = g

gI  + 
g

2gI  and y = g

0I  + 
g

2gI  ∈ S.  

 

Clearly x × y = g

0I  so is a natural neutrosophic zero divisor.  

 

Thus S has zero divisors and natural neutrosophic dual 

number zero divisor.  

 

P1 = {Z3, + ×} is a field.  
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 Can S have semifields which are not fields? The answer is 

no.  

 

Several properties about them will be discussed in the 

following first through examples and then by proving results. 

 

Example 2.26: Let S = {〈Z7 ∪ g〉I, +, ×} be the natural 

neutrosophic dual number semiring; o(S) < ∞. 

 

S has zero divisors, natural neutrosophic dual number zero 

divisors and nilpotents.  

 

This semiring has subsemiring. Finding ideals in S is a 

difficult task. 

 

Example 2.27: Let S = {〈Z12 ∪ g〉, +, ×} be the natural 

neutrosophic dual number semiring. 

 

S has subsemirings. Further S has zero divisors, natural 

neutrosophic dual number zero divisors.  

 

S has nilpotents as well as natural neutrosophic dual number 

nilpotents of order two.  

 

Several important properties can be determined. 

 

THEOREM 2.5: Let S = {〈Zn ∪ g〉, +, ×} be the natural 

neutrosophic dual number semiring. The following facts are 

true. 

 

i. o(S) < ∞. 

ii. S has zero divisors. 

iii. S has natural neutrosophic dual number zero divisors. 

iv. S has nilpotent elements of order two. 

v. S has natural neutrosophic dual number nilpotent 

elements of order two. 

 

Proof is direct and hence left as an exercise to the reader. 
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All properties of semirings is true in case of these natural 

neutrosophic dual number semirings.  

 

Next we proceed onto describe the notion of natural 

neutrosophic special dual like numbers. 

 

Example 2.28: Let B = {〈Z4 ∪ h〉I, h
2
 = h} be the special dual 

like numbers.  

 

P = {〈Z4 ∪ h〉I; h
2
 = h} = {0, 1, 2, 3, h, 2h, 3h, 1 + h, 2 + h, 

3 + h, 1 + 2h, 2 + 2h, 3 + 3h, 1 + 3h, 3 + 2h, 2 + 3h, h

0I , 
h

2I , 
h

hI , 
h

2hI , h

3hI , 
h

2 2hI
+ , I2+h} be the natural neutrosophic special dual 

like numbers. This is of finite order. 

 

Example 2.29: Let L = {〈Z11 ∪ h〉I, h
2
 = h} = {0, 1, 2, …, 10, h, 

2h, …, 10h, 1 + h, 2 + h, …, 10 + h, 1 + 2h, 2 + 2h, h

0I , …, 10 + 

2h, 1 + 10h, 2 + 10h, 
h

2hI , …, 10 + 10h, h

3hI , …, h

10hI } be the 

natural neutrosophic special dual like numbers. 

 

Next we proceed onto define some more operations on  

{〈Zn ∪ h〉I, h
2
 = h}. 

 

Example 2.30: Let S = {〈Z2 ∪ h〉I, +} = {0, 1, h, 1 + h, h

0I , 
h

hI , 
h

1 hI
+ , 1 + h

0I , 1 + 
h

hI , 1 + 
h

1 hI
+ , h

0I  + 
h

hI , h

0I  + 
h

1 hI
+ , 

h

hI  + 
h

1 hI
+ , 

h

0I  + 
h

hI  + 
h

1 hI
+ , 1 + h

0I  + 
h

hI , 1 + h

0I  + 
h

1 hI
+ , 1 + 

h

hI  + 
h

1 hI
+ ,  

1 + h

0I + 
h

hI  + 
h

1 hI
+ }. 

 

∵   
h
hI  + 

h
hI  = 

h
hI ,  h

0I  + h
0I  = h

0I  ,   

 
h
1 hI + +

h
1 hI + =

h
1 hI +  we see S under + is only a semigroup.  

 

Thus we have given a finite semigroup of order 18. S has 

elements which satisfy a + a = a for a ∈ S. 
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 Example 2.31: Let S = {〈Z6 ∪ h〉I, h
2
 = h, +} = {0, 1, 2, 3, 4, 5, 

h, 2h, 3h, 4h, 5h, 1 + h, 2 + h, …, 5 + h, 1 + 2h, 2 + 2h, …, 5 + 

2h, 1 + 3h, 2 + 3h, …, 5 + 3h, 1 + 4h, 2 + 4h, …, 5 + 4h, 5 + h, 

5 + 2h, …, 5 + 5h, h

0I , 
h

hI , 
h

2hI , h

3hI , 
h

4hI , h

5hI , h h h

2 3 4I , I , I , 
h

2 2hI
+ , 

h

2 4hI
+ , 

h

4 2hI
+ , 

h

3 3hI
+ , 

h

5 hI
+ , 

h

4 2hI
+ , 

h

2 4hI
+ , 

h

5h 1I
+ , 

h

2 hI
+ , 

h

2h 1I
+ , 

h

1 hI
+ , 

h

3 hI
+ , 

h

3h 1I
+  and so on} be the natural neutrosophic special 

dual like number semigroup under +. 

Now (Z6, +) = P1 ⊆ S is a subsemigroup which is a group. 

〈Z6 ∪ h〉 = P2 is also a group under +.  

 

Thus S is a Smarandache semigroup.  

 

In view of this we have the following theorem. 

 

THEOREM 2.6:  Let S = {〈Zn ∪ h〉I, h
2
 = h, +} be the natural 

neutrosophic special dual like number semigroup. 

 

i. S has natural neutrosophic idempotents. 

ii. S is a S-semigroup. 

 

Proof: Clearly 
h h h

kh kh khI I I+ =  for all k ∈ Zn.  

 

Hence (i) is true. 

 

Consider (Zn, +) ⊆ S; clearly (Zn, +) is a group so S is a 

Smarandache semigroup.  

 

Now we proceed onto define product on 〈Z ∪ h〉h. First we 

represent this by examples. 

 

Example 2.32: Let M = {〈Z5 ∪ h〉I, ×} = {0, 1, 2, 3, 4, h, 2h, 3h, 

4h, 1 + h, 1 + 2h, 1 + 3h, 1 + 4h, 2 + h, 2 + 2h, 2 + 3h, 2 + 4h, 3 
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+ h, 3 + 2h, 3 + 3h, 3 + 4h, 4 + h, 4 + 2h, 4 + 3h, 4 + 4h, h

0I , 

h

hI ,
h

2hI , h

3hI , 
h h h h h

4h 2 3h 2h 3 h 4 4h 1I , I , I , I , I
+ + + + } be the natural 

neutrosophic special dual like number semigroup. 

 

Clearly M has zero divisors for x = 2 + 3h and y = h.  

 

x × y = (2 + 3h)h = 0(mod 5).  x = 3 + 2h and y = h is such 

that x × y = 0. 

 

x = 
h

hI  and y = 
h

2 3hI
+  ∈ M;  x × y = 

h

hI
 
×

 
h

2 3hI
+ = 

h
0I .  

 

Thus M has natural neutrosophic special dual like zero 

divisors. P = {Z5 \ {0}, ×} is a group so S is a Smarandache 

semigroup. 

 

Example 2.33: Let  

M = {〈Z9 ∪ h〉I, h
2
 = h, ×} be the natural neutrosophic special 

dual like number semigroup. 

 

Let x = 3 and y = 3h + 3 ∈ M.  

 

x × y = 3 × 3h + 3 = 0 is a zero divisor. 

 

Let x = 6h and y = 3 + 3h ∈ M. x × y = 0 is again a zero 

divisor. Consider h

3hI  and h

6hI  ∈ M.  

 
h

3hI  × h

6hI  = h

0I  is a natural neutrosophic special dual like 

number zero divisor. 

 

Clearly h × h = h is an idempotent in M.  

 

Similarly 
h

hI  × 
h

hI  = 
h

hI
 
is a natural neutrosophic special 

dual like number idempotent. 
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 Example 2.34: M = {〈Z24 ∪ h〉I, ×} be the natural neutrosophic 

special dual like number semigroup. 

 

M = {〈Z24 ∪ h〉, h

0I , h h h h h

2 3 6 4 8I , I , I , I , I , h

10I , 
h

12I , 
h

14I , h

16I , h

18I , 
h

20I , 
h

22I , h

9I , h

15I , 
h

21I , 
h

hI , 
h

2hI , …, h

23hI , 
h h h

2 2h 1 23h 23 hI , I , I
+ + + , …, 

h

2 22hI
+ , 

h

22 2hI
+  and so on} be the natural neutrosophic special 

dual like number semigroup. 

 

M has zero divisors and nilpotents as well as natural 

neutrosophic special zero divisors and natural neutrosophic 

special nilpotents.  

 

x = 6 and y = 8 + 12h ∈ M.  

 

x × y = 6 × 12h + 8 = 0 is a zero divisor.  

 

x = 12h + h and y = 12 + 8h ∈ M is such that x × y = 0 is a 

zero divisor. x = h

6hI  and y = 
h

12 12hI
+  ∈ M is such that x × y = h

0I  

is a natural neutrosophic zero divisors.  

 

Consider  x = 12 + 12 h ∈ M; clearly x × x = 12 + 12h × 12 

+ 12h = 0 ∈ M is a nilpotent element of order two.  

 

x = 
h

12 12hI
+  ∈ M; x × x = h

0I .  

 

Now having seen the special elements we proceed onto give 

more examples. 

 

Example 2.35: Let  

 

M = {〈Z10 ∪ h〉I, h
2
 = h, ×} = {0, 1, 2, …, 9, h, 2h, …, 9h, 1 + h, 

1 + 2h, …, 1 + 9h, 2 + h, 2 + 2h, …, 2 + 9h, …, 9 + h, 9 + 2h, 9 

+ 3h, …, 9 + 9h, h

0I , 
h

2I , 
h

4I , h

6I , h

8I , h

5I , 
h

1 9hI
+ , 

h

9 hI
+ , 

h

2 8hI
+ , 

h

8 2hI
+ , 

h

5 5hI
+ , 

h

3 7hI
+ , 

h

7 3hI
+ , 

h

4 6hI
+ , 

h

6 4hI
+  and so on} be the 

natural neutrosophic special dual like number semigroup. 
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S has zero divisors and idempotents also natural 

neutrosophic special dual like zero divisors and idempotents. 

 

We prove some theorems based on these examples. 

 

THEOREM 2.7: Let M =  {〈Zn ∪ h〉I, h
2
 = h, ×} be the natural 

neutrosophic special dual like number semigroup. 

 

i. M is a S-semigroup if and only if Zn is a S-semigroup. 

ii. M has zero divisors and special dual like number of  

zero divisors. 

iii. M has idempotents as well as special dual like number 

idempotents. 

 

Proof is direct and hence left as an exercise to the reader. 

 

Now we can define the other type of natural neutrosophic 

special dual like number semigroup built using the additive 

semigroup {〈Zn ∪ h〉I, +}.  

 

We will first illustrate this by example. 

 

Example 2.36: Let  

S = {〈〈Z6 ∪ h〉I, +〉, ×, h
2

 = h} be the natural neutrosophic special 

dual like semigroup under product. 

 

Clearly M = {〈Z6 ∪ h〉I, h
2
 = h, ×} ⊆ S as a subsemigroup.  

 

Now S contains elements of the form  

 

y = h

3I  + 
h

2I  + 
h

2hI  and
 

 

x = 
h

4I  + 
h

4hI  + h

0I  ∈ M. 

 

x × y = ( ) ( )h h h h h h

4 4h 0 3 2 2hI I I I I I+ + × + +   
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          = h

0I  + h

0I  + h

0I  + 
h

2I  + 
h

2hI  + h

0I  + 
h

2hI  + 
h

2hI  + h

20I   

 

         = h

0I  + 
h

2hI  + 
h

2I . 

 

This is the way product is performed on S. This semigroup 

has bigger cardinality.  

 

This semigroup has several subsemigroups. 

 

Example 2.37: Let S = {〈〈Z11 ∪ h〉I, +〉, ×} be the natural 

neutrosophic special dual like number semigroup. 

 

S is a Smarandache semigroup as Z11 \ {0} = P1 is a group 

under product.  

 

S = {〈Z11 ∪ h〉, h

0I , 
h h

h 2hI , I , …, 
h h

10h 10 hI , I
+ , 

h

1 10hI
+ , 

h

9 2hI
+ , 

h

2 9hI
+ , 

h

3 8hI
+  , 

h

8 3hI
+ , 

h

7 4hI
+ , 

h

4 7hI
+ , 

h

6 5hI
+ , 

h

5 6hI
+  and so on and 

sums 2 + 3h + h

0I  + 
h

2 9hI
+  and so on}.  

 

Clearly o(S) < ∞. 

 
h

2 9hI
+  × h

5hI  = h

0I
 
is a natural neutrosophic zero divisor.  

 
h h

2 9h 4hI I
+

×  = h

0I  is again a natural neutrosophic zero 

divisor. 

 

2 + 9h × 5h = 0 (mod 11) and 2 + 9h × 4h = 0 (mod 11) are 

both zero divisors of S.  

 

In view of this we have the following theorem. 

 

THEOREM 2.8: Let S = {〈〈Zn ∪ h〉I, +〉,  h
2
 = h, ×} be the 

natural neutrosophic special dual like number semigroup 

. 

i) S is a S-semigroup if and only if Zn is a S-

semigroup under ×. 
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ii) S has both zero divisors and natural neutrosophic 

special dual like number zero divisors. 

iii) S has idempotents as well as natural neutrosophic 

idempotents. 

 

Proof is direct and hence left as an exercise to the reader. 

 

Next the notion of natural neutrosophic  special dual 

number semirings are developed and described. 

 

Example 2.38: Let S = {〈Z6 ∪ h〉I, +, ×} be the natural 

neutrosophic special dual like number semiring. 

 

Clearly S has zero divisors as well as natural neutrosophic 

zero divisors.  

 

S has idempotents as well as natural neutrosophic special 

dual like number idempotents. 

 

For 3 × 3 = 3 (mod 6) 

 

4 × 4 =  4 (mod 6) are idempotents of S. 

 
h

3I  × h

3I  = h

3I   
h

4hI  × 
h

4hI  = 
h

4hI   

 

and 
h

hI  × 
h

hI  = 
h

hI  are natural neutrosophic idempotents 

of S. 

 

Clearly 4 × 3h = 0, 2h × 3h = 0, 4 × 3 ≡ 0 are zero divisors 

of S. 

 
h

2 4hI
+  

×
 

h h

5h 0I I= ,  
h

h 5I
+  × 

h

4hI  = h

0I , 

 
h h h

3h 3 2h 0I I I
+

× =  and  h h h

3h 4 0I I I× =   

 

are all natural neutrosophic special dual like number zero 

divisors.  
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Thus this semiring is not a semifield. 

 

Further if α = 
h h h h

3 3h 4 2h 1 5h 5 hI I I I
+ + + +

+ + +  and  

β = h h h h

2h 4h 5h 0I I I I+ + +
 
 ∈ S then α × β = h

0I  is a natural 

neutrosophic zero divisor of S. 

 

Z6 = P1 is a ring in S.  

 

{〈Z6 ∪ h〉} = P2 is again a ring in S. Thus S has also 

subsemirings which are rings.  

 

Under these special conditions we define yet a new notion 

on semirings. 

 

DEFINITION 2.1: Let S be a semiring. S is said to be 

Smarandache Super Strong semiring (SSS-semiring) if S 

contains a subset P which is a field. S is said to be 

Smarandache Strong semiring (SS-semiring) if S contains a 

subset P which is a ring which is not a field.  

 

We first give examples of the definition. 

 

Example 2.39: Let  

S = {〈Z7 ∪ g〉I, g
2
 = 0, +, ×} be the natural neutrosophic dual 

number semiring. 

 

Z7 ⊆ S is a field. So S is a SSS-semiring. 〈Z7 ∪ g〉 ⊆ S is a 

ring hence S is a SS-semiring. 

 

Example 2.40: Let  

S = {〈Z15 ∪ g〉I, g
2
 = 0, +, ×} be the natural neutrosophic dual 

number semiring.  

 

S is a SS-semiring as 〈Z15 ∪ g〉 ⊆ S is a ring. P1 = {0, 3, 6, 

9, 12} ⊆ S is a field with 6 as the multiplicative identity. 
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Clearly 12 is the inverse of 3 and vice versa as 3 × 12 = 6 

the identity of P1.  

 

9 × 9 = 6 the identity of P1. Hence S is also a SSS-semiring. 

 

Example 2.41: Let S = {〈Z24 ∪ h〉I, h
2
 = h, +, ×} be the natural 

neutrosophic special dual like number semiring.  

 

Clearly P1 ⊆ S is a ring so S is a SS-semiring.  

 

P2 = {0, 8, 16} ⊆ S is a field with 16 as the identity with 

respect to product. Thus S is a SSS-semiring. 

 

Example 2.42: Let  

M = {(〈Z17 ∪ h〉I), h
2
 = h, +, ×} be the natural neutrosophic 

special dual like number semiring. M is a SSS-semiring as well 

as SS-semiring. 

 

So a natural neutrosophic semiring can be both a SSS-

semiring as well as SS-semiring.  

 

Next we proceed onto describe the concept of natural 

neutrosophic special quasi dual number sets using Zn by some 

examples. 

 

Example 2.43: Let S = {〈Z8 ∪ k〉I, k
2
 = 7k} = {Z8, k, 2k, …, 7k, 

1 + k, 2 + k, …, 7 + k, 1 + 2k, 2 + 2k, …, 7 + 2k, 3k + 1, 2 + 3k, 

…, 7 + 3k, …, 7k + 1, 7k + 2, …, 7k + 7, 
k

2I , k

0I , 
k

4I , k

6I , 
k

2kI , 

k

kI , k

3kI , …, k

7kI , 
k

1 7kI
+ , 

k

2 5kI
+ , 

k

7 kI
+ , …} 

 

S is a natural neutrosophic special quasi dual number set. 

 



78 Natural Neutrosophic Numbers and MOD Neutrosophic… 

 

 

 Example 2.44: Let  

S = {〈Z3 ∪ k〉I, k
2
 = 2k} = {0, 1, 2, 2k, k, 1 + k, 2 + k, 1 + 2k, 2 

+ 2k, 
k

2 kI
+ , 

k

1 2kI
+ , 

k

kI , 
k

2kI , k

0I } be the natural neutrosophic 

special quasi dual number set. 

 

Example 2.45: Let  

S = {〈Z2 ∪ k〉I, k
2
 = k} = {0, 1, k, 1 + k, k

0I , 
k

kI , 
k

1 kI
+ } be the 

natural neutrosophic special quasi dual number set. 

 

Example 2.46: Let  

S = {〈Z4 ∪ k〉I, k
2

 = 3k} = {0, 1, 2, 3, k, 2k, 3k, 1 + k, 2 + k, 3 + 

k, 1 + 2k, 2 + 2k, 3 + 2k, 1 + 3k, 2 + 3k, 3 + 3k, k

0I , 
k

2I , 
k

2kI , 
k

kI , 

k

3kI , 
k

2 2kI
+ , 

k

1 3kI
+ , 

k

k 3I
+ , 

k

3 3kI
+ } be the natural neutrosophic 

special quasi dual number set. 

 

Example 2.47: Let S = {〈Z5 ∪ k〉I, k
2
 = 4k} = {0, 1, 2, 3, 4, k, 

2k, 3k, 4k, 1 + k, 2 + k, 3 + k, 4 + k, 1 + 2k, 2 + 2k, 1 + 3k, 2 + 

3k, 3 + 3k, 4 + 3k, 1 + 4k, 2 + 4k, 3 + 4k, 4 + 4k, 3 + 2k, 4 + 2k, 

k

0I  
k

kI , 
k

2kI , k

3kI , 
k

4kI , 
k

1 4kI
+ , 

k

4 kI
+ , 

k

2 3kI
+ , 

k

3 2kI
+ , 

k

4 4kI
+ } be the 

natural neutrosophic special quasi dual number set. 

 

Example 2.48: Let S = {〈Z7 ∪ k〉I, k
2
 = 6k} be the natural 

neutrosophic special quasi dual number set. 

 

S = {0, 1, 2, …, 6, k, 2k, 3k, 4k, 5k, 6k, k

0I , 
k

kI , 
k

2kI , k

3kI , 

k

4kI , k

5kI , k

6kI , 
k

k 6I
+ , 

k

6k 1I
+ , 

k

2k 5I
+ , 

k

5k 2I
+ , 

k

4 3kI
+ , 

k

3 4kI
+ , 

k
6 6kI + , 1 

+ k, 1 + 2k, 1 + 3k, 1 + 4k, 1 + 5k, 1 + 6k, 2 + k, 2 + 2k, 2 + 3k, 

2 + 4k, 2 + 5k , 2 + 6k, 3 + k, 3 + 2k, 3 + 3k, 3 + 4k, 3 + 5k, 3 + 

6k, 4 + k, 4 + 2k, 4 + 3k , 4 + 4k, 4 + 5k , 4 + 6k, 5 + k, 5 + 2k, 
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5 + 3k, 5 + 4k, 5 + 5k, 5 + 6k, 6 + k, 6 + 2k, 6 + 3k, 6 + 4k, 6 + 

5k, 6 + 6k} 

 

Example 2.49: Let S = {〈Z12 ∪ k〉I, k
2
 = 11k} be the natural 

neutrosophic special quasi dual number. 

 

S = {0, 1, 2, …, 11k, k, 2k, …, 11k, 1 + k, 2 + k, …, 11 + k, 

1 + 2k, 2 + 2k, …, 11 + 2k, 1 + 3k, 2 + 3k, 3 + 3k, …, 11 + 3k, 

…, 11k + 1, 11k + 2, …, 11 + 11k, k

0I , 
k

1 11kI
+ , 

k

11 kI
+ , …, 

k

5 7kI
+ , 

k

7 5kI
+ , 

k

6 6kI
+ } be the natural neutrosophic special quasi dual 

number set.  

 

Now we proceed onto give operations + and × on the set  

S = {〈Zn ∪ k〉I; k
2
 = (n – 1)k} under + is described. 

