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Abstract 

The mass-energy formula 2E mc is thought to be derived by Einstein from special 

relativity. The present study shows that since the formula has also been derived from 

classical physics by Einstein, it has a deep-rooted connection with classical physics. The 

formula is implied by Maxwell’s electromagnetic momentum /P E c  and the Newtonian 

definition of momentum P mv . It can be derived from classical physics with c as the 

constant velocity of light in its medium ether. The present study also shows that within the 

framework of classical physics, this classical physics based formula is correct in other 

inertial frames that move relative to the ether frame as well. In contrast, Einstein’s 

derivation in 1905 seems logically flawed as a relativistic proof, because it relies on the 

classical kinetic energy definition, approximates at low velocity and fails to show mass-

energy equivalence in the same reference frame. Therefore, treating        as a 

quantity like the momentum      , which applies to both classical physics and special 

relativity if relativistic mass is used in the equation, appears to be more consistent with the 

logic of special relativity. Then the truly relativistic formula should be 

2 2 2 2 2
0 0/ 1 / / 1 /E E v c m c v c    derived by Laue and Klein, which corresponds to 

the formula of relativistic mass. 

Key words: Lorentz transformation; Mass-energy equation; Special relativity; 

conservation of momentum; conservation of energy; reference frame. 
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1. Introduction 

The mass-energy formula 2E mc has a prominent role in both physics research 

and public perception of science. The formula explains the power of nuclear bombs as well 

as the energy source of stars (Einstein 1946a; Rhodes 1986; Bahcall et al. 2001), and 

stimulates the imagination of the general public. It also underlies key components of the 

Dirac equation, which has accounted for the fine details of the hydrogen spectrum and 

implied the existence of antimatter (Dirac 1928). Although Einstein (1905) derived mass-

energy equivalence initially as an approximation, the accuracy of the formula has been 

confirmed by experiments to a high level of precision (Rainville et al. 2005).  

The explicit expression of 2E mc was first proposed by Planck (Planck 1907, 

1908; Stark 1907), but it is generally believed that Einstein (1905) derived the mass-energy 

formula 2E mc from special relativity. Fernflores (2012) asserts in Stanford 

Encyclopedia of Philosophy: “Einstein correctly described the equivalence of mass and 

energy as “the most important upshot of the special theory of relativity” (Einstein 1919), 

for this result lies at the core of modern physics”. Although there are still some disputes on 

Einstein’s discovery of the mass-energy equation and some researchers have argued that 

Einstein’s derivation might be logically flawed (Ives 1952; Jammer 1961; Ohanian 2009; 

Hecht 2011; Ma 2014), nobody seems to question whether the mass-energy equation is 

really an exclusively relativistic result.  

It has been long known that the mass-energy equation appears to be implied in 

Maxwell’s electromagnetic theory (Maxwell 1865; Poynting 1884; Poincaré 1900), and 

Lewis (1908) has provided a derivation within the framework of classical physics. Since 

the mass-energy equation might be derived within the framework of classical physics, it 

could be a result from classical physics rather than special relativity.  The aim of this study 

is to show that 2E mc is actually a formula common to both classical physics and special 

relativity, and the relevant relativistic formula is 2 2
0 / 1 /E E v c  . This study will prove 

this by examining Einstein’s first derivation of mass-energy relation in 1905 and his last 

derivation in 1946 and providing logically more consistent corresponding derivations.  
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It must be emphasized here that, this study does not question the validity of the 

mass-energy equation, nor does it question the validity of special relativity. The main fact 

this study intends to establish is that, the mass-energy equation has a status similar to that 

of the conservation of momentum rather than that of time dilation or length contraction. 

The mass-energy equation and the conservation of momentum are valid in both classical 

physics and special relativity; therefore, they are not relativistic conclusions. Time dilation 

and length contraction are not compatible with classical physics, hence they are relativistic.  

2. Criteria for being relativistic 

To determine whether the mass-energy formula is common to both classical physics 

and special relativity, we need to establish the criteria for being relativistic. What qualifies 

a formula as a relativistic result? The following criterion could be used: 

Proposition 1. A formula is relativistic if and only if the formula in its general form or 

specific forms can be derived only when assumptions or results unique to special relativity 

have been applied. 