 

Example 2.50: Let  

S = {〈Z10 ∪ k〉I, k
2
 = 9k, ×} = {0, 1, 2, …, 9, k, 2k, 3k, …, 9k,  

1 + k, 1 + 2k, …, 1 + 9k, 2 + k, 2 + 2k, 2 + 3k, …, 2 + 9k, 3 + k, 

3 + 2k, 3 + 3k, …, 3 + 9k, 9 + k, 9 + 2k, …, 9 + 9k, 
k k k k

0 k 2k 3kI , I , I , I , …, k

9kI , 
k

1 9kI
+ , 

k

9 kI
+ , 

k

2 8kI
+ , 

k

2k 8I
+ , 

k

3k 7I
+ , 

k

3 7kI
+ , 

k

4 6kI
+ ,

k

6 4kI
+ , 

k

5 5kI
+ , 

k

2I , 
k

4I , k

6I , k

8I , k

5I , 
k

2 4kI
+ , 

k

4 2kI
+ , 

k

2 6kI
+ , 

k

6 2kI
+ , 

k

2 8kI
+ , 

k

8 2kI
+ , 

k

4k 4I
+ , 

k

2 2kI
+ , 

k

4k 6I
+ , 

k

6k 4I
+ , 

k

4k 8I
+ , 

k

8k 4I
+ ,

k

6k 6I
+ , 

k

6k 8I
+ , 

k

8k 6I
+  and so on, ×}.  

 

S has zero divisors and S has natural neutrosophic special 

quasi dual zero divisors. 

 

5k × 2 = 0, 2k × 5 = 0, 5k × 6k = 0, 2k × 5k = 0,  

 

5k × 6 = 0, 6k × 5 = 0, 8k × 5 = 0, 8k × 5k = 0. 

 

8 × 5k are all zero divisors of S. 
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k k k

4k 5 5k 0I I I
+

× =
 
, 

 

k k k

6 2k 5k 0I I I
+

× =
 
  

 

are some natural neutrosophic special quasi dual number zero 

divisors.  

 

This semigroup has also idempotents  
k k k

5k 5k 5kI I I ,× =  
k k k
5 5k 5k 5 5 5kI I I+ + +× =  

are natural neutrosophic special quasi dual number of 

idempotents. 

 

5k × 5k = 5k is an idempotent.  

 
k k k

6k 8 5 0I I I
+

× =
  

k k k

6k 8 5k 0I I I
+

× =
 
  

 

are which are natural neutrosophic special quasi dual number 

zero divisors. 

 

Example 2.51: Let S = {〈Z7 ∪ k〉I, k
2
 = 6k, ×} = {0, 1, 2, 3, 4, 6, 

5, k, 2k, 3k, 4k, 6k, 5k, 1 + k, 1 + 2k, 1 + 3k, 1 + 4k, 1 + 5k,  

1 + 6k, 2 + k, 2 + 2k, 2 + 3k, 2 + 4k, 2 + 5k, 2 + 6k, 3 + k, 3 + 

2k, 3 + 3k, 3 + 4k, 3 + 5k, 3 + 6k, 4 + k, 4 + 2k, 4 + 3k, 4 + 4k, 

4 + 5k, 4 + 6k, 5 + k, 5 + 2k, 5 + 3k, 5 + 4k, 5 + 5k, 5 + 6k, 6 + 

k, 6 + 2k, 6 + 3k, 6 + 4k, 6 + 5k, 6 + 6k, k

0I , 
k

kI , 
k

2kI , k

3kI , 
k

4kI , 

k

5kI , k

6kI , 
k

1 6kI
+ , 

k

6 kI
+ , 

k

2 5kI
+ , 

k

5 2kI
+ , 

k

4 3kI
+ , 

k

3 4kI
+ , …, ×} be a 

semigroup of finite order. 

 

S has zero divisors and natural neutrosophic special quasi 

dual number zero divisors. 

 

(4 + 3k)k = 0, (3 + 4k)k = 0,  

 

(6 + k)k = 0, (6k + 1)k = 0 and so on are zero divisors. 



MOD Natural Neutrosophic Elements  81 

 

 

 

 

 

 

 

 

 
k

kI  × 
k

6 kI
+  =

 

k

0I , 

 
k

2 5kI
+  × 

k

kI  = k

0I and 

 
k

4 3kI
+  × 

k

kI  = k

0I   

 

are all natural neutrosophic special quasi dual number zero 

divisors. 

 

Can S have idempotents and natural neutrosophic special 

quasi dual idempotents? 

 

Example 2.52: Let S = {〈Z18 ∪ k〉I, k
2
 = 17k, ×} = {0, 1, 2, …, 

17, k, 2k, …, 17k, k

0I , 
k

kI , 
k

2kI , k

3kI , …, k

17kI , 
k

1 17kI
+ , 

k

17 kI
+ , 

k

2 15kI
+ , 

k

15 2kI
+ , …, 

k
9 9kI +  and so on, ×} be the natural 

neutrosophic special quasi dual number semigroup.  

S has idempotents and zero divisors. Further S has natural 

neutrosophic idempotents and zero divisors. 

 

Example 2.53: Let S = {〈Z20 ∪ k〉I, k
2
 = 19k, ×} = {Z20, kZ20, 

k

0I , 
k

kI , 
k

2kI , …, k

19kI , 
k

1 19kI
+ , 

k
19 kI + , 

k
2 18kI + , 

k
18 2kI + , …, 

k

10 10kI
+  

and so on} be the natural neutrosophic special quasi dual 

number semigroup.  

 

S has zero divisors, idempotents and nilpotents. Similarly S 

has natural neutrosophic special quasi dual number zero 

divisors, idempotents and nilpotents. 

 

We have to prove the following theorem. 

 

THEOREM 2.9: Let S = {〈Zn ∪ k〉I, k
2
 = (n – 1)k, ×} be the 

natural neutrosophic special quasi dual number semigroup. 
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 i. S is a S-semigroup if and only if Zn is a S-semigroup. 

ii. S has zero divisors, idempotents and nilpotents if Zn 

has. 

iii. If (ii) is true. S has natural neutrosophic special quasi 

dual number zero divisors, idempotents and nilpotents. 

 

Proof is direct and hence left as an exercise to the reader. 

 

Next we proceed onto describe the natural neutrosophic 

special quasi dual number semigroup under +. 

 

Example 2.54: Let  

S = {〈Z4 ∪ k〉I, k
2
 = 3k, +} be the natural neutrosophic special 

quasi dual number semigroup under addition. 

 

S = {0, 1, 2, 3, k, 3k, 2k, 1 + k, 2 + k, 3 + k, 2k + 1, 2k + 2, 

2k + 3, 3k + 1, 3k + 2, 3k + 3, k

0I , 
k

kI , 
k

2kI , k

3kI , 
k

2 2kI
+ , 

k

2I , 

k

3 kI
+ , 

k

1 3kI
+ , …, k

0I  + 
k

2I , 
k

3 kI
+  + 

k

2I , 
k

2kI  + k

3kI  + 
k
2 2kI + , 

k

1 3kI
+  

+
k

2kI  +  
k
2I  + k

0I  + 3k and so on, +} is not a semigroup for  

 
k

2kI  + 
k

2kI  = 
k

2kI , k

0I  + k

0I  = k

0I , 
k
3 kI +  + 

k
k 3I +  = 

k
k 3I +  

are all idempotents under +.  

 

That is why S is only a semigroup under + and not a group 

under +. 

 

Example 2.55: Let  

S = {〈Z5 ∪ k〉I, k
2
 = 4k, +} = {0, 1, 2, 3, 4, k, 2k, 4k, 3k,  

1 + k,  1 + 3k, 1 + 2k, 1 + 4k, 2 + k, 2 + 3k, 2 + 2k, 2 + 4k, …,  
k

0I , 
k

kI , 
k

2kI , k

3kI , 
k

4kI , 
k

1 4kI
+ , 

k

4 kI
+ , 

k

3 2kI
+ , 

k

2 3kI
+ , k

0I  + 
k

1 4kI
+  + 

3k, 1 + 4k + 
k

2 3kI
+  + 

k

2k 3I
+  and so on} is a semigroup under +. 
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 Example 2.56: Let S = {〈Z12 ∪ k〉I, k
2
 = 11k, +} is a semigroup 

under +. S has idempotents under +. 

 

Next we proceed onto describe and develop the semigroup 

on S = {〈Zn ∪ k〉I, k
2
 = (n – 1)k, +} under ×. 

 

Example 2.57: Let S = {〈〈Z9 ∪ k〉I, k
2
 = (9 – 1)k, +〉, ×} be the 

semigroup of natural neutrosophic special quasi dual number 

semigroup under ×. 

 

S has nilpotents, idempotents and zero divisors as well as 

natural neutrosophic special quasi dual number also has 

nilpotents, idempotents and zero divisors. 

 

This will represent by some elements. 

 

α = 
k k k

3k 3 3 3kI I I
+

+ +  ∈ S 

 

α × α = k

0I ; 3 × 3 = 0 

 

β = k

6I  + k

6kI  + 
k

3 6kI
+  + 

k

6 3kI
+  and γ = k

3I  ∈ S is such that  

βγ = k

0I  is a natural neutrosophic special quasi dual number zero 

divisor.  

 

Thus the semigroup under × gives not only more elements 

but more number of nilpotents, zero divisors and idempotents. 

 

Example 2.58: Let S = {〈〈Z11 ∪ k〉I, k
2
 = 10k, +〉, ×} be the 

semigroup under product.  

 

S is a natural neutrosophic special quasi dual number 

semigroup. S has natural neutrosophic special quasi dual 

number zero divisors, nilpotents and idempotents. 

 

S is a S-semigroup for Z11 \ {0} under product is a group of 

order 10. 
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 Example 2.59: Let S = {〈〈Z23 ∪ k〉I, k
2
 = 22k, +〉, ×} be the 

natural neutrosophic special quasi dual number semigroup. S 

has natural neutrosophic idempotents, zero divisors and 

nilpotents. 

 

Next we proceed onto describe the natural neutrosophic 

special quasi dual number semiring. 

 

Example 2.60: Let S = {〈Z3 ∪ k〉I, +, ×} = {0, 1, 2, k, 2k, 1 + k, 

2 + 2k, 2 + k, 2k + 1, k

0I , 
k

2kI , 
k

kI , 
k

2k 2I
+ , 

k

1 kI
+ , 1 +  k + k

0I  + 

k

2kI , 2 + 2k + 
k

1 kI
+  + 

k
kI , …, and so on +, ×} be the natural 

neutrosophic special quasi dual number semiring. 

 

1 + k ∈ S is an idempotent for 1 + k × 1 + k = 1 + k.  

 
k

1 kI
+  × 

k

1 kI
+  = 

k

1 kI
+ . (2k + 2)k = 0 and 

k

2 2kI
+  × 

k

kI  = k

0I  is a 

natural neutrosophic zero divisor and k k

2 4k 3k 1I I
+ +

+ +  

k k k k k

2 3 0 2 4k 3 k 4 2kI I I I I I
+ + +

+ + + + +  is the natural neutrosophic 

special quasi dual number idempotent. 

 

Hence S is not a semifield. 

 

Example 2.61: Let S = {〈Z6 ∪ k〉I, k
2
 = 5k, +, ×} = {0, 1, 2, 3, 4, 

5, k, 2k, 3k, 4k, 5k, 1 + k, 1 + 2k, 1 + 3k, 1 + 4k, 1 + 5k, 2 + k, 

2 + 2k, 2 + 3k, 2 + 4k, 2 + 5k, …, 5 + k, 5 + 2k, 5 + 3k, 5 + 4k, 

5 + 5k, k

0I , k k k k k

k 2k 3k 4k 5kI , I , I , I , I , 
k

1 kI
+ , 

k

1 3kI
+ , 

k

1 4kI
+ , 

k

2 4kI
+ , 

k

3 3kI
+ , 

k

2I , k

3I ,
k

4 2kI
+  and sums of them as 

k

2 4kI
+  + 

k

3k 1I
+  + 

k

2I  + 

k

3I  + k

0I  + 
k

2 4kI
+  + 

k

3 kI
+  + 

k

4 2kI
+ ,… so on, +, ×} be the natural 
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 neutrosophic special quasi dual number semiring. S has 

idempotents and zero divisors which are given in the following. 

 

3k × 4 = 0 

 

4 + (3k + 3) = 0 

 

(1 + k)
2
 = (1 + k). 

 

Clearly 
k

1 kI
+  × 

k

1 kI
+  = 

k

1 kI
+  and k k k

3k 4 0I I I× =  are some of 

the natural neutrosophic idempotents and zero divisors of the 

semiring S.  

 

S has subsets which are rings like Z6 and 〈Z6 ∪ k〉 so S is a 

SS-semiring.  

 

Further S has proper subsets which are fields like  

 

P1 = {0, 2, 4} ⊆ S. So S is also a SSS-semiring.  

 

In view of this we have the following theorem. 

 

THEOREM 2.10: Let S = {〈Zn ∪ k〉I, + , ×} be the natural 

neutrosophic special dual quasi semiring. 

 

i. S is a SS-semiring. 

ii. S is a SSS-semiring if and only if Zn is a S-ring. 

iii. S has zero divisors. 

iv. S has natural neutrosophic special quasi dual zero 

divisors. 

v. S has idempotents. 

vi. S has natural neutrosophic special quasi dual 

idempotents. 

 

Proof is direct and hence left as an exercise to the reader. 
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Now we proceed onto define MOD natural neutrosophic dual 

number interval in the following. 

 

Let 〈I
[0, 5) ∪ g〉 = {0, 1, 2, 3, 4, g, 2g, 3g, 4g, 1 + 2g, 1 + g, 

1 + 3g, 1 + 4g, 2 + g, 2 + 2g, x + 2g, 2 + 3g, 2 + 4g, 3 + g, x + g, 

x + 4g, 3 + 2g, 3 + 3g, 3 + 4g, 4 + g, x + 3g, 4 + 2g, 4 + 3g, 4 + 

4g, g

0I , x + xg, g

gI , 
g

2gI , 
g

3gI , 
g

4gI , I2.5g, I1.25g, I2.5, I1.25, Ixg; x ∈ [0, 

5) and so on …}.  

Here it is important to keep on record that 〈I[0, 5) ∪ g〉 has 

infinite number of elements.  

 

However if only [0, 5)g alone is taken, we may have that 

every element in [0, 5)g is a zero divisor so 
I
[0, 5)g has infinite 

number of natural neutrosophic dual number zero divisor.  

 

Further 
I
[0, 5)g ⊆ (〈[0, 5) ∪ g〉I) or 

I
(〈[0, 5) ∪ g〉)  

 

we can use any one of the notation both notations will be used 

as a matter of convenience. 

 

Consider 〈[0, 3) ∪ g〉I = S and 
I
[0, 3)g = P the collection of 

MOD natural neutrosophic dual numbers. Clearly the cardinality 

of both S and P are infinite and P ⊆ S.  

 

Further 〈[0, n) ∪ g〉I = S and 
I
[0, 3)g = P are the infinite 

collection of MOD natural neutrosophic dual number.  

 

Here it is pertinent to keep on record; n ∈ Z
+
 \ {0}.  

 

It is important to record that [0, n)g is such that ever 

element in it contributes to a MOD natural neutrosophic number 

as g a dual number g

agI ; a ∈ [0, n) is a zero divisor.  
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 By this method one gets an infinite collection of MOD 

neutrosophic natural number. 

 

Example 2.62: Let P = {
I
[0, 4)g | ag; g

2
 = 0, a ∈ [0, 4)} be the 

collection of all MOD neutrosophic natural dual numbers.  

 

P = {[0, 4)g; g

xgI ; x ∈ [0, 4); g
2
 = 0}  

 
g

xgI  x g

xgI  = g

0I  is a MOD neutrosophic nilpotent element of 

order two.  

 

However g

xgI  x 
g

tgI  = g

0I  for all x, t ∈ [0, 4) are MOD 

neutrosophic zero divisors.  

 

Thus P has infinite number of MOD neutrosophic natural 

numbers.  

 

Now we proceed onto describe some operations using them 

we can define mainly two operations + and ×.  

 

Two types of products can be used.  

 

One type of product is usual product other a product on the 

sets 〈[0, n)g, +〉I and 〈〈[0, n) ∪ g〉I, +〉.  
 

We describe all the three situations by examples. 

 

Example 2.63:  Let S = {〈[0, 9)g〉I, +} = {ag, g

agI , g

ag

a [0, 9)

I
∈

∑   all 

sums g

0I  + 
g

tgI , g

0I  + 
g

tgI  + g

sgI , s, t ∈ [0, n) ag + g

0I , ag + g

0I  + 
g

tgI , 

… so on}. 

 

S is defined as the MOD natural neutrosophic dual number 

semigroup. S is a semigroup under +. S is of infinite order.  
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If x = 5 + 
g

7gI  + 
g

0.33gI
 
and  

 

y = 6 + g

0I  then x + y = 2 + g

0I  + 
g

0.33gI + 
g

7gI  ∈ S.  

 

Thus this is only a semigroup as g

gI
α

 + g

gI
α

 = g

gI
α

 (by very 

definition). S has subsemigroups of finite order.  

 

S has subsets which are groups say (Z9, +) is a proper subset 

of S which is a group. (〈Z9 ∪ g〉, +) is again a proper finite 

subset of S which is a group.  

 

Thus S is a Smarandache semigroup of infinite order having 

infinite number of MOD natural neutrosophic dual number 

elements. 

 

S has also infinite subsemigroups. 

 

Example 2.64: Let S = {〈[0, 12)g〉I, +} = {ag, g

agI ; a ∈ [0, 12), 

g

0I  + 
g

tgI  + g

sgI  + g

pgI ; t, s, p ∈ [0, 12); tg

t [0, 12)

I
∈

∑  summation can 

be finite or infinite} is a semigroup of infinite order.  

 

S is a MOD natural neutrosophic dual number semigroup 

which has infinite number of MOD natural neutrosophic 

elements.  

 

In view of this we have the following theorem. 

 

THEOREM 2.11: Let S = {〈[0, n)g〉I, ×} is a MOD natural 

neutrosophic dual number semiring. S is a S-semigroup. 

 

i. S has infinite number of zero divisors. 

ii. S has infinite number of natural neutrosophic dual 

number elements. 
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 Proof is direct and hence left as an exercise to the reader. 

 

Next we proceed onto describe the two types of MOD 

neutrosophic dual number semigroups under ×. 

 

Example 2.65: Let  

S = {〈[0, 6)g〉I, ×} = {[0, 6)g, g

0I , 
g

tgI ; t ∈ [0, 6), ×} be a MOD 

natural neutrosophic dual number semigroup. S has infinite 

number of zero divisor, all elements in S are such that they are 

nilpotent elements of order two.  

 

Infact S is a zero square semigroup. Every set with zero 

MOD zero 
g
0I  in S finite or infinite is an ideal.  

 

These semigroups have several such special properties. S is 

not a S-semigroup. 

 

Example 2.66: Let S = {〈[0, 11)g〉I, g
2
 = 0, ×} be the MOD 

natural neutrosophic dual number semigroup. 

 

S is a zero square semigroup.  

 

Every subset of S with 0 and g
0I  are ideals of S.  

 

In view of this we have the following theorem. 

 

THEOREM 2.12: Let S = {〈[0, n)g〉I; g
2
 = 0, ×} be the MOD 

neutrosophic dual number interval semigroup. 

 

i. S is never a S-semigroup. 

ii. S is a zero square semigroup. 

iii. Every proper subset with 0 and g
0I  are always 

ideals. 

iv. S has subsemigroups both of finite and infinite 

order. 

v. S has ideals of both finite and infinite order. 
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 Proof is direct and hence left as an exercise to the reader. 

 

Now we give semigroups of MOD neutrosophic dual number 

semigroups got from the set  

 

P = {〈[0, n) ∪ g〉I, ×}.  

 

Clearly  M = {〈[0, 3) ∪ g〉I, ×}  

 

= {[0, 3), [0, 3)g, [0, 3) + [0, 3)g, 
g

xI , g

xgI , 
g

t sgI
+

 where x, y 

∈ [0, 3);  t, s ∈ [0, 3) and t + sg is either a zero divisor or an 

idempotent or a pseudo zero divisor; ×} is a MOD neutrosophic 

dual number semigroup of infinite order. 

 

S = {〈[0, 3)g〉I, ×} ⊆ M. Thus M has higher cardinality. 

Clearly M is not a zero square semigroup.  

 

First we will provide examples of them. 

 

Example 2.67: Let S = {〈[0, 8) ∪ g〉I, ×} be the MOD 

neutrosophic dual number semigroup. 

 

S = {[0, 8), [0, 8)g, g
xgI ; x ∈ [0, 8), 

g

s tgI
+

 with s + tg a 

nilpotent or a zero divisor or a pseudo zero divisor or an 

idempotent, g
2
 = 0, ×}.  

 

S is not a zero square semigroup as  

 

(3 + 5g) × (2 + 3g) = 6 + 10g + 9g (mod 8) 

 

= 6 + 3g ≠ 0. 

 

Thus in general S is not a zero square semigroup. S has zero 

divisors and units; for α = 1 + 4g is such that α
2
 = 1.  

 

Study of the substructure is an interesting task.  
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 Consider P1 = {[0, 8), ×} is subsemigroup of S which is not 

an ideal.  

 

P2 = {[0, 8)g, ×} is a subsemigroup which is a zero square 

subsemigroup.  

 

P3 = Z8 ⊆ S is a finite subsemigroup of S.  

 

P4 = Z8g ⊆ S is a finite subsemigroup of S such that  

P4 × P4 = {0} so is a zero square subsemigroup of S.  

 

Several other interesting properties of S can be derived. 

 

Example 2.68: Let S = {〈[0, 13)g〉I, g
2
 = 0, ×} be the MOD 

neutrosophic dual number semigroup. 

 

This S also has zero square subsemigroups of both finite 

and infinite order.  

 

However S is not a zero square subsemigroup.  

 

P1 = {[0, 13)g, ×} is a zero square subsemigroup of S as  

P1 × P1 = {0}.  