 With this criterion, we can readily tell whether a formula or physical law is 

relativistic or not. If a formula can be derived without using any relativistic assumptions or 

results, no matter whether it is valid in special relativity, it is not a relativistic formula. 

Many laws in physics are valid in both classical physics and special relativity, but we 

cannot say those laws are consequences of special relativity simply because they are valid 

in special relativity. For example, the Newton’s third law and the conservation of 

momentum are still valid in special relativity, but they are not relativistic results or 

conclusions. Some conclusions in physics are not valid in classical physics or compatible 

with it, such as time dilation and length contraction, so that they are relativistic results. 

Although the concept of relativistic mass has been dismissed by many physicists (Okun 

2009), it is obviously not a concept in classical physics. 

Proposition 1 treats the necessity of using uniquely relativistic assumptions or 

results to derive a formula as a basic criterion for it to be relativistic. If the mass-energy 

equation can be derived without using relativistic assumptions or results, then it is not a 
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relativistic formula. When some relativistic conditions have been assumed, but the 

derivation of a formula must use a uniquely classical assumption or result, can it be 

relativistic formula? The following criterion could be used as an answer for this question. 

Proposition 2. If the derivation of a formula must use a result or assumption unique to 

classical physics, the formula cannot be viewed as relativistic. 

Proposition 2 puts a more restrictive constraint on what can be considered being 

relativistic. Some researchers may argue that special relativity contains classical physics, 

so using classical physics to derive a formula does not affect its relativistic nature. 

However, if a formula can only be derived under some conditions unique to classical 

physics (although they are low speed approximations of relativistic conditions), it cannot 

be extended to higher speed scenarios, so that it is not relativistic. For the mass-energy 

equation, if a unique classical condition or relation has to be used in its derivation, then it 

is not a relativistic formula. 

 The mass-energy equation is about the equivalence between mass and energy, but 

to energy measured in which reference frame is a mass measured in one reference frame 

equivalent? Is an object’s mass measured in reference frame A equivalent to its energy 

measured in the same reference frame (i.e. frame A), or its energy measured in another 

reference frame? To my knowledge, this question has not been raised or discussed so far. 

The following restriction might be imposed with respect to this question: 

Proposition 3. In the mass-energy equation 2E mc , energy E and mass m are measured 

in the same reference frame rather than different reference frames.  

 Proposition 3 requires us to keep track of the reference frames involved in 

measuring mass and energy during a derivation. Obviously, an object’s mass m measured 

in one reference frame (e.g. frame A) cannot have the same mass-energy relationship 

2E mc with values of its energy E measured in all reference frames, i.e.

2
any reference frame AE m c is incorrect, since the values of E measured in other reference 

frames depend on their velocities relative to frame A.  
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In classical physics, the issue of different reference frames is less noticeable, 

because at low velocity the variations of an object’s total energy in different reference 

frames due to kinetic energy differences between different reference frames are negligible 

compared with the energy implied by its rest mass. In special relativity, an object’s kinetic 

energy in some reference frames can be much larger than the energy implied by its rest 

mass, so identifying the reference frames where mass and energy are measured is essential 

for valid derivation of mass-energy relationships. If the derivation gives the equivalence 

between mass in frame A and energy in frame B in the form of 2E mc while the two 

frames move relative to each other, we know it is unlikely to be a correct derivation. 

3. Einstein’s non-relativistic derivation of mass-energy formula in 1946 

Einstein (1946b) gave his last derivation of the mass-energy equivalence in 1946, 

which is based on conservation of momentum and Maxwell’s classical theory of 

electromagnetism. Since the derivation is quite short, its key part is quoted here (Fig.1).   

 

Fig.1. An object B absorbing two wave complexes (S and S′) from opposite 

directions with energy E/2 each. A. Object B is at rest in frame K0. B. In 

frame K which moves along z-axis negative direction of frame K0 with 
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velocity v, object B is moving in the z-axis positive direction with velocity v, 

and the two wave complexes have an angle α with the x-axis, cv /sin a . 

 “We now consider the following system. Let the body B rest freely in space with 

respect to the system K0. Two complexes of radiation S, S′ each of energy E/2 move in the 

positive and negative x0 direction respectively and are eventually absorbed by B. With this 

absorption the energy of B increases by E. The body B stays at rest with respect to K0 by 

reasons of symmetry. Now we consider this same process with respect to the system K, 

which moves with respect to K0 with the constant velocity v in the negative Z0 direction. 