 

P2 = {Z13g | g
2
 = 0, ×} is again a zero square subsemigroup  

of S as P2 × P2 = {0}. 

 

Clearly S is a S-semigroup as {Z13 \ {0}, ×} is a group of 

order 12.  

 

P3 = {〈Z13 ∪ g〉 | g
2
 = 0, ×} is only a subsemigroup of S 

which is not a zero square subsemigroup but P3 is a S-

subsemigroup of S.  

 

P4 = {〈[0, 13) ∪ g〉 | g2
 = 0, ×} is a subsemigroup of S which 

is a S-subsemigroup of S but is not a zero square subsemigroup. 

 

In view of all these we have the following theorem. 
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THEOREM 2.13: Let S = {〈[0, n) ∪ g〉I, g

2
 = 0, ×} is a natural 

neutrosophic dual number semigroup. 

 

i. S is a S-semigroup if and only if Zn is a S-semigroup. 

ii. S is not a zero square semigroup. 

iii. S has subsemigroup of finite order which is a zero 

square subsemigroup. 

iv. S has subsemigroups of infinite order which is a zero 

square subsemigroup. 

v. S has nilpotent elements of order two. 

vi. S has zero divisors other than nilpotents of order two. 

 

Proof is direct and hence left as an exercise to the reader. 

 

Next we proceed onto describe the notion of MOD 

neutrosophic dual number semigroup under product got by 

defining product on S = {〈〈[0, n)g〉I, +〉}.  

 

We will illustrate this situation by some examples. 

 

Example 2.69: Let  

S = {〈〈[0, 6)g〉I, +〉, ×} = {[0, 6)g, g

0I , g g

2 agI , I ; x ∈ [0, 6), g

bgI , 

g

a bgI
+∑

 
is such that it a pseudo idempotent a, b ∈ [0, 6)} is a 

MOD neutrosophic dual number semigroup. S is a S-semigroup 

as Z6 is a S-semigroup.  

 

S has infinite number of MOD neutrosophic elements some 

of which are MOD neutrosophic zero divisors and some are MOD 

neutrosophic idempotents and some of them are MOD 

neutrosophic pseudo zero divisors. 

 

This semigroup is different than the earlier MOD 

neutrosophic dual number semigroups. 
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 Example 2.70: Let S = {〈[0, 10)g, +〉, ×} be the MOD 

neutrosophic dual number semigroup. 

 

S = {[0, 10)g, g

0I , g

mgI , 
t

g

mg

i 0

I
=

∑ ; t = 2, 3, 4, …, ∞, ×} is a 

semigroup. Every element is nilpotent of order two.  

 

So S is a zero square semigroup and not a S-semigroup  

 

 

x = ( )g g g

0.5g 7.3g 6.332gI I I+ +  and  

 

y = 
g

9.331gI  + 
g

0.3389gI  ∈ S. x × y = g

0I   

 

is a MOD neutrosophic zero divisor. 

 

In view of this we have the following theorem. 

 

THEOREM 2.14: Let S = {〈[0, n)g, +〉I, g
2
 = 0, ×} be the MOD 

neutrosophic dual number semigroup. 

 

i. S is a zero square semigroup. 

ii. S is not a S-semigroup. 

iii. P = {〈[0, g〉I, +} ⊆ S is a subsemigroup of infinite order 

which is also an ideal of S. 

iv. S has subsemigroups P of finite order which are ideals 

provided 0 and g
0I  are in P. 

 

Proof is direct and hence left as an exercise to the reader. 

 

Example 2.71: Let S = {〈〈[0, 8) ∪ g〉, +〉I, ×, g
2
 = g} be the MOD 

neutrosophic dual number semigroup. 
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 Clearly S is not a zero square semigroup. S has 

subsemigroups which are not ideals. S has subsemigroups of 

finite order which are not ideals.  

 

Thus α = ( )g g g

0.5g 7.5g 2gI I I+ +  and  

 

β = ( )g g

4g 7gI I 3+ +  ∈ S. α × β ≠ g

0I .  

 

So every pair does not in general contribute to zero divisor.  

 

However P1 = {[0, 8), ×} is a subsemigroup of infinite order 

which is not an ideal.  

 

P2 = {[0, 8)g, ×} is a subsemigroup of infinite order which 

is not an ideal by P2 × P2 = 0.  

 

P3 = {Z8, ×} is a subsemigroup of finite order.  

 

P4 = {Z8g, ×} is a subsemigroup of finite order.  

 

P5 = {〈Z8 ∪ g〉, ×} is a subsemigroup of finite order.  

 

P6 = {〈Z8 ∪ g〉I, ×} is a natural neutrosophic subsemigroup 

of finite order.  

 

P7 = { I

8Z , ×} is also a natural neutrosophic subsemigroup of 

finite order.  

 

P8 = {〈 I

8Z 〉+, ×} is also a finite natural neutrosophic 

subsemigroup of finite order P7 
≠
⊂  P8. 

Example 2.72: Let S = {〈〈[0, 11) ∪ g〉I, +〉, g
2
 = 0, ×} be  a MOD 

natural neutrosophic dual number semigroup.  

 

S is a S-semigroup as P1 = {Z11 \ {0}, ×} is a group. 

 

P2 = {Z11g, ×} is a zero square subsemigroup.  
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P3 = {〈Z11 ∪ g〉, ×} is a subsemigroup.  

 

P4 = {[0, 11), ×} is a subsemigroup of S of infinite order.  

 

P5 = {[0, 11)g, ×} is a subsemigroup of S of infinite order 

which is a zero square subsemigroup.  

 

P6 = {〈[0, 11) ∪ g〉, ×} is a subsemigroup of infinite order.  

 

P7 = {〈[0, 11)I, ×〉} is a MOD neutrosophic subsemigroup of 

infinite order.  

 

P8 = {〈 I

11Z 〉, ×} is a natural neutrosophic subsemigroup.  

 

P9 = {〈Z11 ∪ g〉I, ×} is a natural neutrosophic subsemigroup.  

 

P10 = {
I

11Z g, ×} is a natural neutrosophic subsemigroup.  

 

P11 = {〈[0, 11)g〉I} is a MOD neutrosophic subsemigroup. 

 

Thus these MOD neutrosophic semigroups has special 

features very much different from other semigroups. 

 

Example 2.73: Let S = {〈〈[0, 18) ∪ g〉I, +〉, ×} be the MOD 

natural neutrosophic dual number semigroup. S is of infinite 

order. 

 

S has infinite number of zero divisors and MOD 

neutrosophic zero divisors.  

 

S has finite subsemigroups as well as infinite 

subsemigroups. S is a S-semigroup if and only if Zn is a S-

semigroup. 

 

THEOREM 2.15: Let S = {〈〈[0, n) ∪ g〉I, +〉, ×} be the MOD 

neutrosophic dual number semigroup. The following are true. 
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 i. S is a S-semigroup if and only if Zn is a S-

semigroup. 

ii. S has finite order subsemigroups. 

iii. S has infinite number of zero divisors and nilpotents 

of order two. 

iv. S has infinite number of MOD neutrosophic zero 

divisors and MOD neutrosophic nilpotents of order 

two. 

v. S has infinite order subsemigroup. 

 

Proof is direct and hence left as an exercise to the reader. 

 

Next the notion of MOD natural neutrosophic semirings are 

analysed.  

 

We will illustrate this by an example. 

 

Example 2.74: Let S = {〈[0, n) ∪ g〉I, +, ×} be the MOD natural 

neutrosophic dual number semiring.  

 

We can define P = {〈[0, n)g〉I, +, ×} be the MOD natural 

neutrosophic dual number semiring.  

 

Both S and P are semirings. Infact P ⊆ S is a subsemiring.  

 

We will develop this through examples. 

 

Example 2.75: Let S = {〈[0, 20)g〉I, g
2
 = 0, +, ×} be a MOD 

neutrosophic dual number semiring. 

 
g

18gI , 
g

19gI  ∈ S 

 
g

18gI
 
× 

g

19gI  = g

0I . 

 

Thus S has MOD neutrosophic dual number zero divisors.  
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 g g g

5 5 5I I I× =  is a MOD neutrosophic dual number 

idempotents.  

 

Infact this semiring is a zero square semiring. Every 

additive subsemigroup P or subsemiring P is a zero square 

semiring provided P contains 0 and g

0I  is an ideal.  

 

Thus every subsemiring is an ideal. 

 

Example 2.76: Let S = {〈[0, 23)g〉I, +, ×, g
2
 = 0} be the MOD 

natural neutrosophic dual number semiring.  

 

S is not a S-semiring. Every subsemiring which contains g

0I  

is an ideal for every subsemiring contains 0. 

 

Example 2.77: Let S = {〈[0, 42)g〉I, g
2

 = 0, +, ×} be the MOD 

natural neutrosophic dual number semiring. This semiring is not 

a S-semiring.  

 

Z42g is a subsemiring but is not an ideal. If P =  (Z42g ∪ g
0I ) 

then P is an ideal.  

 

In view of this the following theorem is proved. 

 

THEOREM 2.16: Let S = {〈[0, n)g〉I, g
2
 = 0, +, ×} be the MOD 

natural neutrosophic dual number semiring. 

 

i. S is not a S-semiring. 

ii. S is a zero square semiring. 

iii. Every subsemiring P is an ideal of S if g
0I

 
is in P. 

 

Proof is direct and hence left as an exercise to the reader. 

 

Next we describe the MOD natural neutrosophic dual 

number semiring which are not zero square semiring. 
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 Example 2.78: Let S = {〈[0, 12) ∪ g〉I, g
2
 = 0, +, ×} be the MOD 

natural neutrosophic dual number semiring.  

 

S is not a zero square semiring as x = 10.32 in S is such that 

x × x = x
2
 ≠ 0. So S in general is not a zero square semiring.  

 

Let x = g

3I  and y = 
g

2gI   

 

x × y = 
g

6gI  ≠ g

0I . Thus S is not a zero square semiring. S has 

subsemirings which are not ideals. For Z12 is a subsemiring 

which is not an ideal.  

 

Likewise 〈Z12 ∪ g〉 is a subsemiring of S which is not an 

ideal.  

 

S has zero divisors MOD neutrosophic zero divisors, S has 

idempotents as well as MOD neutrosophic idempotents and S has 

nilpotents as well as MOD neutrosophic nilpotents. 

 

For 3 × 8 = 0 and g

3I  × g
8I  = g

0I , 
g

10gI  × 
g

2gI  = g

0I ,  

g

5gI  × 
g

5gI  = g

0I , 2g × 11g = 0 this accounts for some zero 

divisors in S.  

 

Let 
g

6gI  × 
g

6gI  = g

0I  is a MOD neutrosophic nilpotent of order 

two. g

xgI  × g

xgI  = g

0I  for all x ∈ [0, 12) thus S has infinitely many 

MOD neutrosophic nilpotents of order two. 6 × 6 = 0 (mod 12) is 

a nilpotent in [0, 12).  

 

Also g

4I  × g

4I  = g

4I  and g

9I  × g

9I  = g

9I  are both MOD 

neutrosophic idempotents of S.  

 

Clearly 4 × 4 = 4 (mod 12) and 9 × 9 ≡ 9 (mod 12) are 

idempotents of [0, 12). 

  

Next P = {[0, 12)g, +, ×} is a subsemiring which is a zero 

square subsemiring and is not an ideal of S.  
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Let P1 = {〈[0, 12)g〉I, +, ×} be the subsemiring which a zero 

square subsemiring but is not an ideal of S.  

 

P 
≠
⊂  P1 both are not ideals.  

 

In view of all these we have the following theorem. 

 

THEOREM 2.17: Let S = {〈[0, n) ∪ g〉I, g
2
 = 0, +, ×} be the MOD 

natural neutrosophic semiring. 

 

i. S has zero square subsemirings. 

ii. S has subrings so S is a SS-semiring. 

iii. S is a SSS-semiring if and only if Zn is a S-ring. 

iv. S has nilpotents of order two. 

v. S has MOD neutrosophic elements of order two. 

vi. S has zero divisors. 

vii. S has MOD neutrosophic zero divisors. 

viii. S has idempotents. 

ix. S has MOD neutrosophic idempotents. 

x. S has both finite order subsemirings as well infinite 

order subsemirings which are not ideals. 

 

Proof is direct and hence left as an exercise to the reader. 

 

Next we proceed onto describe natural neutrosophic special 

quasi dual number sets and properties enjoyed by them with 

additional operations on defined on this set. 

 

Example 2.79: Let  

S = { I

10Z h; h
2
 = h, 0,

 
h

0I , 
h

hI , 
h

2hI , …, h

9hI } be a natural 

neutrosophic special dual like number set. 
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 Example 2.80: Let  

S = { I

19Z h, h
2
 = h, h

0I , 
h

hI , 
h

2hI , …, h
18hI , 0, h, 2h, 3h, … 18h} be 

the natural neutrosophic special dual like number set. 

 

We can define the two basic operations + and × on S.  

 

We will first illustrate this by some examples before the 

properties enjoyed by them are enumerated. 

 

Example 2.81: Let S = { I

15Z h, h
2
 = h, 0, 1h, 2h, …, 14h, h

0I , 
h

hI , 
h

2hI , h

3hI , …, 
h

14hI , ×} be the natural neutrosophic special dual 

like number semigroup. 

 

Clearly 5h × 3h = 0, 10h × 10h = 10h are zero divisors. 

 
h

6hI  × h

5hI  = h

0I  and  

 
h h h

10h 6h 0I I I× =  are neutrosophic zero divisors. 

 
h h h

9h 9h 16hI I I× =
   

h h h

4h 4h hI I I× =
 

 
h h h

6h 6h 6hI I I× =         … I 

 
h h h

7h 7h 4hI I I× =
   

h h h

10h 10h 10hI I I× =   … II 

 

It is easily verified I and II are natural neutrosophic 

idempotents.  

 

P1 = Z15h ⊆ S is a subsemigroup of S and is not an ideal of 

S. 

 

P2 = {0, 3h, 6h, 9h, 12h} ⊆ S is also a subsemigroup of S 

which is not an ideal.  
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 P3 = {0, h

3hI , h

6hI , h

9hI , 
h

12hI , h

0I } ⊆ S is again an ideal of S  

as 3h × 
h
hI  = 

h
hI  for the product of any element which is not a 

neutrosophic element has no effect on that neutrosophic element 

and the neutrosophic element remain the same. 

 

Example 2.82: Let M = {
I

24Z h | h
2
 = h, ×} be the natural 

neutrosophic special dual like number semigroup.  

 

Z24, Z24h are subsemigroups which are not ideals. 

 

12h × 4h = 0, 12h × 6h = 0, 12h × 12h = 0, 7h × 7h = h, 3h 

× 8h = 0, 4h × 12h = 0 and so on can contribute to zero divisors. 

 
h h h

10h 12h 0I I I× =
  

h h h

4h 6h 0I I I× =  and  

 
h h h

9h 8h 0I I I× =  are neutrosophic zero divisors. 

 
h h h
16h 16h 0I I I× =  is a neutrosophic idempotent. 

 
h h h
9h 9h 9hI I I× = ,  h h h

20h 12h 0I I I× =  

 
h h h

6h 8h 0I I I× =
  

h h h

12h 12h 0I I I× =   

 

is a neutrosophic nilpotent.  

 

Now we have the following which behaves differently from 

the above two examples. 

 

Example 2.83: Let S = { I

7Z h, ×} = {0, h, 2h, 3h, 4h, 5h, 6h, h

0I , 
h

hI , 
h

2hI , h

3hI , 
h

4hI , h

5hI , h

6hI , ×} be the natural neutrosophic 

special dual like number semigroup. 

 

Clearly this semigroup has no zero divisors and no 

neutrosophic zero divisors. This has only two subsemigroups  
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 P1 = {0, h, 2h, 3h, 4h, 5h, 6h} and  

 

P2 = { h

0I , 
h

hI , 
h

2hI , h

3hI , 
h

4hI , h

5hI , h

6hI }.  

 

In view of all these we have the following theorem. 

 

THEOREM 2.18: Let S = {
I

nZ h, h
2
 = h, ×} = {0, h, 2h, …,  

(n – 1)h, 
h

0I ,
h

hI , 
h

2hI , …, 
h
(n 1)hI − , ×} be the natural neutrosophic 

special dual like number semigroup. 

 

i. S has zero divisors and neutrosophic zero divisors if 

and only if n is not a prime. 

ii. S has more than two subsemigroups if and only if n 

is not a prime. 

iii. S has nilpotents of order two and neutrosophic 

nilpotents of order two if and only if n is not a 

prime. 

iv. S has idempotents other than h if and only if n is not 

a prime. 

 

Proof is direct and hence left as an exercise to the reader. 

 

Next we proceed onto describe neutrosophic special dual 

like number semigroup using 
I

nZ h. 

 

Example 2.84: Let S = {〈Z6 ∪ h〉I, ×} = {0, 1, 2, 3, 4, 5, h, 2h, 

3h, 4h, 5h, 1 + h, 2 + h, 3 + h, 4 + h, 5 + h, 1 + 2h , 2 + 2h , 3 + 

2h, 4 + 2h , 5 + 2h , 1 + 3h, 2 + 3h, 3 + 3h , 4 + 3h, 5 + 3h, 1 + 

4h, 2 + 4h, 3 + 4h, 4 + 4h, 5 + 4h, 1 + 5h, 2 + 5h, 3 + 5h, 4 + 5h, 

5 + 5h, h

0I , 
h

hI , 
h

2hI , h

3hI , 
h

4hI , h

5hI , 
h

2I , h

3I , h h h

2 2h 3 3h 4 4hI , I , I ,
+ + +
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 h h h h h

2 4h 4 2h 3 h 1 3h 1 5hI , I , I , I , I
+ + + + +

, …, ×} is a semigroup of natural 

neutrosophic special dual like number. 

Clearly S has zero divisors, neutrosophic zero divisors, 

idempotents, neutrosophic idempotents.  

 

S has subsemigroups which are not ideals. 2h × 3h = 0, 2 × 

3h = 0, 3 × 4 = 0, 3h × 4 = 0, 4h × 3 = 0, 2h × 3 = 0 and so on.  

 

4 × 4 = 4, 3 × 3 = 3, 4h × 4h = 4h, 3h × 3h = 0, h × h = h,  

 
h

hI  × 
h

hI  = 
h

hI , h

3hI  × h

3hI  = h

3hI , 
h

4hI  × 
h

4hI  = 
h

4hI ,  

 
h

1 5hI
+

 × 
h

1 5hI
+

 = 
h

1 5hI
+

, 
h

1 3hI
+

 × 
h

1 3hI
+

 = 
h

1 3hI
+

,  

 
h

3hI  × 
h

4I  = h

0I , 
h

4hI  × h

3I  = h

0I , 
h

3 3hI
+

 × 
h

4hI  = h

0I .  

 

So has zero divisors and neutrosophic zero divisors. Z6 is a 

subsemigroup of S. 〈Z6 ∪ h〉 is again a subsemigroup of S. I
6Z  is 

a natural neutrosophic subsemigroup of S.  

 

Z6h is also a subsemigroup of S. I
6Z h is a neutrosophic 

subsemigroup of S. None of these are ideals of S. 

 

Example 2.85: Let S = {〈Z5 ∪ h〉I, ×} = {0, 1, 2, 3, 4, h, 2h, 3h, 

4h, 1 + h, 1 + 2h, 3h + 1, 1 + 4h, 2 + h, 2 + 2h, 2 + 3h, 2 + 4h, 3 

+ h, 3 + 2h, 3 + 3h, 3 + 4h, 4 + h, 4 + 2h, 4 + 3h, 4 + 4h, 
h
0I , 

h

hI ,
h

2hI , h

3hI , 
h

4hI , …}. 

 

Finding zero divisors other than those  

 

1 + 4h × h = 0, 4 + h × h = 0, 2 + 3h × h = 0,  
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 2h + 3 × h = 0, 1 + 4h × 2h = 0, 1 + 4h × 3h = 0,  

 

1 + 4h × 4h = 0, h + 4 × 2h = 0, h + 4 × 3h = 0,  

 

h + 4 × 4h = 0, 2 + 3h × 2h = 0, 3 + 2h × 2h = 0,  

 

2 + 3h × 3h = 0, 3 + 2h × 3h = 0, 2 + 3h × 4h = 0,  

 

3 + 2h × 4h = 0  are zero divisors of S. 
h h h

1 4h 4 h 3 2hI , I , I
+ + +

 

and 
h

2 3hI
+

 multiplied by 
h

hI ,
h

2hI , h

3hI  and 
h

4hI  lead to 

neutrosophic zero divisors. Z5 \ {0} is a group so S is S-

semigroup. 

 

Example 2.86: Let S = {〈Z12 ∪ h〉I, h
2
 = h, ×} = {0, 1, 2, …, 11, 

h, 2h, 3h, …, 11h, 1 + h, 2 + h, …, 11 + h, 2 + 2h, 1 + 2h, …, 2h 

+ 11, …, 11 + 11h, h

0I , h

3I , 
h

4I , 
h

2I , h

6I , h

8I , h

10I , h

9I ,
h

hI ,
h

2hI , …, 

h

11hI , 
h

2 2hI
+

, 
h

4 4hI
+

, …, 
h h h h
10 10h 1 11h 2 10h 3 9hI , I , I , I ,+ + + + …, 

h

6 6hI
+

, 

…} be the natural neutrosophic special dual like number 

semigroup. 

 

S has zero divisors, idempotents and nilpotents of order two 

as well as neutrosophic zero divisor, neutrosophic idempotents 

and neutrosophic nilpotents of order two. S has subsemigroups 

and ideals.  

 

We prove the following theorem. 

 

THEOREM 2.19: Let S = {〈Zn ∪ h〉I, h
2
 = h, ×} be the natural 

neutrosophic special dual like number semigroup. 

 

i. S is a S-semigroup if and only if Zn is a S-

semigroup. 

ii. S has zero divisors and neutrosophic zero 

divisors even if n is a prime. 

iii. S has idempotents and neutrosophic 

idempotents. 

iv. S has subsemigroups which are not ideals. 
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Proof is direct and hence left as an exercise to the reader. 

 

Next we describe the operation of ‘+’ addition on S. 

 

Example 2.87: Let  

S = { I

6Z h, +} = {0, 1h, 2h, 3h, 4h, 5h, h

0I , 
h

hI , 
h

2hI , h

3hI , 
h

4hI , h

5I , 

h + h

0I , 2h + h

0I , …, 3h + h

0I  + 
h

hI  + 
h

2hI  + h

3hI  + 
h

4hI  +  h

5hI , …, 

+} be the natural neutrosophic special dual like number a 

semigroup. S is semigroup.  

 
h

hI  + 
h

hI  = 
h

hI , 
h

4hI  + 
h

4hI  = 
h

4hI , so this is only an 

idempotent.  

 

{Z6h, +} is a group so S is a S-semigroup. 

 

Example 2.88: Let S = { I

19Z h, +} be the natural neutrosophic 

special dual like number semigroup. S is a S-semigroup.  

 

S has subsemigroups. S has idempotents. 

 

In view of this we have the following theorem. 

 

THEOREM 2.20: Let S = {
I
nZ h | h

2
 = h, +} be the natural 

neutrosophic special dual like number semigroup. 

 

i. S is a S-semigroup. 

ii. S has neutrosophic idempotents. 

iii. S has subsemigroups. 

 

Proof is direct and hence left as an exercise to the reader. 

 

Next we describe 〈Zn ∪ h〉I under addition by some 

examples. 
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 Example 2.89: Let S = {〈Z9 ∪ h〉I, h
2
 = h, +} be the natural 

neutrosophic special dual like number semigroup.  

 

S has subgroups given by Z9 and 〈Z9 ∪ h〉 so S is a  

S-semigroup both Z9 and 〈Z9 ∪ h〉 subgroups of S under +.  

 

 
h

0I , h

3hI , h

3I , h

6I , h

6hI  are some of the idempotents in S;  

 

for h

3I  + h

3I  = h

3I , h

6hI  + h

6hI  = h

6hI  and so on.  

 

Example 2.90: Let S = {〈Z17 ∪ h〉I, h
2
 = h, +} be the natural 

neutrosophic special dual like number semigroup.  

 

S is a S-semigroup.  

 
h

0I  + h

0I  = h

3hI  + h

3hI  = h

3hI  and so on. 

 

In view of this we have the following theorem. 

 

THEOREM 2.21: Let S = {〈Zn ∪ h〉I, h
2
 = h, +} be the natural 

neutrosophic special dual like number semigroup. 

 

i. S is a S-semigroup. 

ii. S has several additive idempotents. 

iii. S has subsemigroups if Zn has proper  

 subsemigroups which are not groups. 

 

Proof is direct and hence left as an exercise to the reader. 

 

Next we study {
I

nZ h} and {〈Zn ∪ h〉I} under + and ×.  

 

We will illustrate this situation by some examples. 
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 Example 2.91: Let S = {
I

12Z h, h
2
 = h, +, ×} be the neutrosophic 

special dual like number semiring. S has zero divisors, 

idempotents and nilpotents of order two.  

 

S has also neutrosophic special dual like zero divisors, 

idempotents and nilpotents of order two. 

 

3h × 4h = 0, 3 × 4h = 0, 6 × 6h = 0 are zero divisors.  

 

6h × 4 = 0, 6h × 6h = 0, 6 × 6 = 0 nilpotent of order two.  

 

4 × 4 = 4, 9 × 9 = 9 are idempotents. 

 
h

6I  × h

6I  = h

0I , h

6hI  × h

6hI  = h

0I  is the neutrosophic nilpotent 

elements of order two. 

 
h

4I  × h

3hI  = h

0I , h

8hI  × h

3I  = h

0I , h h

6 4I I×  = h

0I  are some 

neutrosophic zero divisors of S. 

 

Finally 
h

4I  × 
h

4I  = 
h

4I , h

9I  × h

9I  = h

9I , 
h

4hI  × 
h

4hI  = 
h

4hI  and  

 
h

9hI  × h

9hI  = h

9hI  are neutrosophic idempotents of S.  

 

Every subset with h

0I  and 0 is not a subsemiring. 

 

Clearly S is SS-semiring as Z12 is a subring.  

 

S is  

SSS-semiring as P = {0, 4, 8} is a field. S has subsemirings 

which are not ideals. 

 

Example 2.92: Let S = { I

19Z h, h
2
 = h, + and ×} be the natural 

neutrosophic semiring.  

 

S is SSS-semiring as well as SS-semiring. 

 

Further 15 + 4h × h = 0,  
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3 + 16h × h = 0,  

 

10 + 9h × 5h = 0 are zero divisors of S.  

 

h × h = h is an idempotent 
h

hI  × 
h

hI  = 
h

hI  is a neutrosophic 

idempotent and 
h

10 9hI
+

 × h

5hI  = h

0I ,  

 
h

(4h 15)I
+

 × h

6hI  = h

0I  and so on are neutrosophic zero divisors 

and idempotents of S. 

 

In view of this we prove the following theorem. 

 

THEOREM 2.22: Let S = {
I
nZ h | h

2
 = h, +, ×} be the natural 

neutrosophic semiring. 

 

i. S is a SS-semiring. 

ii. S is a SSS-semiring if and only if Zn is a S-ring. 

iii. S has zero divisors as well as neutrosophic zero 

divisors. 

iv. S has idempotents and neutrosophic idempotents. 

v. S has neutrosophic nilpotents if and only if Zn has 

nilpotents of order two. 

 

Proof is direct and hence left as an exercise to the reader. 

 

Next we illustrate this situation by some examples. 

 

Example 2.93: Let S = {〈Z24 ∪ h〉I, h
2
 = h, +, ×} be the natural 

neutrosophic semiring.  

 

S is a SS-semiring as Z24 is a ring under + and ×. S is a SSS-

semiring as Z24 is a S-ring. 
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 S has zero divisors and neutrosophic zero divisors. S has 

idempotents as well as neutrosophic idempotents.  

 

S has nilpotents of order two as well as neutrosophic 

nilpotents of order two. 

 
h

12I × 
h

12I  = h

0I , 
h

12I  × 
h

12I  = h

0I ,  

 
h

6hI  × 
h

4I  = h

0I , h h

6 3I I×  = h

0I   

 

are some neutrosophic nilpotents and neutrosophic zero 

divisors. 

 

Example 2.94: Let S = {〈Z13 ∪ h〉I, h
2
 = h, +, ×} be the natural 

neutrosophic semiring. S has zero divisors and idempotents. 

 

S is a SSS-semiring as Z13 is a field and a SS-semiring as 

〈Z13 ∪ h〉 is a ring. 

 
h h

(12 h) hI I
+

×  = h

0I  and  

 
h h

(6h 7) 4hI I
+

×  = h

0I  are neutrosophic zero divisors. 

 

6h + 7 × 4h = 0 and (12 + h) × h = 0. 

 

THEOREM 2.23: Let S = {〈Zn ∪ h〉I, h
2
 = h, +, ×} be the natural 

neutrosophic semiring. 

 

i. S is a SS-semiring. 

ii. S is a SSS-semiring if and only if Zn is a S-ring. 

iii. S has zero divisors as well as neutrosophic zero 

divisors. 

iv. S has idempotents as well as neutrosophic idempotents. 

 

Proof is direct and hence left as an exercise to the reader. 
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 Next we proceed onto develop MOD neutrosophic special 

dual like number sets and the algebraic structures which can be 

defined on them. 

 

Example 2.95: Let S = {
I
[0, 3)h, h

2
 = h} be the MOD 

neutrosophic special dual like number set.  

 

S = {ah, h

ahI ; ah ∈ [0, 3)h}. S is of infinite cardinality. 

 

Example 2.96: Let P = {
I
[0, 12)h | h

2
 = h} be the natural 

neutrosophic special dual like number set. 

 

Example 2.97: Let B = {
I
[0, 14)h, h

2
 = h} be the natural 

neutrosophic special dual like number set. 

 

We can define operations + and × on P.  

 

We will illustrate the product operation on this set. 

 

Example 2.98: Let S = {
I
[0, 10)h, h

2
 = h, ×} be the MOD 

neutrosophic special dual like number semigroup.  

 

o(S) = ∞. S has zero divisors and MOD neutrosophic zero 

divisors. 

 
h
2hI

 
× h h

5h 0I I=  is a MOD zero divisor. h
5hI  × h

5hI  = h
5hI  is a 

MOD idempotent.  

 
h

hI  × 
h

hI  = 
h

hI , h

5hI  × h

5hI  = h

0I  and so on. 

 

Clearly this semigroup has no nilpotents.  

 

Infact h h h

0.9h 0.6h 0.54hI I I× = ; this is the way product operation 

is performed on MOD neutrosophic numbers. 
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 Example 2.99: Let  

 

S = {
I
[0, 11)h, ×, h

2
 = h} be the MOD natural neutrosophic 

special dual like number semigroup. 

 

S is not a S-semigroup. S has zero divisors and MOD natural 

neutrosophic zero divisors. 

 
h h h

5.5h 2h 0I I I× = ,
   

h h h

5.5h 4h 0I I I× = , 

 
h h h

2.75h 4 0I I I× =   

 

and so on are some of the MOD neutrosophic zero divisors of S.  

 

 Now we can prove the following theorem. 

 

THEOREM 2.24: Let S = {
I
[0, n)h | h

2
 = h, ×} be the MOD 

natural neutrosophic special dual like number semigroup. 

 

i. S has zero divisors and MOD neutrosophic zero divisors 

which are infinite in number. 

ii. S has nilpotents if Zn has nilpotents. 

iii. S has idempotents and MOD neutrosophic idempotents. 

 

Proof is simple and direct hence left as an exercise to the 

reader. 

 

Next sum on 
I
[0, n)h is defined and their properties are 

analysed. 

 

Example 2.100: Let S = {
I
[0, 6)h, h

2
 = h, +} be the MOD 

neutrosophic special dual like number semigroup.  

 

S is of infinite order.  

 

S has idempotents for h

ahI  + h

ahI  = h

ahI  for every ah ∈ [0, 6)h. 
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 Clearly S is a S-semigroup as {Z6h, +} is a group under +. 

 

Example 2.101: Let S = {
I
[0, 19)h; h

2
 = h, +} be the MOD 

neutrosophic special dual like number semigroup.  

 

S is a S-semigroup. S is of infinite order and has infinite 

number of MOD neutrosophic idempotents;  

 

like h

ahI  + h

ahI = h

ahI  for all ah ∈ [0, 19)h. 

 

In view of this we have the following theorem. 

 

THEOREM 2.25: Let S = {
I
[0,n)h, h

2
 = h, +} be the MOD 

neutrosophic special dual like number semigroup. Then the 

following are true. 

 

i. S is a S-semigroup. 

ii. S has infinite number of idempotents. 

 

Next we proceed onto study the notion of semigroup built 

using S = {
I
[0, n)h, +}. 

 

Example 2.102: Let  

 

S = {
I
[0, 6)h, +} = {[0, 6)h, 

ah

ah [0, 6)

I
∈

∑ , 

 

this summation runs over 2 elements, 3 elements so on upto 

infinite number of terms, +} ×} be a MOD neutrosophic special 

dual like number semigroup. 

 

Example 2.103: Let S = {
I
[0, 28)h, h

2
 = h, +}, ×} be a MOD 

neutrosophic special dual like number semigroup.  

 

S is of infinite order. S has infinite number of zero divisors 

and MOD neutrosophic zero divisors. 

 

In view of this we have the following theorem. 
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THEOREM 2.26: Let S = {

I
[0,n)h, h

2
 = h, +}, ×} be the MOD 

neutrosophic special dual like number semigroup. 

 

i. S is a S-semigroup if and only if Zn is a S-semigroup. 

ii. S is of infinite order. 

iii. S has infinite number MOD neutrosophic numbers. 

 

Proof follows directly from the definition. 

 

Example 2.104: Let  

 

S = {〈I
[0, n)h, h

2
 = h, +〉, ×} be the MOD neutrosophic special 

dual like semigroup. 

 

S is of infinite order and S has infinite number of MOD 

neutrosophic number.  

 

Next we proceed onto describe MOD neutrosophic semiring 

S = {
I
[0, n)h, h

2
 = h, +, ×}.  

 

S is an infinite semiring which has infinite number of MOD 

neutrosophic elements. 

 

Example 2.105: Let S = {
I
[0, 12)h, h

2
 = h, +, ×} be the MOD 

natural neutrosophic special quasi dual number semiring. 

 

S has zero divisor. S is a SS-semiring as Z12h ⊆ S is a ring. 

As P = {0, 4h, 8h} ⊆ S is a field so S is a SSS-semiring.  

 

S has several MOD neutrosophic zero divisors.  

 
h

1.2hI  × h

10hI  = h

0I , h

6hI  × h

6hI  = h

0I , h

8hI  × h

6hI  = h

0I  and so on. 

 

In view of all these we have the following theorem. 
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 THEOREM 2.27: Let S = {
I
[0, n)h, +, ×} be the MOD 

neutrosophic special dual like number semiring. 

 

 i. S is a SS-semiring. 

 ii. S is a SSS-semiring iff Znh is a S-ring. 

 iii. S has zero divisors and MOD neutrosophic zero  

  divisors. 

 iv. S has idempotents and MOD neutrosophic  

  idempotents. 

 

The proof is direct and hence left as an exercise to the 

reader. 

 

Next we study the semigroup built using 〈[0, n) ∪ h〉I,  
h

2
 = h. 

 

Example 2.106: Let  

S = {〈[0, 10) ∪ h〉I, h
2
 = h} be the MOD neutrosophic special 

dual like number set. 

 

Example 2.107: Let  

S = {〈[0, 15) ∪ h〉I, h
2
 = h} be the MOD neutrosophic special 

dual like number set. 

 

These sets are of infinite cardinality. 

 

Example 2.108: Let  

S = {〈[0, 14) ∪ h〉I, h
2
 = h, ×} be the MOD natural neutrosophic 

special dual like number semigroup. 

 

o(S) = ∞, 7 × 2h = 0, 7h × 4h = 0, 7 × 8 = 0, 7h × 2 = 0. 

Thus S has zero divisors. h

7hI  × 
h

2hI  = h

0I , h

7I  × h

7I  = h

7I  is a 

MOD neutrosophic idempotent.  

 
h

3.5hI  × 
h

4I  = h

0I  is a MOD zero divisor. S has subsemigroups 

which are not ideals. 
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 Example 2.109: Let  

 

S = {〈[0, 11) ∪ h〉I, h
2
 = h, ×} 

 

be the MOD neutrosophic special dual like number semigroup.  

 

S has idempotents and zero divisor as well as neutrosophic 

idempotents as well as zero divisors. 

 

5.5h × 2 = 0, 5.5 × 2 = 0,  

 

5.5 × 2h = 0, 5.5h × 2h = 0,  

 

2.75 × 4 = 0, 2.75 × 4h = 0, 2.75h × 4 = 0, 2.75 × 8 = 0,  

 

2.75h × 4h = 0, 2.75 × 8h = 0.  

 

Further  

 
h

2I  × h

5.5I  = h

0I , h

2.75I  × h

8I  = h

0I ,   

 
h

2hI  × h

5.5I  = h

0I , h

8hI  × h

2.75I  = h
0I   

 

are some of the neutrosophic zero divisor. 

 

Z11 is a subsemigroup. Z11 \ {0} is a group so S is a S-

semigroup.  

 

In view of all these we have the following theorem. 

 

THEOREM 2.28: Let S = {〈[0, n) ∪ h〉I, h
2
 = h, ×} be the MOD 

neutrosophic special dual like semigroup. 

 

 i. S is a S-semigroup if and only if Zn is a  

  S-semigroup. 

 ii. S has idempotents and MOD neutrosophic  

  idempotents. 
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  iii. S has zero divisors and MOD neutrosophic zero  

  divisors. 

 

The proof is direct and hence left as an exercise to the 

reader. 

 

Next we proceed onto describe + operation on  

 

S = {〈[0, n) ∪ h〉i, h
2
 = h}. 

 

Example 2.110: Let  

 

S = {〈[0, 18) ∪ h〉I, h
2
 = h, ×, +} 

 

be the MOD neutrosophic special dual like semigroup.  

 

S has MOD neutrosophic idempotents for  

 
h

0.9hI  + h

0.9hI  = h

0.9hI . 

 

Let h

9hI  × 
h

2I  = h

0I , h

9I  × 
h

2I  = h

0I , h

9hI  × 
h

2hI  = h

0I . 

 

Example 2.111: Let  

 

V = {〈[0, 13) ∪ h〉I, h
2
 = h, ×, +} 

 

be the MOD neutrosophic special dual like number semigroup. 

 
h

6.5hI  + h

6.5hI  = h

6.5hI , h

6.5I  × 
h

2I  = h

0I  

 

this V has pseudo MOD neutrosophic zero divisors also  

 
h

12 hI
+

 × 
h

hI  = h

0I , 
h

10 3hI
+

 × 
h

2hI  = h

0I  

 

and so on are all MOD neutrosophic zero divisors.  
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 h

5h 8I
+

 × h

6hI  = h

0I  is again a MOD neutrosophic zero divisor. 

 

Example 2.112: Let  

 

M = {〈[0, 12) ∪ h〉I, h
2
 = h, ×, +} 

 

be the MOD neutrosophic special dual like semiring. 

 
h

6I  + h

6I  = h

6I , h

6I  × 
h

4I  = h

0I , 
h

4I  × h

3hI  = h

0I , 
h

4hI  × h

3hI  = h

0I  

and so on. 
h

4hI  ×  
h

4hI  =
h

4hI . 

 

THEOREM 2.29: Let S = {〈[0, n) ∪ h〉I, h
2
 = h, +} be the MOD 

neutrosophic special dual like semigroup. 

 

i. o(S) = ∞. 

ii. S is S-semigroup. 

iii. S has no idempotents but has only MOD neutrosophic 

idempotents. 

 

Proof follows from simple techniques. 

 

However if both + and × is defined then S = {〈[0, n) ∪ h〉I, 

h
2
 = h, +, ×} is the MOD neutrosophic special dual like semiring.  

 

We will illustrate this situation by some examples.  

 

Example 2.113: Let  

 

S = {〈[0, 20) ∪ h〉I, h
2
 = h, ×, +} 

 

be the MOD neutrosophic special dual like number semiring. S is 

SSS-semiring as P = {0, 4, 8, 12, 16} ⊆ S is a field with 16 as 

the multiplicative identity.  
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 The table for + and × are as follows: 

 

+ 0 4 8 12 16 

0 0 4 8 12 16 

4 4 8 12 16 0 

8 8 12 16 0 4 

12 12 16 0 4 8 

16 16 0 4 8 12 

 

 

P is a group under +. 

 

 

× 16 12 8 4 

16 16 12 8 4 

12 12 4 16 8 

8 8 16 4 12 

4 4 8 12 16 

 

is a group. 

 

Thus P is a field. So S is SSS-semiring. M = Z20 is a ring so 

S is a SS-semiring.  

 

S has idempotents, MOD neutrosophic idempotents and zero 

divisors. 

 

Example 2.114: Let  

 

S = {〈[0, 12) ∪ h〉I, h
2
 = h, +, ×} 

 

be the MOD neutrosophic special dual like number semiring.  

 

P = {0, 4, 8} ⊆ S is a field. So S is a SSS-semiring. S is also 

a  SS-semiring.  

 

All interesting and special elements in S can be obtained. 
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For h

3hI  × 
h

4hI  = 
h
0I ,

h

2hI  × h

6hI  = h

0I ,   

 
h

6hI  × h

6hI  = h

6hI  and so on.  

 
h

4I  × 
h

4I  = 
h

4I , h

9I  × h

9I  = h

9I .  

 

Thus S has MOD neutrosophic zero divisors, nilpotents and 

idempotents. 

 

In view of all these the following result is true. 

 

THEOREM 2.30: Let S = {〈[0, n) ∪ h〉I, h
2
 = h, +, ×} be the MOD 

neutrosophic special dual like semigroup. 

 

  i. S is a SS-semiring. 

  ii. S is a SSS-semiring if and only if Zn is a S-ring. 

  iii. S has infinite number of MOD neutrosophic zero  

   divisors and zero divisors. 

  iv. S has MOD neutrosophic idempotents. 

  v. S has subsemiring of both finite and infinite order. 

 

Proof is direct and hence left as an exercise to the reader. 

 

Next we can now study the notion of natural neutrosophic 

special quasi dual numbers and MOD natural neutrosophic 

special quasi dual number.  

 

We first give one or two examples. 

 

Example 2.115: Let S = { I

10Z k, k
2
 = 9k} be the natural 

neutrosophic special quasi dual number set. 

 

S = {Z10k, 
k

kI , k

0I , 
k

2kI , …, k

9kI , k k k k k

2 4 6 8 5I , I , I , I , I }. 
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 Example 2.116: Let  

P = { I

7Z k, k
2
 = 6k} = {0, k, 2k, …, 6k, k

0I , 
k

kI , 
k

2kI , …, k

6kI } is 

the natural neutrosophic special quasi dual number set. 

 

On S = {
I

nZ k, k
2
 = n – 1} we can define both the operation 

+ and ×.  

 

S under + is a natural neutrosophic special quasi dual 

number semigroup.  

 

S under × is a natural neutrosophic special quasi dual 

number semigroup.  

 

We just enumerate a few of the properties associated with 

them. 

 

Example 2.117: Let S = {
I

12Z k, k
2
 = 11k, ×} is the natural 

neutrosophic special quasi dual like number semigroup. 

 

S has zero divisors and neutrosophic zero divisors.  

 
k k k

4k 3k 0I I I× = ,  k k k

6k 4k 0I I I× = , 

 
k k k

6k 2k 0I I I× =  and so on. 

 

3k × 4k = 0   3k × 3k = 3k 

 

4k × 4k = 8k  6k × 6k = 0 

 

5k × 5k = 11k  2k × 2k = 8k and 

 

8k × 8k = 8k. 

 

Thus 3k and 8k are idempotents and k k k

3k 3k 3kI I I× =  and 
k k k

8k 8k 8kI I I× =  are neutrosophic idempotents of S.  
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 k k k k k k

3k 8k 0 6k 2k 0I I I , I I I× = × =  are neutrosophic zero divisor.  

 

Now we can define on S = {
I

nZ k, k
2
 = (n – 1)k, +} the plus 

operation S under + operation is only a semigroup known as the 

natural neutrosophic special quasi dual number semigroup.  

 

This will be illustrated just by an example. 

 

Example 2.118: Let S = { I
15Z k, k

2
 = 14k, +} be the natural 

neutrosophic special quasi dual number semigroup. 

 
k k k k k k

7k 7k 7k 3k 3k 3kI I I , I I I+ = + = , x = k k k

2k 4k 5kI I I+ +  

 

is the same it cannot be further reduced. Thus S has 

idempotents.  

 

These examples provide a nice collection of finite 

semigroup under + which has idempotents.  

 

Next the semigroup using the set S = {〈Zn ∪ k〉I,  

k
2
 = (n – 1)k}.  

 

S under × is a semigroup. S under + is a semigroup.  

 

We will illustrate this by examples. 

 

Example 2.119: Let S = {〈Z10 ∪ k〉I, k
2
 = 9k, ×} be the natural 

neutrosophic semigroup. 

 

5k × 3k = 5k, 5k × 5k = 5k is an idempotent and so on. 

 

(3 + 4k)2k = 6k + 8 × 9k  

                  = 8k 

 

(2 + 8k)k   = 2k + 8 × 9k 

                  = 4k 
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 (2 + 7k)k   = 2k + 63k 

                  = 5k and so on. 

 
k k k

5k 5k 5kI I I× =  is a neutrosophic idempotent of S.  

 
k k k

5k (2 4k) 0I I I
+

× =  is a neutrosophic zero divisors.  

 

Thus S has both zero divisors and neutrosophic zero 

divisors.  

 

Example 2.120: Let S = {〈Z12 ∪ k〉I, +} be the natural 

neutrosophic special quasi dual semigroup. 

 
k k k

6k 6k 6kI I I+ =  

 
k k

6k 6I I+  is the same.  

 
k k k k k k

6k 4 0 8k 3 0I I I , I I I× = × = . 

 

Example 2.121: Let S = {〈Z7 ∪ k〉I, k
2
 = 6k, ×} be the natural 

neutrosophic special quasi dual number semigroup. 

 
k k k

3k 3k 5kI I I× =  and so on. 

 
k k k k k k

3.5 2k 0 k k 6kI I I , I I I ,× = × =
  

 
k k k k k k k k k

(6 k) 2k 3k 3.5 4k 0 1.75k 4 0I I I , I I I , I I I
+

× = × = × = .  

 

Thus S has neutrosophic zero divisors. 

 
k k k
6k 6k 6kI I I× =  is a neutrosophic idempotent. 

 

Example 2.122: Let S = {〈Z5 ∪ k〉I, +} be the natural 

neutrosophic special quasi dual number semigroup. 
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 k k k k k

4 4 4 2 3I I I , I I x+ = + = cannot be further simplified.  

 

x = 3 + k k

3k 4kI I+  and y = 4 + k k

2 3I I+  ∈ S.  

 

x + y = 2 + k k k

3 4 2I I I+ + .  

 

This is the way + operation is performed on S.  

 

All properties in case of natural neutrosophic special quasi 

dual number semigroups can be derived as in case of natural 

neutrosophic special dual like numbers and natural neutrosophic 

dual numbers.  

 

This task is left as an exercise to the reader.  

 

Next the concept of natural neutrosophic semirings using 

the set  

 

S = {
I
nZ k, +, ×} and S1 = {〈Zn ∪ k〉I, k

2
 = (n–1)k, +, ×} can 

be obtained as in case of semirings of natural neutrosophic 

special quasi dual numbers and natural neutrosophic special 

quasi dual numbers. 

 

However we will just illustrate this situation by some 

examples. 

 

Example 2.123: Let S = {〈Z11 ∪ k〉I, k
2
 = 10k, ×, +} be the 

natural neutrosophic special quasi dual number semiring. 

 

S is SSS-semiring. S is a SS-semiring. S has natural 

neutrosophic idempotents. 

 

Example 2.124: Let S = {〈Z20 ∪ k〉I, k
2
 = 19k, +, ×} be the 

natural neutrosophic special quasi dual number semiring.  

 

S has zero divisors and neutrosophic zero divisors. S has 

idempotents and neutrosophic idempotents. S is a SSS-semiring 

and SS-semiring. 
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 Several interesting and important results in this direction are 

obtained.  

 

Almost all results on natural neutrosophic special quasi dual 

number semigroups and semirings can be derived as in case of 

natural neutrosophic special dual like numbers and natural 

neutrosophic dual numbers. 

 

Next the MOD natural neutrosophic special quasi dual 

numbers sets and the corresponding algebraic structures can be 

derived as in case of earlier ones.  

 

We will illustrate this situation by some examples. 

 

Example 2.125: Let  

S = {[0, 9)h | h
2
 = 8h} be the MOD special quasi dual number 

set. 

 

Example 2.126: Let  

S = {[0, 11)h | h
2
 = 10h} be the MOD special quasi dual number 

set. 

 

Example 2.127: Let  

P = {[0, 20)h | h
2
 = 19h, ×} be the MOD special quasi dual 

number semigroup. P has zero divisors and idempotents. 

 

Example 2.128: Let  

W = {[0, 19)h | h
2
 = 18h, ×} be the MOD special quasi dual 

number semigroup. W has several zero divisors. 

 

For more about these structures [21]. 

 

Example 2.129: Let  

S = {
I
[0, 5)k, k

2
 = 4k} be the MOD neutrosophic special quasi 

dual number set. 

 

Example 2.130: Let  

W = {
I
[0, 24)k, k

2
 = 23k} be the MOD neutrosophic special 

quasi dual number set. 



MOD Natural Neutrosophic Elements  125 

 

 

 Example 2.131: Let  

M = {
I
[0, 3)k; k

2
 = 2k, ×} be the MOD neutrosophic special 

quasi dual number semigroup. 

 

M = {[0, 3)k, k

akI ; ak ∈ [0, 3)k, ×} be the MOD neutrosophic 

special quasi dual number semigroup.  

 

M has zero divisors, MOD neutrosophic zero divisors and 

pseudo zero divisors and MOD neutrosophic pseudo zero divisor. 

 

Example 2.132: Let P = {
I
[0, 12)k, k

2
 = 11k, ×} be the MOD 

neutrosophic special quasi dual number semigroup. 

 
k k k

4k 6k 0I I I× =
   

4k × 6k = 0 

 
k
0

k
k4

k
k3 III =×

  
3k × 8k = 0 and so on. 

 

4k × 4k = 8k  3k × 3k = 3k is an idempotent  

 

so k k k

3k 3k 3kI I I× =
 
is a MOD neutrosophic idempotent. 

 
k k k

8k 8k 8kI I I× = and 8k × 8k = 8k are MOD neutrosophic 

idempotent and idempotent respectively. 

 

Example 2.133: Let  

S = {[0, 12)k | k
2
 = 11k, +} is a MOD special quasi dual number 

group of infinite order [21]. 

 

Example 2.134: Let  

M = {[0, 15)k; k
2
 = 14k, ×, +} is only a pseudo MOD special 

quasi dual number ring of infinite order [21]. 

 

Example 2.135: Let  

M = {[0, 19)k; k
2
 = 18k , +, ×} is also a pseudo MOD special 

quasi dual number ring of infinite order. 

 

Example 2.136: Let  
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 M = {
I
[0, 10)k, k

2
 = 9k, +, ×} be the MOD neutrosophic special 

quasi dual number pseudo semiring of infinite order. 

 

For k k k

ak ak akI I I× = ; ak ∈ [0, 10)k. 

 

Since the distributive laws are not true. M is only a pseudo 

semiring. 

 

Example 2.137: Let  

S = {
I
[0, 12)k, k

2
 = 9k, +, ×} be the MOD neutrosophic special 

quasi dual pseudo semiring which has zero divisors, MOD 

pseudo zero divisors, MOD neutrosophic zero divisors and 

pseudo zero divisors. 

 

Next we proceed onto develop MOD neutrosophic special 

quasi dual number sets. 

 

Example 2.138: Let  

S = {〈[0, 5) ∪ k〉I, k
2
 = 4k} be the MOD neutrosophic special 

quasi dual number set. 

 

Example 2.139: Let  

S = {〈[0, 15) ∪ k〉I; k
2
 = 14k} be the MOD neutrosophic special 

quasi dual number set.  

 

We can define the + and × operation on S and under both 

these operations S is only a semigroup. 

 

Example 2.140: Let  

S = {〈[0, 12) ∪ k〉I, k
2
 = 11k, ×} be the MOD neutrosophic 

special quasi dual number semigroup. S has subsemigroups and 

ideals. 

 
k k k

3k 8k 0I I I× = and so on. 

 

Example 2.141: Let S = {〈[0, 7) ∪ k〉I, k
2
 = 6k, +} be the MOD 

neutrosophic special quasi dual number semigroup. 
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 {[0, 7), +} is a group but k k k

3k 3k 3kI I I× =
 

is only an 

idempotent so S is only a semigroup. S is always a  

S-semigroup.  

 

All properties of these MOD special quasi dual number 

semigroups under + or × can be developed as in case of dual 

numbers or special dual like numbers. 

 

Example 2.142: Let  

S = {〈[0, 18) ∪ k〉I, k
2
 = 17k, +, ×} be the MOD neutrosophic 

special quasi dual number pseudo semiring. 

 
k k k

6k 6k 6kI I I+ =
  

k k k

3k 3k 3kI I I+ =  

 
k k k

3k 6k 0I I I× =   k k k

9k 2k 0I I I× =   

 

are MOD neutrosophic zero divisors.  

 
k k k

6k 6k 0I I I× =
  

k k k

9k 9k 9kI I I× =   

 

are neutrosophic nilpotent of order two and an idempotent of 

order two. 

 

All properties can be derived in case these MOD 

neutrosophic structures using special quasi dual numbers. 

 

Next we proceed onto suggest problems some of which are 

very difficult and challenging and a few are simple. 

 

Problems 

 

1. Obtain any special feature associated with MOD 

neutrosophic elements of I[0, n). 

 

2. Given [0, 19) find all pseudo zero divisors. 

 

3. Let S = 〈Z7 ∪ g〉I be the natural neutrosophic set.  
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 What are the special features enjoyed by S? 

 

4. Define a product operation on S  in problem 3 and find the 

algebraic enjoyed by (S ×). 

 

5. Let {〈Z11 ∪ k〉I, ×} = S, k
2
 = 10k be the natural neutrosophic 

special quasi dual number semigroup. 

 

i. Find all ideals of S. 

ii. Find all subsemigroups of S which are not ideals. 

iii. Find all neutrosophic idempotents. 

iv. Find all nilpotent element of S. 

v. Find all neutrosophic nilpotent elements of order two. 

vi. Find all neutrosophic zero divisors. 

 

6. Let M = {
I
[0, 8); ×} be the MOD neutrosophic semigroup. 

 

i. Find all ideals of M. 

ii. Find all MOD neutrosophic subsemigroups which are 

ideals. 

iii. Find all MOD neutrosophic zero divisors. 

iv. Find all MOD neutrosophic idempotents 

v. Find all MOD neutrosophic pseudo zero divisors. 

vi. Find all MOD neutrosophic find subsets which are not 

ideals. 

7. Characterize those neutrosophic semigroup S = {
I
nZ } which 

contain the neutrosophic elements of order two for various 

n. 

 

8. Consider the MOD neutrosophic interval semigroup  

S = 
I
[0, n). 

 

i. Find all ideals of S. 

ii. Find all MOD neutrosophic zero divisors. 

iii. Find the MOD neutrosophic idempotents. 

iv. Find the MOD neutrosophic nilpotents of order two. 

 

9. Let S1 = {
I
[0, 12), ×} be the MOD neutrosophic semigroup.  

Study questions i to iv of problem 8 for this S1. 
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10. Let S2 = {
I
[0, 23), ×} be the MOD neutrosophic semigroup. 

 

Study questions i to iv of problem 8 for this S2. 
 

11. Let M = {〈Z12 ∪ g〉I, g
2
 = 0, ×} be the neutrosophic dual 

number semigroup. 

 

i. Find all zero divisors and natural neutrosophic zero 

divisors. 

ii. Find all idempotents and neutrosophic idempotents. 

iii. Find all ideals of M. 

iv. Find all subsemigroups which are not ideals. 

v. Is M a S-semigroup? 

 

12. Let N = {〈Z23 ∪ g〉I, g
2
 = 0, ×} be the neutrosophic 

semigroup.  

 

Study questions i to v of problem 11 for this N. 

 

13. Let T = {〈Z18 ∪ g〉I, g
2
 = 0, ×} be the natural neutrosophic 

semigroup. 

 

Study questions i to v of problem 11 for this T. 

 

 

 

14. Obtain all special features associated with natural 

neutrosophic dual number semigroup  

S = {〈Zn ∪ g〉I, g
2
 = 0, ×}. 

 

15. Let L = {〈Z42 ∪ h〉I, h
2
 = h, ×} be the natural neutrosophic 

special dual like number semigroup. 

 

Study questions i to v of problem 11 for this L. 

 

16. Let M = {〈Z53 ∪ h〉I, h
2
 = h, ×} be the natural neutrosophic 

special dual like number semigroup. 

Study questions i to v of problem 11 for this M. 
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17. Let Z = {〈Zn ∪ h〉I, h
2
 = h, ×} be the natural neutrosophic 

special like number semigroup. 

 

Study all the special features enjoyed by Z for varying n; n 

odd non-prime, n even and n a prime. 

 

18. Let S = {〈Z121 ∪ k〉I, k
2
 = 120k, ×} be the natural 

neutrosophic special quasi dual number semigroup. 

 

Study questions i to v of problem 11 for this S. 

 

19.  Let P = {〈Z29 ∪ k〉I, k
2
 = 28k, ×} be the natural 

neutrosophic special quasi dual number semigroup. 

 

Study questions i to v of problem 11 for this P.  

 

20. Let S = {〈[0, 20) ∪ g〉I, g
2
 = 0, +} be the MOD neutrosophic 

dual number semigroup. 

 

 i. Show S is a S-semigroup. 

 ii. Prove S has neutrosophic idempotents. 

 iii. Can S have idempotents? 

 iv. Find all subsemigroups of S which are not ideals. 

 v. Can S have ideals? 

  

vi. Can S have S-ideals? 

 vii. Can ideals of S be of finite order? 

 

21. Let P = {〈Z25 ∪ g〉I, g
2
 = 0, ×} be the natural neutrosophic 

dual number semigroup. 

 

 i. Prove P have neutrosophic idempotents. 

 ii. Can P have idempotents? 

 iii. Is P a S-semigroup? 

 iv. Find S-ideals if any in P. 

 v. Can P have zero space subsemigroups? 

 vi. Can P subsemigroups which are not ideals? 
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 22. Let W = {〈Z41 ∪ g〉I, g
2
 = 0, +} be the neutrosophic dual 

number semigroup. 

 

 Study questions i to vi of problem 21 for this W. 

 

23. Let N = {〈Z48 ∪ h〉I, h
2
 = h, +} be the natural neutrosophic 

special dual like number semigroup. 

 

 Study questions i to vi of problem 21 for this N. 

 

24. Let M = {〈Z40 ∪ k〉I, k
2
 = 39k; +} be the natural 

neutrosophic special quasi dual number semigroup. 

 

 Study questions i to vi of problem 21 for this M. 

 

25. Let V = {〈Z29 ∪ k〉I, k
2
 = 28k, +} be the natural 

neutrosophic special quasi dual number semigroup. 

  

Study questions i to vi of problem 21 for this V. 

 

26. Let M = {〈Z64 ∪ k〉, k
2
 = 63k, +} be the natural 

neutrosophic special quasi dual number. 

 

 Study questions i to vi of problem 21 for this M. 

 

27. Let P = {〈〈Z15 ∪ g〉I, +〉, g
2
 = 0, ×} be the natural 

neutrosophic dual number semigroup. 

 

 Study all special features associated with P. 

 

i. Find o(P) 

ii. Find ideals in P. 

iii. Find neutrosophic idempotents of P. 

iv. What are the special features enjoyed by elements  

 of the form; 

x = m + 15
3gI  + 

15
3g 5I +  + 15

5gI  + 
15
3 6gI +  +  

15
6g 9I +  + 15

10gI   

(m ∈ Z15) in P. 
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 28. Let W = {〈〈Z10 ∪ h〉I, +〉, ×, h
2
 = h} be the natural 

neutrosophic special dual like number semigroup under ×. 

  

i. Find all properties enjoyed by W. 

 ii. Study questions i to iii of problem 27 for this W. 

 

29. Let S = {〈〈[0, 15) ∪ g〉I, +〉, g
2
 = 0, ×} be the MOD 

neutrosophic dual number semigroup under product. 

  

i. Prove S has infinite number of zero divisors. 

 ii. Prove S has ideals and subsemigroups which are zero  

  square subsemigroups. 

 iii. Prove or disprove S can have ideals of finite order. 

 iv. Obtain any other special feature associated with S. 

 

30. Let M = {〈[0, 23) ∪ h〉I, ×} be the MOD neutrosophic special 

dual like number semigroup. 

 

 i. Can M have zero divisors? 

 ii. Can M have S-idempotents? 

 iii. Is M a S-semigroup? 

 iv. Can M have S-zero divisors? 

v. Can M have ideals of finite order? 

 

vi. Can M have S-ideals? 

vii. Find S-subsemigroups of finite order. 

viii. Prove the number of MOD neutrosophic elements in M 

is infinite. 

ix. Can M have S-MOD neutrosophic zero divisors? 

x. Can M have MOD neutrosophic idempotents? 

 

31. Let V = {〈[0, 45) ∪ k〉I; k
2
 = 44k, ×} be the MOD 

neutrosophic special quasi dual number semigroup. 

 

 Study questions i to x of problem 30 for this V. 

 

32. Let W = {〈〈[0, 14) ∪ g〉I, +〉, g
2
 = 0, ×} be the MOD 

neutrosophic dual number semigroup. 
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  Study questions i to x of problem 30 for this W. 

 

33. Let Y = {〈〈[0, 29) ∪ k〉I, +〉, k
2
 = 28k, ×} be the special 

quasi dual number semigroup.  

 

 Study questions i to x of problem 30 for this Y. 

 

34. Let V = {〈〈[0, 40) ∪ h〉I, +〉, ×; h
2
 = h} be the special dual 

like number semigroup. 

 

 Study questions i to x of problem 30 for this V. 

 

35. Let X = {〈〈[0, 123) ∪ k〉I, +〉, ×; k
2 

= 122k} be MOD 

neutrosophic special quasi dual number semigroup. 

 

 Study questions i to x of problem 30 for this X. 

 

36. Let P = {〈Z9 ∪ g〉I, +, g
2
 = 0, ×} be the natural neutrosophic 

dual number semiring. 

 i. Find o(P). 

 ii. Can P have ideals? 

 iii. Prove P is a semiring. 

 iv. Find all natural neutrosophic elements of P. 

 v. Find subsemirings of P which are not ideals. 

 vi. Prove there are zero square subsemirings in P. 

 vii. Find any other related properties of P. 

 

37. Let M = {〈Z48 ∪ h〉I, +, ×, h
2
 = h} be the natural 

neutrosophic special  dual like number semiring. 

 

 i. Study questions i to v of problem 36 for this M. 

 ii. Obtain any other special features enjoyed by these  

  semirings. 

 

38. Let W = {〈Z29 ∪ k〉I, k
2
 = 28k, +, ×} be the natural 

neutrosophic special quasi dual number semiring. 

 

 Study questions i to vii of problem 36 for this W. 

 



134 Natural Neutrosophic Numbers and MOD Neutrosophic… 

 

 

 39. Let S = {〈[0, 24) ∪ g〉I, +, ×, g
2
 = 0} be the MOD 

neutrosophic interval dual number semigroup. 

 

 i. Study questions i to vii of problem 36 for this S. 

 ii. Can S be a S-semiring? 

 iii. Does this S enjoy any other special features? 

 

40. Let M = {〈[0, 47) ∪ h〉I¸ +, ×, h
2
 = h} be the MOD 

neutrosophic interval special dual like number semiring. 

 

 i. Study questions i to vii of problem 36 for this M. 

 ii. Enumerate all the special features enjoyed by this M. 

 iii. Can M have S-idempotents? 

 iv. Can M have S-MOD neutrosophic idempotents? 

 

41. All the special features associated with the MOD 

neutrosophic interval dual number semirings.  

 

 S = {〈[0, n) ∪ g〉I  ̧g
2
 = 0, +, ×} – Study and enumerate. 

 

42. Study all special features enjoyed by the MOD neutrosophic 

interval  special dual like number semiring. 

 

 R = {〈[0, m) ∪ h〉I, h
2
 = h, +, ×}. 

 Compare S in problem 41 with this R. 

 

43. Let P = {〈[0, p) ∪ k〉I, k
2
 = (p – 1)k, +, ×}  be the MOD 

neutrosophic interval special quasi dual number semiring. 

 

 Compare P with S in problem 41 and compare M with P in 

problem 42. 

 

44. When will P in problem 43 be a SS-semiring and SSS-

semiring? 

 

45. Let M = {〈Zn ∪ g〉I, g
2
 = 0, +, ×} be the neutrosophic dual 

number semiring. 
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 i. Find the number of neutrosophic elements in M. (This 

includes elements of the form:  

k + 
n
x

n
g3

n
g5

n
g IIII +++ ; k ∈ Zn, x ∈ Zn is either an 

idempotent or a zero divisor). 

ii. Can M have S-natural neutrosophic zero divisors? 

iii. Can M have natural neutrosophic idempotents? 

 

46. Let B = {〈Zm ∪ h〉I, h
2
 = h, +, ×} be the natural neutrosophic 

interval special dual like number semiring. 

  

i. Study questions i to iii of problem 45 for this B. 

 ii. Compare M with B and bring out the similarities and  

  differences. 

 

47. Let D = {〈Zm ∪ k〉I, k
2
 = (m – 1)k, ×, +} be the natural 

neutrosophic special quasi dual number semiring. 

 

 i. Study questions i to iii of problem 45 for this D. 

 ii. Compare D with M and B in problems 46 and 45. 

 

48. Let M = {〈[0, n) ∪ g〉I, +, ×, g
2
 = 0} be the MOD 

neutrosophic dual number semiring. 

 

 i. Prove M has infinite number of MOD neutrosophic zero  

  divisors. 

 ii. Can M have MOD neutrosophic S-zero divisors? 

 iii. Can M have MOD neutrosophic idempotents? 

 iv. Can M have S-MOD neutrosophic idempotents? 

 v. Is it possible to find finite order ideals in M? 

 vi. Can M have S-ideals? 

 vii. What will be structure enjoyed by the collection of MOD  

  neutrosophic elements? 

 

49. Let T = {〈[0, n) ∪ h〉I, h
2
 = h, ×, +} be the MOD 

neutrosophic special dual like number semiring. 

 

 i. Study questions i to vii of problem 48 for this T. 

 ii. Compare T with M in problem 48. 
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50. Let V = {〈[0, n) ∪ k〉I, k

2
 = (n – 1)k, +, ×} be the MOD 

neutrosophic special quasi dual number semiring. 

 

 i. Study questions i to vi of problem 48 for this V. 

 ii. Compare T and M with  V of problems 49 and 50  

  respectively. 

 

51. Can there be a MOD natural neutrosophic dual number set  

S = {〈[0, n) ∪ g〉I, ×} which has no MOD neutrosophic 

idempotents for n ∈ Z
+
 \ {1}. 

 

52. Can there be a MOD natural neutrosophic special dual like 

number set P = {〈[0, m) ∪ h〉I, h
2
 = h, ×} which has no MOD 

neutrosophic zero divisors for some m ∈ Z
+
 \ {1}? 

 

53. Can P in problem 52 have no MOD neutrosophic nilpotents 

of order greater than two? 

 

54. Give examples of those P for which P has MOD 

neutrosophic nilpotent element of order greater than or 

equal to three. 

 

55. Let M = {〈[0, t) ∪ k〉I, k
2
 = (t – 1)k; +, ×} be the MOD 

 neutrosophic special quasi dual number set. 

 

 i. Can M have MOD neutrosophic zero divisors? 

 ii. Can M have MOD neutrosophic idempotents? 

 iii. Can M have MOD neutrosophic nilpotents? 

 

 



 
 
 
 
Chapter Three 
 

 
 
NATURAL NEUTROSOPHIC NUMBERS IN 

THE FINITE COMPLEX MODULO INTEGER 
AND MOD NEUTROSOPHIC NUMBERS  
 
 
 

In this chapter we for the first time study natural 

neutrosophic numbers in the ring C(Zn) and that of MOD 

neutrosophic complex numbers in C([0, n)).  

 

Also natural neutrosophic numbers are introduced in  

〈Zn ∪ I〉 and MOD natural neutrosophic numbers in [0, n)I and 

〈[0, n) ∪ I〉.  

 

These situations are described in the following. 

 

Example 3.1: Let B = {C(Z5) | 
2

Fi  = 4} = {0, 1, 2, 3, 4, iF, 2iF, 

3iF, 4iF, 1 + iF, 2 + iF, …, 4 + 4iF}. 

 

The natural neutrosophic complex modulo integer are  

C
I
(Z5) = {C(Z5), 

c

0I }. 

 

We denote the natural neutrosophic complex modulo 

integer of C(Zn) by C
I
(Zn). 
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 Example 3.2: Let  

M = {C(Z4) | 
2

Fi  = 3} be the finite complex modulo integers. 

 

The natural neutrosophic complex modulo integer; 

 

C
I
(Z4) = {C(Z4), 

c

0I , 
F F

c c c

2 2i 2 2iI , I , I ,
+ F F F

c c c

1 i 1 3i 3 iI , I , I
+ + +

} is 

the natural neutrosophic complex modulo integer set. 

 

Example 3.3: Let  

M = {C(Z2) | 
2

Fi  = 1} be the finite complex modulo integers.  

 

The natural neutrosophic complex modulo integer set.  

 

C
I
(Z2) = {0, 1, iF, 1 + iF, 

c

0I , 
F

c

1 iI
+

}. 

 

Clearly o(C
I
(Z2)) = 6. 

 

Example 3.4: Let P = {C(Z3) | 
2

Fi  = 2} be the finite complex 

modulo integers. 

 

C
I
(Z3) = {0, 1, 2, iF, 2iF, 1 + iF, 2 + iF, 2 + 2iF, 1 + 2iF, 

c

0I } is 

the natural neutrosophic finite complex modulo integer set. 

 

Example 3.5: Let W = {C(Z6) | 
2

Fi  = 5} be the finite complex 

modulo integers. 

 

C
I
(Z6) = {0, 1, 2, 3, 4, 5, iF, 2iF, 3iF, 4iF, 5iF, 1 + iF, 1 + 2iF, 1 

+ 3iF, 1 + 4iF, 1 + 5iF, 2 + iF, 2 + 2iF, 2 + 3iF, 2 + 4iF, 2 + 5iF, 3 + 

iF, 3 + 2iF, 3 + 3iF, 3 + 4iF, 3 + 5iF, 4 + iF, 4 + 2iF, 4 + 3iF, 4 + 

4iF, 4 + 5iF, 5 + iF, 5 + 2iF, 5 + 3iF, 5 + 4iF, 5 + 5iF, 
c

0I , 

F F F F

c c c c c c c

2 4 3 2i 4i 3i 1 iI , I , I , I , I , I , I ,
+ F

c

1 2iI
+

, 
F

c

1 3iI
+

, 
F

c

1 4iI ,
+

 
F

c

1 5iI ,
+

 

F

c

2 iI ,
+ F F F F F

c c c c c

2 2i 2 4i 2 5i 3 i 3 3iI , I , I , I , I ,
+ + + + + F F

c c

4 i 4 2iI , I ,
+ +

 
F

c

4 4iI
+
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and so on} is the natural neutrosophic finite complex modulo 

integers. 

 

Example 3.6: Let C(Z7) = {0, 1, 2, …, 6, iF, 2iF, …, 6iF, 1 + iF, 1 

+ 2iF, …, 1 + 6iF, 2 + iF, …, 6 + 6iF} be the finite complex 

modulo integers. 

 

C
I
(Z7) = {C(Z7), 

c

0I }, we are yet to find some natural 

neutrosophic finite complex modulo integers. 

 

Example 3.7: Let C(Z8) = {0, 1, 2, …, 7, iF, 2iF, …, 7iF, 1 + iF, 4 

+ iF, …, 7 + 7iF} be the complex modulo integer. 

 

C
I
(Z8) = {0, 1, 2, …, 7, iF, …, 7iF, 1 + iF, …, 5 + 6iF, …, 7 + 7iF, 

c

0I , 
F F

c c c c c

2 4 6 2i 4iI , I , I , I , I ,  
F

c

6iI , 
F F F

c c c

2 2i 4 4i 6 6iI , I , I ,
+ + +

 
F

c

2 6iI ,
+

 

F F F F F F F

c c c c c c c

6 2i 4 2i 2 4i 4 6i 6 4i i 7 1 7iI , I , I , I , I , I , I ,
+ + + + + + + F

c

3 5iI
+

, 
F

c

5 3iI
+

 

and so on} be the natural neutrosophic complex modulo 

integers. 

 

Example 3.8: Let B = {C(Z10) |  
2

Fi  = 9} be the finite complex 

modulo integer. 

 

C
I
(Z10) = {C(Z10), 

c

0I , 
F F

c c c c

2 2i 4 4iI , I , I , I ,  
F F

c c c

6i 6 8iI , I , I ,  

F F F F

c c c c c c

8 5 5i 1 i 2 2i 5 5iI , I , I , I , I , I
+ + +

, ,Ic
i44 F+ F F

c c

6 6i 8 8iI , I ,
+ + F

c

2 4iI ,
+

 

F

c

4 2iI ,
+

  F F F F F F

c c c c c

6 2i 2 6i 8 2i 2 8i 6 4i 4 6iI , I , I , I , I , I
+ + + + + +

 and so on} is 

the natural neutrosophic finite complex modulo integers. 

 

Example 3.9: Let S = {C(Z15), 
2

Fi  = 14} be the finite complex 

modulo integers. C
I
(Z15) = {C(Z15), 

c

0I , c c c c c

5 10 3 6 9I , I , I , I , I ,  

F

c c

12 6iI , I ,
F F F F F F F F

c c c c c c c c

5i 10i 3i 6 6i 9i 6 3i 3 6i 12 9iI , I , I , I , I , I , I , I
+ + + +

 and so 
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 on} is the natural neutrosophic finite complex modulo integer 

set. 

 

Example 3.10: Let S = {C(Z11) | 
2

Fi  = 10} be the finite complex 

modulo integer. 

 

C
I
(Z11) = {C(Z11), 

c

0I  one has to find  more elements} is the 

natural neutrosophic finite complex modulo integer set. 

 

From these examples the following result is prove. 

 

THEOREM 3.1: Let C(Zn) be the finite complex modulo integer. 

 

i. C
I
(Zn) is always different from C(Zn). 

ii. C
I
(Zn) has more than one natural neutrosophic 

number (element) if n is positive integer. 

 

Proof: Since 0 ∈ C(Zn). 
c

0I  is always a natural neutrosophic 

element as 
t

0
 is undefined for all x ∈ C(Zn).  

 

Hence proof of (i) is true. 

 

Consider C(Zn) where n is a composite integer.  

 

So Zn has p, q ∈ Zn such that p × q = 0. Hence this paves 

way for c

pI  and c

qI  for natural neutrosophic elements.  

 

Further 
F

c

piI and 
F

c

qiI  also are natural neutrosophic elements 

of C
I
(Zn).  

 

Hence the result. 

 

However the following problem is given as an open 

conjecture. 
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Conjecture 3.1: Let S = {C(Zn), 

2

Fi  = n – 1} be the finite 

complex modulo integer. If n is a prime.  

 

i. Can C
I
(Zn) have more than one natural neutrosophic 

element? 

ii. Can C
I
(Zn) have zero divisors if n is a prime? 

iii. Can C
I
(Zn) have nontrivial idempotents if n is a 

prime? 

 

Next we proceed onto describe some algebraic operations 

on C
I
(Zn). Let us first describe product operation on C

I
(Z6) by 

an example. 

 

Example 3.11: Let S = {C(Z6) | 
2

Fi  = 5} be the finite complex 

modulo integer. 

 

C
I
(Z6) = {C(Z6), 

c

0I ,
F

c c c c

2 4 3 2iI , I , I , I ,
F F

c c

4i 3iI , I ,
F F

c c

2 2i 4 4iI , I ,
+ +

 

F F

c c

2 4i 4 2iI , I ,
+ + F

c

3 3iI ,
+

 
F

c

1 iI
+

, 
F

c

2 iI
+

, 
F F

c c

i 2 4 3iI , I
+ +

 and so on} is 

the natural neutrosophic complex modulo integers.  

 

Define × operation on C
I
(Z6). S = {C

I
(Z6), ×} is defined as 

the natural neutrosophic complex modulo integer semigroup. S 

is a semigroup.  

 
c c c

2 2 4I I I× = , c c c

2 3 0I I I× = , 
F F

c c c

2i 4i 4I I I× = ,  

 

F F

c c c

3i 3 1 i 0I I I
+ +

× = , 
F F F

c c c

4 3i 3 3i 3 3iI I I
+ + +

× =  and so on.  

 

This is the way product operation is performed on S.  

 

We see S can have natural neutrosophic complex modulo 

integer zero divisors and idempotents. 

 
c c c

3 3 3I I I× = , 
F F

c c c

3i 3i 3I I I× =  and so on. 
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 Example 3.12: Let  

S = {C
I
(Z12), 

2

Fi  = 11, ×} be the natural neutrosophic finite 

complex modulo integer semigroup. 

 

S has natural neutrosophic zero divisors and idempotents. 

 

Example 3.13: Let  

S = {C
I
(Z20); 

2

Fi  = 19, ×} be the natural neutrosophic finite 

complex modulo integer semigroup. 

 

S has zero divisors and idempotents. 

 

F F

c c c

2i 10i 0I I I× = , 
F

c c c

4i 5 0I I I× = , c c c

5 5 5I I I× = .  

 

S has subsemigroups which are not ideals as well as S has 

ideals.  

 

Take C(Z20) ⊆ S is a subsemigroup of S which is not an 

ideal.  

 

P = {0, 10, 10iF, 10 + 10iF, 
c

0I , 
F F

c c c

10 10i 10 10iI , I , I
+

} ⊆ S is an 

ideal of S.  

 

Hence the claim. 

 

Example 3.14: Let  

S = {C
I
(Z13), 

2

Fi  = 12, ×} be the natural neutrosophic complex 

modulo integer semigroup. 

 

S has finite subsemigroups. Finding ideals in S is a difficult 

problem.  

 

In view of this we propose the following conjecture. 
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Conjecture 3.2: Let  

S = {C
I
(Zp), 

2

Fi  = p – 1, p a prime, ×} be the natural 

neutrosophic finite complex modulo integer semigroup. Can S 

have ideals? 

 

Next we proceed onto describe + operation on the natural 

neutrosophic finite complex modulo integers by examples. 

 

Example 3.15: Let  

M = {C
I
(Z16), +; 

2

Fi  = 15} be the natural neutrosophic finite 

complex modulo integer semigroup. 

 

M is only a semigroup as c c

8 8I I+  
F F

c c c

8 8i 4iI , I I= +
F F

c c

8i 4iI I= +  

and 
F F F

c c c

2i 2i 2iI I I+ =  so only idempotents under + so S cannot be 

a group only a semigroup under addition. 

 

S is of finite order. 

 

M has subsets which are groups; viz, Z16 and C(Z16) are 

groups hence M is a Smarandache semigroup.  

 

So we have several such subgroups in C
I
(Z16).  

 

Working with these structures is innovative and interesting. 

 

Example 3.15: Let S = {C
I
(Z19), +} be the natural neutrosophic 

finite complex modulo integer semigroup. 

 

C(Z19), Z19 and Z19iF are the proper subsets of S which are 

groups under +. Thus S is a Smarandache semigroup. 

 

Now in view of this the following result is proved. 

 

THEOREM 3.2: Let S = {C
I
(Zn), +} be the natural neutrosophic 

finite complex modulo integer semigroup. S is a Smarandache 

semigroup. 
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 Proof follows from the fact C(Zn), Zn and ZniF are 

subsemigroups of S under + which are groups. Hence the claim. 

 

Next we proceed onto give the product structure on the 

additive semigroup. S = {C
I
(Zn), +}.  

 

This will be illustrated by some examples. 

 

Example 3.17: Let S = {〈C
I
(Z4), +〉, ×} be a natural 

neutrosophic finite complex modulo integer semigroup under ×. 

 

Clearly  

S = {C(Z4), 
F F F

c c c c c c

0 2i 2 2 2i 1 i 0I , I , I , I , I , 1 I
+ +

+ , 1 + 
F

c

2iI ,  

1 +
F F

c c

2 2i 1 iI , 1 I
+ +

+ , 2+
F

c

2iI , 2+ c

0I , 2+
F

c
1 iI + , 2+

F

c

2 2iI ,
+

 

F F F F F

c c c c c c c c

0 2i 1 i 2 2i 0 2i 0 1 i3 I , 3 I , 3 I , 3 I , I I , I I
+ + +

+ + + + + + ,  

3 + c

0I + 
F

c
2iI  + 

F

c c

2 1 iI I
+

+ }. 

 

F F

c c

2i 1 iI , I
+

 are also known as natural neutrosophic complex 

numbers for 
c 4

2 2I I=  in our usual notation,  

 

Superfix c is used to denote the structure is from the finite 

complex modulo integers.  

 

Further 2 ∈ C(Z4) as well 2 ∈ Z4 this is only an analogous 

identification. 

F F

c c c

2 1 i 2 2iI I I
+ +

× =
 

Consider  

F F F

c c c

2i 1 i 2i 2I I I
+ +

× = . 

 

This is the way natural neutrosophic finite complex modulo 

integer products are performed. 

 

F F

c c c

2i 2 2i 2 0I I I
+ +

× = . 

 

There are many nilpotents of order two. 
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2 + 
F F

c c c

2i 2 2 2iI I I
+

+ + =  x ∈ S. 

 

x
2
 = 

F F

c c c c

0 2 2i 2 2iI I I I
+

+ + +  

 

For 2
F F F F

c c c c

2i 2i 2i 2iI I I I= + = . 

 

This is the way operations are performed on S. 

 

Example 3.18: Let  

S = {〈C
I
(Z7), +〉, ×} be the natural neutrosophic finite complex 

modulo integer semigroup. 

 

Finding natural neutrosophic finite complex modulo 

integers, zero divisors and idempotents is a difficult job. 

 

Let us now proceed onto develop the notion of natural 

neutrosophic finite complex modulo integer semirings.  

 

We will first describe this situation by some examples. 

 

Example 3.19: Let  

S = {〈C
I
(Z10)〉; +, ×} be the natural neutrosophic finite complex 

modulo integer semiring. 

 

Clearly o(S) < ∞ that is this is a finite semiring which has 

natural neutrosophic complex finite modulo integer zero 

divisors and idempotents. 

 

For c c c

5 2 0I I I× = ,  
F

c c c

2i 5 0I I I× = , 

 

F F

c c c

5i 8i 0I I I× = ,   
F F

c c c

4 4i 5 5i 0I I I
+ +

× = , 

 

F F

c c c

8 6i 5i 0I I I
+

× = ,  
F F

c c c

8i 5 5i 0I I I
+

× = , 

 

F

c c c

6i 4 5 0I I I
+

× =   
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and so on are the natural neutrosophic complex finite modulo 

integer zero divisors. 

 
c c c

5 5 5I I I× =  and  

 
c c c

6 6 6I I I× =  are idempotents which are in I

10Z . 

 

Now 
F F

c c c

6i 6i 4I I I× =
 
and 

 

F F

c c c

4i 4i 4I I I× = . 

 

Can we have pure natural neutrosophic idempotents? 

 

F F

c c c

5 5i 5 5i 0I I I
+ +

× =  is a zero divisor. 

 

x = 
F F F

c c c c

5 2i 5i 8 4iI I I I
+

+ + +  be in S.  

 

x × x = 
F F F

c c c c c c

5 6 8 4i 0 5i 6i 2I I I I I I
+ +

+ + + + +  ∈ S.  

 

This is the way product operation is carried out in S.  

 

Clearly Z10 is a subsemiring which is a ring so S is a SS-

semiring.  

 

C(Z10) is again a subring; B = {0, 5} ⊆ S is a field so S is a 

SSS-semiring. 

 

Example 3.20: Let  

S = {C
I
(Z11), 

2

Fi  = 10, +, ×} be the natural neutrosophic finite 

complex modulo integer semiring. 

 

Z11 is a field in S so S is a SSS-semiring. C(Z11) is a subring 

in S so S is also a SS-semiring.  

Finding zero divisors is a difficult job.  
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However for x = 1 + c

0I  ∈ S.  

 

x
2
 = (1 + c

0I ) = 1 + c

0I  = x is an idempotent. 

 

Let x = 5 + c

0I  and y = 4 + c

0I  ∈ S. 

 

x × y = (5 + c

0I ) × (4 + c

0I ) = 9 + c

0I  ∈ S. 

 

Example 3.21: Let S = {C
I
(24), 

2

Fi  = 23; +, ×} be the natural 

neutrosophic finite complex modulo integer semiring. S has 

zero divisors, natural neutrosophic zero divisors, complex finite 

modulo integer zero divisors and natural neutrosophic complex 

modulo integer zero divisor. 

 

We see 
c

12I , c c c c

6 4 3 9I , I , I , I  will give natural neutrosophic zero 

divisors.  

 

2, 3, 4, 8, 12, 6 etc will give zero divisors. 2iF, 4iF, 3iF, 8iF, 

12iF, 6iF can give finite complex modulo integer zero divisors. 

 

F F F

c c c

4 4i 6 6i 8iI , I , I
+ +

and 
F

c

6iI  are some of the natural 

neutrosophic finite complex modulo integers.  

 

Now we have also mixed zero divisors contributed by x = 8 

+ 
F

c

8iI  + 
F

c c

8 8i 8I I
+

+  and  

 

y = 6 + 
F F F

c c c

3i 6 3i 6iI I I
+

+ +  ∈ S is that is x × y = c

0I . 

 

We see if n is a composite number then certainly C
I
(Zn) has 

zero divisors.  

 

However if n is a prime we are not always guaranteed of 

zero divisors. 

 

Finding subsemirings and ideals in case of these finite 

natural neutrosophic complex modulo integer semirings is 
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 considered as a matter of routine and hence is left as an exercise 

to the reader. 

 

Next we proceed onto study MOD neutrosophic interval 

finite modulo complex numbers. 

 

Example 3.22: Let S = {C
I
([0, 6))} = {Collection of all 

elements from [0, n), C([0, n)) and those 
c

xI  where x is an 

element in [0, n) such that it is a zero divisor or an idempotent 

or a pseudo zero divisor}. 

 

C
I
([0, 6)) = {C([0, 6)), 

F F

c c c c

3 3i 2 2iI , I , I , I ,  
F F

c c

2 2i 3 3iI , I ,
+ +

 

F

c c

1.2 1.2iI , I  and so on} is the collection of all MOD neutrosophic 

finite complex modulo integers. 

 

Example 3.23: Let P = {C
I
([0, 7)), 

2

Fi  = 6} be the MOD 

neutrosophic finite complex modulo integers. 

 

P = { c

0I , 
F F F

c c c c c

3.5 1.75 3.5i 3.5i 3.5 1.75iI , I , I , I , I
+

, C([0, 7)) and so on}. 

 

Example 3.24: Let M = {C
I
([0, 12)), 

2
Fi  = 11} be the MOD 

neutrosophic finite complex modulo integer interval. 

 

M = {C([0, 12)), c

0I , 
F F

c c c c c

6 4 3 6i 3iI , I , I , I , I ,  
F F

c c

2i 4iI , I ,  

F F F F F

c c c c c c

3 3i 8i 8 1.2i 1.2i 1.2 2.4i 2.4I , I I , I , I , I
+ + +

+ and so on} is the MOD 

neutrosophic finite complex modulo integers. 

 

Thus it is a difficult problem to find the number of MOD 

neutrosophic finite complex modulo integers. It may be infinite.  

 

However the open problem is can it be for any prime p be 

finite?  

 

This problem is little difficult.  
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Now having seen examples of MOD neutrosophic finite 

complex modulo integer elements we proceed onto study or 

employ algebraic structures on them. 

 

Example 3.25: Let S = {C
I
([0, 4)), ×} = {C([0, 4)), 

c

2I , c

0I , 

F F F F

c c c c

2i 2 2i 3 3i 1 iI , I , I , I
+ + +

 and so on} be the MOD neutrosophic 

finite complex modulo integer semigroup. 

 

This semigroup has zero divisors and MOD neutrosophic 

zero divisors.  

 

However finding idempotents happens to be a difficult 

problem for this S. 

 

Infact S has subsemigroups which are not ideals and of 

finite order.  

 

Finding even ideals in S is a difficult task. 

 

Example 3.26: Let A = {C
I
([0, 5)), ×} = {C([0, 5)); c

0I , 

F F F

c c c c c

2.5 2.5i 1.25 1.25i 2.5 2.5iI , I , I , I , I
+

, 
F

c

1.25 1.25iI
+

, etc} be the MOD 

neutrosophic finite complex modulo integers. 

 

Clearly 2.5, 2.5iF, 1.25, 1.25iF, 2.5 + 2.5iF, 1.25 + 1.25iF, 2.5 

+ 1.25iF, 2.5iF + 1.25iF, 3.75, 3.75iF, 3.75 + 3.75iF, 3.75 + 2.5iF, 

3.75iF + 2.5 and so on are all only pseudo zero divisors for their 

product with a unit 4 or 2 leads to give zero divisors hence this 

study is new and in these semigroups we have pseudo zero 

divisors which help to pave way for MOD neutrosophic pseudo 

divisors. 
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 However c c c

2.5 2.5 2.5I I I× =  but it is clear none of these can 

lead to MOD neutrosophic zeros for both 4 and 2 are 

neutrosophic as 
1

4
 is 4 and 

1

2
 = 3 so they are units in Z5.  

 

Such type of tricky but innovative study is left open for any 

interested researchers.  

 

This sort of situation mainly prevails when one uses in the 

MOD interval of complex finite modulo integers C([0, n)), n a 

prime number. Hence a special type of study is needed for n a 

prime value. 

 

We will  just illustrate this situation by one more example 

before we proceed on to study other algebraic structures on 

C
I
([0, n)). 

 

Example 3.27: Let B = {C
I
([0, n)), ×} be the MOD neutrosophic 

finite complex modulo integer semigroup. 

 

5.5, 5.5iF are both pseudo zero divisors as  

 

5.5 × 2 = 0 (mod 11) 

 

5.5iF × 2 = 0 (mod 11) 

 

5.5 + 5.5iF × 2 = 0 (mod 11) 

 

5.5 × 4 ≡ 0 (mod 11) 

 

5.5 × 8 = 0 (mod 11) 

 

5.5 + 5.5iF × 12 ≡ 0 (mod 11). 

 

But none of the elements 2, 4, 6, 8, 10 or 12 can be 

neutrosophic as all of them are units.  
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Similarly 2.75, 2.75iF, 2.75 + 2.75iF, 2.75 + 5.5iF, 2.75iF + 

5.5 are all only pseudo zero divisors.  

 

Similarly 1.1, 2.2, 3.3, 4.4, …, 9.9 and 1.1iF, 2.2iF, 3.3iF, …, 

9.9iF are all pseudo zero divisors for 10 acts on them to make 

them zeros. 

 

1.375, 1.375iF, 1.375 + 1.375iF lead to pseudo interval zero 

divisors.  

 

For 8 which is a unit in 11 makes them zero.  

 

The study of pseudo zero divisors in MOD intervals is a 

challenging problem for they cannot be MOD neutrosophic zero 

divisors and pseudo zero divisors. 

 

In view of all these we have the following conjecture.  

 

Conjecture 3.3: Let S = {C
I
([0, n)), n a prime, ×} be the MOD 

neutrosophic finite complex modulo integer semigroup. 

 

i. Can S have zero divisors? 

 

ii. Can S have pseudo zero divisors? 

 

iii. Can S have MOD neutrosophic pseudo zero 

divisors? (How to develop this notion?) 

 

iv. Can C
I
([0, n)), n not a prime have MOD 

neutrosophic pseudo zero divisors? 

 (Clearly if n is not a prime then also [0, n) has 

pseudo zero divisors). 

 

Next we define the notion of + operation on C
I
([0, n)).  

 

Let S = {C
I
([0, n)), +} = {Collection of all MOD 

neutrosophic finite complex modulo integers under  +}. S is 

only a semigroup and not a group as 
c c c

x x xI I I+ =  for all x ∈ 

C
I
([0, n)); is an idempotent.  
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We will illustrate this situation by some examples. 

 

Example 3.28: Let S = {C
I
([0, 6)), +} be the MOD neutrosophic 

finite complex modulo integer semigroup. 

 

S = {〈C([0, 6)); c

0I , 
F F

c c c c c

2 3 4 2i 4iI , I , I , I , I ,
F F

c c

3i 2 2iI , I ,
+

 

F F F

c c c c c

3 3i 1.5 1.5i 1.5 1.5iI , I , I , I , I
+ +
… , c

1.2I , 
F

c

1.2iI , 
F

c

1.2 1.2iI
+

 and so on〉} 

is a semigroup generated under +.  

 

Clearly we define in general 
F

c

1.5iI  +  
F

c

1.5iI  = 
F

c

1.5iI  and so on.  

 

Hence this is an idempotent under +.  

  

This semigroup has subsemigroups of both finite and 

infinite order.  

 

There are both subsemigroups which are groups under + of 

infinite and finite order.  

 

For Z6 is a group under +. C(Z6) is again a group under +. 

[0, 6) is a group of infinite order under +. [0, 6)iF is also a group 

under + of infinite order.  

 

C([0, 6)) is also a group under + is an infinite group.  

 

Thus S is a Smarandache semigroup.  

 

Example 3.29: Let M = {C
I
([0, 7)), +} be the MOD neutrosophic 

finite complex modulo integer semigroup. 

 

M = {〈C([0, 17)), c

0I , c

8.5I , 
F

c

8.5iI , 
F

c c

8.5 8.5i 4.25I , I ,
+

 

F F

c c c

4.25i 4.25 4.25i 4.25I , I , I
+

 + 
F

c

8.5iI  + 
F

c

4.25 4.25iI
+

and so on〉, +} be the 

MOD neutrosophic interval semigroup. M is a S-semigroup of 

infinite order. 
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Example 3.30: Let  

S = {〈C
I
([0, 24)), +〉} = {C

I
([0, 24)), x + c

0I , x + 
c

12I  + 
F

c

12iI  and 

so on} be the MOD neutrosophic finite complex modulo integer 

semigroup. 

 

This is only a semigroup as MOD neutrosophic elements 

under the operation of addition is only an idempotent.  

 

Several interesting properties can be derived which is 

considered as a matter of routine and left as an exercise to the 

reader.  

 

Next we prove a theorem. 

 

THEOREM 3.3: Let S = {C
I
([0, n)), +} be the MOD neutrosophic 

finite complex modulo integer semigroup. 

 

i. S is a S-semigroup. 

ii. S has subgroups of both finite and infinite order.  

iii. S has idempotents. 

iv. S has MOD neutrosophic idempotents. 

 

Proof is direct and hence left as an exercise to the reader. 

 

Next we illustrate the semigroup under product using the 

additive MOD neutrosophic finite complex modulo integer 

semigroup under + by examples. 

 

Example 3.31: Let S = {〈C
I
([0, 3)), +〉, ×} be the MOD 

neutrosophic finite complex modulo integer semigroup under ×. 

 

Clearly S contains elements of the form x = 2.532 + c

0I  + 

F

c

1.5 1.5iI
+

 and y = 0.273 + c

1.5I  + c

0I  and so on. 

 

x × y = 2.532 × 0.273 + c

0I  + 
F F

c c c

1.5 1.5i 1.5 2.25 2.25iI I I
+ +

+ + .  
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 This is the way product operation is performed on S. If x = 

1.5 is a pseudo zero divisor x
2
, x

3
, x

4
, … are also assumed to be 

pseudo zero divisors.  

 

Likewise 
c

xI , 2 3 t

c c c

x x x
I , I , , I… , … are all assumed to be 

pseudo zero divisors.  

 

So we may also have infinite sums of MOD neutrosophic 

elements in S.  

 

This study is new and innovative. So far there has been no 

research in this direction. 

 

Example 3.32: Let  

S = {〈C
I
([0, 10)), +〉, ×} be the MOD neutrosophic finite 

complex modulo integer semigroup. 

 

S has pseudo divisor, zero divisor, MOD neutrosophic zero 

divisors and pseudo zero divisors.  

 

S has subsemigroups of both finite and infinite order. 

 

Example 3.33: Let  

S = {〈C
I
([0, 29)), +〉, ×} be the MOD neutrosophic finite 

complex modulo integer semigroup. 

 

S has MOD neutrosophic pseudo zero divisors. S has 

subsemigroups.  

 

Next we proceed onto describe MOD neutrosophic finite 

complex modulo integer semirings by examples. 

 

Example 3.34: Let  

S = {C
I
([0, 16)), +, ×, 

2

Fi  = 15} be the collection of all MOD 

neutrosophic finite complex modulo integer semiring. 
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S has zero divisors and MOD neutrosophic zero divisors. S is 

not a semifield. S is only a pseudo semiring as + and × are not 

distributive. 

 

Let us consider x = c

0I  + 
F F

c c

4i 2iI I+  and y = c

0I  + 

F F

c c c

8 8i 8 8iI I I
+

+ +  ∈ S. x × y = c

0I  is a MOD neutrosophic finite 

complex modulo integer zero divisor. 

 

Several properties of infinite semirings can be adopted to 

these pseudo infinite semiring with appropriate changes. 

 

Example 3.35: Let M = {C
I
([0, 10)), +, ×} be the MOD 

neutrosophic finite complex modulo integer pseudo semirings. 

 

Let x = 
F F

c c c

5 5i 5 5iI I I
+

+ +  ∈ M. 

 

x × x = ( )
F F

c c c

5 5i 5 5iI I I
+

+ +   

 

         = 
F F

c c c c

5 5i 5 5i 0I I I I
+

+ + +  

         ≠ x. 

 

But x + x = x. 

 

This is the way product and + operation is performed on M. 

 

M has subsemirings which are rings so M is SS-semiring. 

Also M has a subset which is a field so M is SSS-semifield.  

 

Finding ideals in these pseudo semirings is a difficult 

problem. 

 

Example 3.36: Let S = {C
I
([0, 29)), +, ×} be the MOD 

neutrosophic finite complex modulo integer pseudo semiring.  
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 S has pseudo zero divisors 14.5, 14.5iF, 14.5 + 14.5iF, 7.25, 

7.25iF, 7.25 + 7.25iF, 2.9, 5.8, 7.7, 2.9iF, 5.8iF, 7.7iF, 11.6iF and 

so on contribute to pseudo zero divisors.  

 

Hence c c

14.5 2.9I , I , c
5.8I , 

F

c

2.9iI  and so on are MOD neutrosophic 

pseudo zero divisors.  

 

Study in this direction is innovative and interesting. 

 

Since this study of pseudo semirings using MOD 

neutrosophic finite complex modulo integers considered as a 

matter of routine.  

 

This work is left as an exercise to the reader. 

 

Next the concept of natural neutrosophic finite neutrosophic 

modulo analogue using the MOD intervals 〈[0, n) ∪ I〉I is 

developed and described in the following. 

 

Example 3.37: Let S = {〈Z9 ∪ I〉I} = {Collection of all natural 

neutrosophic numbers in 〈Z9 ∪ I〉 got by adopting division in 

〈Z9 ∪ I〉} = {〈Z9 ∪ I〉, I

0I , I I I I

3 6 I 2II , I , I , I ,
I I I I

3I 4I 8I 3 3II , I , , I , I
+

… , 

I

6 6II
+  and so on}. 

 

Finding order of S is a difficult job. 

 
I I I

3 3I 6 6I 0I I I
+ +

× =
  

I I I

3 3I 3 3I 0I I I
+ +

× =  

 
I I I

6 6I 6 6I 0I I I
+ +

× =
  

I I I

3I 3 3I 0I I I
+

× =  and so on.  

 

Thus S has zero divisor and natural neutrosophic zero 

divisors.  

 

Study in this direction is interesting and innovative. 
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Example 3.38: Let  

W = {〈Z43 ∪ I〉I, ×} be the natural neutrosophic finite 

neutrosophic modulo integer semigroup. 

 

W = {〈Z43 ∪ I〉, I

0I , 
I

nII ; n ∈ Z43 and so on, ×} is a 

semigroup for I
2
 = I and I is an invertible neutrosophic number 

which is also assumed to be an indeterminate. 

 

Example 3.39: Let  

M = {〈Z12 ∪ I〉I, ×} be the natural neutrosophic finite 

neutrosophic modulo integer semigroup.  

 

M has both zero divisors, idempotents and natural 

neutrosophic idempotents and zero divisors. 

 

Next we give on 〈Zn ∪ I〉, the operation of addition. 

 

Example 3.40: Let S = {〈Z3 ∪ I〉I, +} = {0, 1, 2, 0, I, 2I, 1 + I, 2 

+ I, 2 + 2I, 1 + 2I, I

0I , 
I

II , 
I

2II  and so on, +}. 

 

( I

0I  + 
I I

I 2II I+  = x we see x + x = x) be the natural 

neutrosophic finite neutrosophic modulo integers semigroup 

under +. 

 

Example 3.41: Let M = {〈Z4 ∪ I〉I; +} = {〈Z4 ∪ I〉, 
I

0I ,
I I I I I I I

2 2I 2 2I 1 2I 2 I 1 3I 3 II , I , I , I , I , I , I
+ + + + +  and so on, +} be the 

natural neutrosophic finite neutrosophic modulo integer 

semigroup. 

 

x = 
I I

1 3I 2I I
+

+ , y = I

0I  + 
I

2 2II
+  ∈ M 

 

y + y = I

0I  + 
I

2 2II
+   ∈ M 

 

x + y = I

0I  + 
I I I

2 2I 2 1 3II I I
+ +

+ +  ∈ M. 
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 Example 3.42: Let P = {〈Z8 ∪ I〉I, +} = {〈Z8 ∪ I〉, I I I

I 2I 3II , I , I ,  
I I I I

4I 7I 2I 4I 2 6II , , I , I , I
+ +

… , 
I

2I , 
I

4I ,  I

6I  and so on, +} be the MOD 

neutrosophic finite neutrosophic modulo integer semigroup. 

 
I I I

6 6 6I I I+ = , 

 
I I I

6 6I 4I 4 2II I I
+ +

+ +  and so on are elements of  P. 

 

Example 3.43: Let M =  {〈Z12 ∪ I〉I, +} = {〈Z12 ∪ I〉, I

0I , 
I I I I I I I I

I 11I 2 3 4 6 8 10I , , I , I , I , I , I , I , I… , I

9I , 
I

11II  + I I I

8 10 II , I I+  and so on, 

+} be the natural neutrosophic finite neutrosophic modulo 

integer semigroup. 

 

We see M is a S-semigroup.  

 

P1 =  {Z12, +} is a group under +.  

 

P2 = 〈Z12 ∪ I〉 is a S-semigroup. Thus M is a S-semigroup.  

 

The following theorems are proved. 

 

THEOREM 3.4: Let S = {〈Zn ∪ I〉I, ×} be a natural neutrosophic 

finite neutrosophic integers semigroup. 

 

i. S is a S-semigroup if and only if Zn is a S-

semigroup. 

ii. If S has zero divisors then S has natural 

neutrosophic zero divisors. 

iii. S has subsemigroups. 

iv. S has idempotents and natural neutrosophic 

idempotents. 

 

Proof is direct and hence left as an exercise to the reader. 

 

THEOREM 3.5: Let S = {〈Zn ∪ I〉I, +} be the natural 

neutrosophic finite neutrosophic integers semigroup. 
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i. S is always a S-semigroup. 

ii. o(S) < ∞. 

iii. S has neutrosophic idempotents. 

 

 

Proof is direct and is left as an exercise to the reader. 

 

Next we proceed onto define a new product on the additive 

semigroup built using  

S = 〈〈Zn ∪ I〉, +〉. o(S) < ∞ but o(S) > o({〈Zn ∪ I〉I, ×}).  

 

We will first describe this situation by an example. 

 

Example 3.44: Let P = {〈〈Z8 ∪ I〉I, +〉, ×} be the natural 

neutrosophic finite integer neutrosophic semigroup.  

 

S has idempotents zero divisors and neutrosophic zero 

divisors and neutrosophic idempotents. 

 

For x = I

0I  + I I

4 6I I+  ∈ P is such that  

 

x × x  = ( I

0I  + I I

4 6I I+ ) × ( I I I

0 4 6I I I+ + ) 

 

= I

0I  + I

0I  + 
I I

4 4I I+  

= I

0I  + 
I

4I  ∈ P.  

 

This is the way product operation is performed on P. 

 

y = I

0I  + 
I

4I  is a natural neutrosophic zero divisors.   

 

Thus x is a natural neutrosophic nilpotent element of order 

three. 

 

Example 3.45: Let W = {〈〈Z12 ∪ I〉I, +〉, ×} be the natural 

neutrosophic finite neutrosophic semigroup. 
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 Let x = I I I I

3I 4I 6I 2II I I I+ + +  and y = 
I I

8 4 4II I
+

+  ∈ W. 

 

x × y = ( ) ( )I I I I I I

3I 4I 6I 2I 8 4 4II I I I I I ++ + + × +  

 

= I I I I I

0 8I 4I 4I 8II I I I I+ + + +  

 

= I I I

0 4I 8II I I+ +  ∈ W. 

 

W is a S-semigroup. 

 

This is the way product is performed on W. 

 

Example 3.46: Let V = {〈〈Z11 ∪ I〉I, +〉 ×} be the natural 

neutrosophic finite neutrosophic integer semigroup.  

 

V has neutrosophic idempotents. Thus V has 

subsemigroups.  

 

Infact V is a S-semigroup. 

 

Next we proceed on to develop the neutrosophic interval 

semirings.  

 

All properties associated with natural neutrosophic 

semigroups can be derived as matter of routine so left as an 

exercise to the reader. 

 

Example 3.47: Let S = {〈Z9 ∪ I〉I, +, ×} be the natural 

neutrosophic finite neutrosophic modulo integer semiring. 

 

o(S) is finite and this is the first time naturally finite 

semirings are constructed.  

 

These semirings solves the open conjectures; does there 

exist semirings of finite characteristic.  
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The answer is yes we can have semirings of finite 

characteristic some of them are of infinite order and some are of 

finite order. 

 

Example 3.48:  Let S = {〈Z12 ∪ I〉I, +, ×} be the natural 

neutrosophic finite neutrosophic modulo integer semiring. 

 

Clearly S is of characteristic 12. We see S has both zero 

divisors and natural neutrosophic zero divisors.  

 

Several properties associated with them can be derived. S 

has also natural neutrosophic idempotents. 

 

For x = 
I

4II , y = I

9II , z = 
I

4II  + I

9II  + I

0I  are all natural 

neutrosophic idempotents in S.  

 

For x
2
 = ( ) ( )I I I I I I

0 4I 9I 0 4I 9II I I I I I+ + × + +  

 

= I I I

0 4I 9II I I+ +  = x. 

 

Hence z is a natural neutrosophic idempotent.  

 

S contains a subring so S is a SS-semiring.  

 

Several properties regarding natural neutrosophic finite 

neutrosophic modulo integer semirings can be derived and it is 

considered as a matter of routine and is left as an exercise to the 

reader. 

 

Next we proceed onto describe MOD neutrosophic interval 

semigroup under + and × and the pseudo semirings. 

 

Example 3.49: Let B = {〈[0, 6) ∪ I〉I, ×} be the MOD natural 

neutrosophic interval semigroup. 

 

B has zero divisors, idempotents, MOD neutrosophic zero 

divisors and idempotents. 
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I I I

3 3 3I I I× = ,  I I I

3I 3I 3II I I× = , 

 
I I I

4I 4I 4II I I× = ,
 

I I I

4 4 4I I I× =   

 

and so on are MOD neutrosophic idempotents in B. 

 

Consider I I I

3 4I 0I I I× = ,  I I I

3I 2I 0I I I× = , 

 
I I I

4I 3 0I I I× =   

 

and so on are MOD neutrosophic zero divisors in B. 

 

Example 3.50: Let M = {〈[0, 7) ∪ I〉I, ×} be the MOD 

neutrosophic interval neutrosophic semigroup of infinite order. 

 
I I I I

6I 0 4I II , I , I , I  are in M and some of them are idempotents.  

 

However pseudo zero divisor and MOD neutrosophic zero 

divisors of M are given. 

 
I I I I I I

3.5I 3.5 3.5 3.5I 1.75 1.75I 1.75 1.75II , I , I , I , I , I
+ +  and so on. 

 

Study of existence MOD neutrosophic idempotents and zero 

divisors happens to be an interesting and a difficult problem, 

when the MOD intervals [0, n), where n a prime is used. 

 

Example 3.51: Let S = {〈[0, 18) ∪ I〉I, ×} be the MOD 

neutrosophic interval neutrosophic semigroup. 

 

S has zero divisors, pseudo zero divisors as well as MOD 

neutrosophic zero divisors and pseudo zero divisors. 

 
I

0I , I

9I , 
I I I I I I I I I

2 3 9I 6I 4I 12I 4.5 4.5I 12I 6I , I , I , I , I , , I , I , I , I
+

…  and so on. 

 
I I I

12I 12I 0I I I× =
   

I I I

6I 6I 0I I I× =   
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and so on are MOD neutrosophic zero divisors of S. 

 
I I I

9 9 9I I I× =  and   I I I

9I 9I 9II I I× =  

 
I I I

9 9I 9 9I 9 9II I I
+ + +

× =   

 

are some of the MOD neutrosophic idempotents of S. 

 

In view of this the following theorem proved. 

 

THEOREM 3.6: Let B = {〈[0, n) ∪ I〉I, ×} be the MOD 

neutrosophic interval neutrosophic semigroup. 

 

i. B has MOD neutrosophic zero divisors if Zn has zero 

divisors. 

ii. B has MOD neutrosophic idempotents if Zn has 

idempotents. 

iii. B has MOD neutrosophic pseudo zero divisors if [0, n) 

has pseudo zero divisors. 

 

Proof is direct and hence left as an exercise to the reader. 

 

Next we generate MOD neutrosophic interval neutrosophic 

semigroup under the operation +.  

 

This is illustrated by some examples. 

 

Example 3.52: Let S = {〈〈[0, 6) ∪ I〉I, +〉} be the MOD 

neutrosophic interval neutrosophic semigroup as  
I I I

3I 3I 3II I I+ =  and 

 
I I I

2I 2 2I 2 2I 2I I I
+ + +

+ =  are idempotents under sum. 

 

Further as P1 = 〈[0, 6) ∪ I〉 ⊆ S and P1 is a group.  

 

Likewise P2 = [0, 6) is also a group under +.  
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 P3 = 〈Z6 ∪ I〉 is again a group under +.  

 

P4 = Z6 is again a group under +. 

 

Thus P4 ⊆ P3 ⊆ P1 ⊆ S is chain of group and hence S is a  

S-semigroup.  

 

Several interesting properties in this direction can be 

derived and it is considered as a matter of routine and left as an 

exercise to the reader. 

 

Example 3.53: Let W = {〈〈[0, 7) ∪ I〉I, +} be the MOD 

neutrosophic interval neutrosophic semigroup. 

 
I I I I I I I

0 3.5 3.5I 3.5 3.5I 1.75 1.75I 1.75 1.75II , I , I , I , I , I , I
+ +  are all some of the 

MOD neutrosophic idempotents of W.  

 

In view of all these we have the following result. 

 

THEOREM 3.7: Let  

S = {〈〈[0, n) ∪ I〉I, +〉} be the MOD neutrosophic interval 

neutrosophic semigroup generated under +. 

 

i. S is a S-semigroup. 

ii. S has MOD neutrosophic idempotents.. 

iii. S has subsemigroups of infinite order which are not 

ideals. 

 

The proof is direct and hence left as an exercise to the reader. 

 

Next we proceed onto describe MOD neutrosophic interval 

neutrosophic semigroups under × on the semigroup  

〈〈[0, n) ∪ I〉I, +〉 by examples. 

 

Example 3.54: Let M = {〈〈[0, 10) ∪ I〉I, +〉, ×} be the MOD 

neutrosophic interval neutrosophic semigroup under product. 
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M is of infinite order. M has zero divisors, idempotents,  

pseudo zero divisors, neutrosophic zero divisors, idempotents 

and neutrosophic pseudo zero divisors. 

 

Example 3.55: Let B = {〈〈[0, 11) ∪ I〉I, +〉, ×} be the MOD 

neutrosophic interval neutrosophic semigroup under ×.  

 

B is a S-semigroup.  

 

We define I × I

pI  = I

pI  as we give more importance to the 

natural neutrosophic numbers only so I × I I

pI pII I= ,p ∈ [0, 11). 

 

Study in this direction is interesting and innovative and is 

left for the reader as it is considered as a matter of routine. 

 

Next we proceed onto give examples of MOD neutrosophic 

interval neutrosophic semirings. 

 

Example 3.56: Let S = {〈[0, 9) ∪ I〉I, +, ×} be the MOD 

neutrosophic interval neutrosophic pseudo semiring.  

 

S has MOD neutrosophic zero divisors and MOD 

neutrosophic idempotents. S is only a pseudo semiring as the 

distributive laws are not true in general. 

 
I I I I I I I I I

0 3 6 3I 6I 3 3I 3 6I 3I 6 6I 3I , I , I , I , I , I , I , I , I
+ + + +  are some of the 

MOD neutrosophic elements of S.  

 

We see I I I

3 6I 0I I I× = , I I I

6I 6I 0I I I× =  and so on. 

 

Example 3.57: Let S = {〈[0, 14) ∪ I〉I, +, ×} be the MOD 

neutrosophic interval neutrosophic pseudo semiring. 

 

S is not a semifield. S has zero divisors and MOD 

neutrosophic zero divisors. 

 
I I I I I I

2 7I 0 4I 7I 0I I I , I I I× = × =  are neutrosophic zero divisors. 
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I I I

7I 7I 7II I I× = ,  I I I

7 7 7I I I× =  and  

 
I I I

7I 7 7 7I 7 7II I I
+ + +

× =   

 

are MOD neutrosophic idempotents. Z14 ⊆ S is a ring so S is a 

SS-ring. Likewise S can be proved to be SSS-semiring.  

 

Thus study in this direction is interesting and innovative and 

it is left as an exercise to the reader. 

 

Example 3.58: Let M = {〈[0, 12) ∪ I〉I, +, ×} be the MOD 

neutrosophic interval neutrosophic pseudo semiring.  

 

Let x = 
I I I I

3 6I 9 9I 0I I I I
+

+ + +  and  

 

y = 
I I I

4 4 4I 8II I I
+

+ +  ∈ M;  

 

x × y = I

0I   

 

thus M has MOD neutrosophic zero divisors. So M is not a 

pseudo semifield. Now Z12 ⊆ M is a subring of M so M is a  

SS-semiring.  

 

Clearly if x = 
I I

4 4II I+  ∈ M. 

 

x × x = ( )I I

4 4II I+  × ( )I I

4 4II I+  

 

         = 
I I

4 4II I+  + 
I I

4I 4II I+
 

 

         = 
I I

4 4II I+  = x ∈ M. 

 

Thus M has MOD neutrosophic idempotents.  
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Also 

I I I

4 4 4I I I+ =  is a MOD neutrosophic idempotent with 

respect to + of M. 

 

Let x = I I I I I

9 4I 9I 0 4I I I I I+ + + +  ∈ M. 

 

x × x = I I I I I

9 4I 9I 4 0I I I I I+ + + +  = x is also an idempotent 

which is MOD neutrosophic. 

 

Let P = [0, 12)I ⊆ M; clearly P is a pseudo ideal of M.  

 

R = [0, 12) is only a pseudo subsemiring of M. 

 

Thus M has ideals of infinite order as well as subsemirings 

of infinite order which are not ideals.  

 

In view of all these we have the following theorem. 

 

THEOREM 3.8: Let S ={〈[0, n) ∪ I〉I, +, ×} be the MOD 

neutrosophic interval neutrosophic pseudo semiring. 

 

i. o(S) = ∞. 

ii. S has MOD neutrosophic zero divisors if [0, n) has 

zero divisors. 

iii. S has MOD neutrosophic idempotents. 

iv. S has [0, n)I = P ⊆ S to be the MOD neutrosophic 

pseudo ideal. 

v. R = [0, n) ⊆ S is a MOD neutrosophic pseudo 

subsemiring. 

vi. S is a SS-pseudo semiring. 

vii. S is a SSS-pseudo semiring if and only if Zn is a S-

ring. 

 

Proof is direct and hence left as an exercise to the reader. 

 

We suggest the following problems. 
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 Problems 
 

1. Give some interesting properties associated with C
I
(Zn) the 

natural neutrosophic finite complex modulo integers. 

 

2. Let S = {C
I
(Z40), ×} be the natural neutrosophic finite 

complex modulo integer semigroup. 

 

i. Is S a S-semigroup? 

ii. Find o(S). 

iii. Can S have S-ideals? 

iv. Can S have S-zero divisors? 

v. Can S have natural neutrosophic S zero divisors? 

vi. Can S have idempotents? 

vii. Can S have natural neutrosophic S-idempotents? 

viii. Obtain any other special property associated with S. 

 

3. Let S = {C
I
(Z27), ×} be the natural neutrosophic finite 

complex modulo integer semigroup.  

 

Study question i to viii of problem 2 for this S. 

 

4. Let W = {C
I
(Z47), ×} be the natural neutrosophic finite 

complex modulo integer semigroup. 

 

Study questions i to viii of problem 2 for this W. 

 

5. Let M = {C
I
(Zn), ×} be the natural neutrosophic finite 

complex modulo integer semigroup. 

 

Obtain all special features enjoyed by M when; 

i. n is a prime 

ii. n is a composite number 

iii. n = p
t
; p a prime t > 0. 

 

6. Let S = {C
I
(Z40), +} be the natural neutrosophic finite 

complex modulo integer semigroup under +. 

 

i. Find o(S). 
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ii. Find S-ideals if any in S. 

iii. Is S a S-semigroup? 

iv. Find subsemigroups which are not ideals. 

v. Find idempotents of S. 

 

7. Let P = {C
I
(Z29), +} be the natural neutrosophic complex 

modulo integer semigroup. 

 

 Study questions i to v of problem 6 for this P. 

 

8. Let S = {C
I
(Zn), +} be the natural neutrosophic finite 

complex modulo integer semigroup. 

 

 Study all the special features enjoyed by S when 

i. n is a prime. 

ii. n is a composite number. 

iii. n = p
t
; p a prime t ≥ 2. 

 

9. Let V = {〈C
I
(Z10), +〉, ×} be the natural neutrosophic finite 

complex modulo integer semigroup under ×. 

 

 i. Find o(V). 

 ii. Find all natural neutrosophic elements of V. 

iii. Find all natural neutrosophic zero divisors of V. 

iv. Find all natural neutrosophic idempotents of V. 

v. Is V a S-semigroups? 

vi. Can V have S-ideals? 

vii. Can V have S-zero divisors? 

viii. Obtain any other property enjoyed by V. 

 

10. Let W = {〈C
I
(17), +〉, ×} be the natural neutrosophic finite 

complex modulo integer semigroup under ×. 

 

 Study questions i to vii of problem 9 for this W. 

 

11. Let X = {〈C
I
(64), +〉, ×} be the natural neutrosophic finite 

complex modulo integer semigroup under ×. 

 

Study questions i to vii of problem 9 for this X. 
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12. Let S = {C

I
(Z15), +, ×} be the natural neutrosophic finite 

complex modulo integer semiring. 

 

 i. Find o(S). 

 ii. Show S is a semiring of finite characteristic 15. 

 iii. Find all idempotents of S. 

 iv. Is S  a S-semiring? 

 v. Can S have zero divisors? 

 vi. Prove or disprove S has ideals. 

 vii. Can S have subsemirings which are not ideals? 

 viii. Find any other special feature enjoyed by S. 

ix. Is S a SS-semiring? 

x. Is S  a SSS-semiring? 

 

13. Let M = {C
I
(Z47), +, ×} be the natural neutrosophic finite 

complex modulo integer semiring. 

 

 i. Study questions i to x of problem 12 for this M. 

 ii. Obtain any other special or distinct feature enjoyed by  

M. 

 

14. Let W = {C
I
(Z243), +, ×} be the natural neutrosophic finite 

complex modulo integer semiring. 

 

 Study questions i to x of problem 12 for this W. 

 

15. Let S = {C([0, 20))I} be the MOD neutrosophic finite 

complex modulo integer set. 

 

 i. Study all the special features enjoyed by S. 

 ii. If 20 is replaced by 29 study the special features and  

compare them. 

 

16. Let B = {C
I
([0, 24)), ×} be the MOD neutrosophic finite 

complex modulo integer semigroup. 

 

 i. Prove o(B) = ∞. 

 ii. Can ideals of B be of finite order? 
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 iii. Is B a S-semigroup? 

iv. Find all MOD neutrosophic zero divisors.  

Is it a finite collection or an infinite collection?  

v. Find all MOD neutrosophic idempotents. (Is it a finite  

collection?) 

vi. Can B have S-MOD neutrosophic zero divisors? 

vii. Can B have S MOD neutrosophic idempotents? 

viii. Obtain any other special feature enjoyed by B. 

 

17. Let M = {C
I
([0, 19)), ×} be the MOD neutrosophic finite 

complex modulo integer semigroup. 

 

 Study questions i to viii of problem 16 for this M. 

 

18. Let W = {C
I
([0, 64)), ×} be the MOD neutrosophic finite 

complex modulo integer semigroup. 

 

 Study questions i to viii of problem 16 for this W. 

 

19. Let V = {C
I
([0, 64)), +} be the MOD neutrosophic finite 

complex modulo integer semigroup. 

 

 Study questions i to viii of problem 16 for this V. 

 

20. Let S = {〈C([0, 45)), +〉I} be the MOD neutrosophic finite 

complex modulo integer additive semigroup. 

 

 i. Find all MOD neutrosophic idempotents of S. 

 ii. Can S have ideals? 

 iii. Prove S is always a S-semigroup. 

 iv. Can S have any other special feature enjoyed by it? 

 v. Prove S has also finite order subsemigroups. 

 

21. Let W = {〈C([0, 37)), +〉I} be the MOD neutrosophic finite 

complex modulo integer semigroup. 

 

 Study question from i to v of problem 20 for this W. 
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 22. Let A = {〈C([0, 128)), +〉I} be the MOD neutrosophic finite 

complex modulo integer semigroup. 

 

 Study question from i to v of problem 20 for this A. 

 

23. Let V = {〈C([0, 48)), +〉I, ×} be the MOD neutrosophic finite 

complex modulo integer semigroup under ×. 

 

 i. Show o(V) = ∞. 

 

 ii. Show V has infinite number of MOD neutrosophic zero  

divisors. 

 iii. Show V has infinite order ideals. 

 iv. Can V have finite order ideals? 

 v. Can V have S-subsemigroups? 

 vi. Can V have S MOD neutrosophic idempotents? 

 vii. Can V have S-MOD neutrosophic zero divisors? 

 viii. Can S have nilpotents of order two? 

 ix. Obtain any other special feature enjoyed by S. 

 

24. Let W = {〈C([0, 23), +〉I, ×} be the MOD neutrosophic finite 

complex modulo integer semigroup. 

 

 Study questions i to ix of problem 23 for this W. 

 

25. Let V = {〈C([0, 625), +〉I, ×} be the MOD neutrosophic finite 

complex modulo integer semigroup. 

 

 Study questions i to ix of problem 23 for this V. 

 

26. Let D = {C
I
([0, 28), +, ×} be the MOD neutrosophic finite 

complex modulo integer pseudo semiring. 

 

 i. Find o(D). 

 ii. Can D be a S-semiring? 

 iii. Is D a SS-semiring? 

 iv. Can D be a SSS-semiring? 

 v. Can D have MOD neutrosophic idempotents? 

 vi. Can D have MOD neutrosophic zero divisors? 
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 vii. Can D have S-MOD neutrosophic zero divisors? 

 viii. Can D have pseudo S-ideals? 

 ix.  Can S have pseudo ideals of finite order? 

 x. Obtain any other special feature enjoyed by S. 

 

27. Let V = {C
I
([0, 37)), +, ×} be the MOD neutrosophic finite 

complex modulo integer pseudo semiring. 

 

 Study questions i to x of problem 26 for this V. 

28. Let M = {C
I
([0, 256)), +, ×} be the MOD neutrosophic finite 

complex modulo integer pseudo semiring. 

 

 Study questions i to x of problem 26 for this M. 

 

29. Let S = {〈Z8 ∪ I〉I} be the natural neutrosophic modulo 

integer set. 

 

 i. Study all properties enjoyed by S. 

 ii. Find o(S). 

 

30. Let Z = {〈Z23 ∪ I〉I} be the natural neutrosophic finite 

neutrosophic modulo integer set. 

 

 Study questions i and ii of problem 29 for this Z. 

 

31. Let Y = {〈Z48 ∪ I〉I} be the natural neutrosophic finite 

neutrosophic modulo integer set. 

 

 Study questions i and ii of problem 29 for this Y. 

 

32. Let L = {〈Z256 ∪ I〉I} be the natural neutrosophic finite 

neutrosophic modulo integer set. 

 

 Study questions i and ii of problem 29 for this L. 

 

33. Let M = {〈Z47 ∪ I〉I, ×} be the natural neutrosophic finite 

natural neutrosophic modulo integer semigroup. 

 

 i. Find o(M). 
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  ii. Can M have S-ideals? 

 iii. Is M a S-semigroup? 

 iv. Can M have natural neutrosophic zero divisors? 

 v. Can M have natural neutrosophic S-idempotents? 

 vi. Find any other special feature enjoyed by M. 

 vii. Can M have ideals which are not S-ideals? 

 viii. Obtain any other special feature enjoyed by M. 

 

34. Let N = {〈Z24 ∪ I〉I, ×} be the natural neutrosophic modulo 

integer semigroup. 

 

 Study questions i and viii of problem 33 for this N. 

 

35. Let P = {〈Z256 ∪ I〉I, ×} be the natural neutrosophic modulo 

integer neutrosophic semigroup. 

 

 Study questions i and viii of problem 33 for this P. 

 

36. Let L = {〈〈Z25 ∪ I〉, +〉I} be the natural neutrosophic modulo 

neutrosophic integer semigroup under +. 

 

 i. Prove L is a S-semigroup. 

 ii. Show L is not a group as it contains idempotents  

under +. 

 iii. o(L) < ∞ prove. 

 iv. Can L have ideals? 

 v. Can L have finite order subsemigroups? 

 

37. Let Q = {〈〈Z28 ∪ I〉 +〉I} be the natural neutrosophic finite 

neutrosophic modulo integer semigroup. 

 

 Study questions i and v of problem 36 for this Q. 

 

38. Study questions of problem 36 for Z25 replaced by Z53. 

 

39. Let W = {Q, ×} (Q as in problem 37) be the natural 

neutrosophic finite natural modulo integer neutrosophic 

semigroup under ×. 
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 i. Find o(W). 

 ii. Is  W a S-semigroup? 

 iii. Can W have S-ideals? 

 iv. Can W have S-idempotents? 

 v. Find all natural neutrosophic elements of W. 

 vi. Find subsemigroups which are not ideals. 

 vii. Can W have natural neutrosophic zero divisors? 

 viii. Can W have S-natural neutrosophic zero divisors? 

 

40. M = {〈〈Z45 ∪ I〉I, +〉, ×} be the natural neutrosophic finite 

neutrosophic modulo integer semigroup under ×. 

 

 Study questions i to viii of problem 39 for this M. 

 

41. Study question i to viii of problem 39 by replacing Z45 by 

Z13 in problem 40. 

 

42. Let M = {〈Z40 ∪ I〉I, +, ×} be the natural neutrosophic finite 

modulo integer neutrosophic semiring. 

 

 i. Prove o(M) is finite. 

 ii. Prove characteristics of M is 40. 

 iii. Show M is never a semifield. 

 iv. Prove M has additive idempotents. 

 v. Prove M has idempotents under product. 

 vi. Prove M has zero divisors. 

 vii. Prove M have S-zero divisors. 

 viii. Can M have ideals? 

 ix. Can M have S-ideals? 

 

43. Let N = {〈Z217 ∪ I〉I, +, ×} be the natural neutrosophic finite 

neutrosophic modulo integer semiring. 

 

 Study questions i and ix of problem 42 for this N. 

 

44. Let T = {〈Z14 ∪ I〉I, +, ×} be the natural neutrosophic finite 

modulo integer semiring. 

 

 Study questions i and ix of problem 42 for this T. 
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45. Let M = {〈([0, n) ∪ I〉I} be the MOD neutrosophic interval 

modulo integer set. 

 

 i. Study all properties associated with M. 

 ii. Study if n is replaced by 4, 5, 81 and 48. 

 

46. Let B = {〈[0, 20) ∪ I〉I, ×} be the MOD neutrosophic interval 

semigroup. 

 

 i. Prove B is of infinite order. 

 ii. Can B be a S-semigroup? 

 iii. Can B have MOD neutrosophic zero divisors? 

 iv. Can B have MOD neutrosophic idempotents? 

 v. Can ideals of B be of finite order? 

 vi. Can B have S-MOD neutrosophic zero divisors? 

 vii. Can B have S-MOD neutrosophic idempotents? 

 

47. In problem (46) in B, [0, 20) is replaced by [0, 43), study 

questions i to vii of problem 46 for that B. 

 

48. Let M = {〈[0, 49) ∪ I〉I, ×} be the MOD neutrosophic 

interval semigroup. 

 

 Study questions i to vii of problem 46 for this M. 

 

49. Let L = {〈〈[0, n) ∪ I〉I, +〉} be the MOD neutrosophic interval 

semigroup under +. 

 

 i. Prove L is always a S-semigroup. 

 ii. Prove L has idempotents. 

 iii. Obtain all special features enjoyed by L. 

 iv. Can L have ideals? 

 v. Can L have subsemigroups of infinite order which are  

not ideals? 

 vi. Obtain all special features enjoyed by L. 

 

50. Let S = {〈[0, 9) ∪ I〉I, +, ×} be the MOD neutrosophic 

interval pseudo semiring. 
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 i. Prove o(S) = ∞. 

 ii. Can S have ideals of finite order? 

 iii. Can S have S-idempotents and S-MOD neutrosophic  

idempotents? 

 iv. Can S have S-ideals? 

 v. Can S have S-zero divisors and S-MOD neutrosophic  

zero divisors? 

 vi. Prove S is a SS-semiring. 

 vii. When will S be a SSS-semiring? 

 viii. Obtain any other special features enjoyed by S. 

 

51. Let V = {〈[0, 48) ∪ I〉I, +, ×} be the MOD neutrosophic 

interval pseudo semiring.  

 

 Study questions i to viii of problem 50 for this V. 

 

52. Let W = {〈[0, 143) ∪ I〉I, +, ×} be the MOD neutrosophic 

interval pseudo semiring.  

 

 Study questions i to viii of problem 50 for this W. 

 

53. Let M = {〈[0, 144) ∪ I〉I, +, ×} be the MOD neutrosophic 

interval pseudo semiring.  

 

 Study questions i to viii of problem 50 for this M. 
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