With respect to K the description of the process is as follows: 

The body B moves in positive Z direction with velocity v. The two complexes of 

radiation now have directions with respect to K which make an angle α with the x axis. The 

law of aberration states that in the first approximation 
c

v
a , where c is the velocity of 

light. From the consideration with respect to K0 we know that the velocity v of B remains 

unchanged by the absorption of S and S′. 

Now we apply the law of conservation of momentum with respect to the z direction 

to our system in the coordinate-frame K. 

I. Before the absorption let m be the mass of B; mv is then the expression of the 

momentum B (according to classical mechanics). Each of the complexes has the 

energy E/2 and hence, by a well-known conclusion of Maxwell’s theory, it has the 

momentum 
c

E

2
. Rigorously speaking this is the momentum of S with respect to K0. 

However, when v is small with respect to c, the momentum with respect to K is the 

same except for a quantity of second order of magnitude (
2

2

c

v
compared to 1). The z-

component of this momentum is asin
2c

E
or with sufficient accuracy (except for 

quantities of higher order of magnitude) a
c

E

2
or 

22 c

vE
 . S and S′ together therefore 
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have a momentum 
2c

v
E  in the z direction. The total momentum of the system before 

absorption is therefore 

2

E
mv v

c
  .      [(1)] 

II. After the absorption let m′ be the mass of B. We anticipate here the possibility that 

the mass increased with the absorption of the energy E (this is necessary so that the 

final result of our consideration be consistent). The momentum of the system after 

absorption is then 

'm v  

We now assume the law of the conservation of momentum and apply it with respect 

to the z direction. This gives the equation 

2
'

E
mv v m v

c
   .     [(2a)] 

or  

2
'

E
m m

c
  .      [(2b)] 

This equation expresses the law of the equivalence of energy and mass. The energy 

increase E is connected with the mass increase 
2c

E
. Since energy according to the 

usual definition leaves an additive constant free, we may choose the latter that  

2E mc .”      (3) 

There is no special relativity involved in Einstein’s derivation in 1946, which is a 

demonstration that derivation of 2E mc  does not require special relativity. Using 

Maxwell’s theory of electromagnetism and conservation of momentum, Lewis (1908) also 

derived 2E mc . Poincaré (1900) implicitly derived the mass-energy relation from 
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classical physics. Since neither Einstein’s derivation in 1946 nor Lewis’ derivation in 1908 

requires assumptions unique to special relativity, according to our Proposition 1, the mass-

energy formula 2E mc is not a result of special relativity.  

4.       is not a relativistic formula 

Some commentators claim that Einstein’s derivation in 1946 is also relativistic, 

because       of the classical electromagnetic theory, which contains the invariant c, is 

a relativistic formula. According to them, while      is also covariant under Galilean 

transformations,       is covariant exclusively under Lorentz transformations thus 

cannot be considered to be a classical formula.  

It seems laughable to claim that a formula that appeared dozens of years before 

Lorentz ether theory and special relativity is a relativistic formula. Can       be a 

classical formula? Of course, it was first derived as a classical formula from Maxwell’s 

classical theory of electromagnetism. In classical physics, light is a type of electromagnetic 

wave propagating in its medium ether, and c is the constant velocity of light in its medium 

(frame). Special relativity postulates the constancy of the speed of light, which is actually 

an expansion of classical physics’ constant velocity of light in its medium ether frame into 

all inertial frames.       is exactly a description of the momentum of wave packets in 

the ether frame in Maxwell’s classical electromagnetic theory. 

Being not covariant under Galilean transformations does not disqualify       

from being a classical formula. Mechanic features of sound are not covariant under 

Galilean transformations, but physics of sound is still a part of classical physics. In 

classical physics, light was treated as a mechanical wave in its medium ether, which is why 

      is not covariant under Galilean transformations. Unlike motion of material 

objects, mechanical waves have their privileged frame even in special relativity. A wave’s 

medium is a privileged frame for that wave, which cannot be covariant under Galilean 

transformations or Lorentz transformations. The motion of sound is not covariant under 

either Galilean transformations or Lorentz transformations.  
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Whether a formula is classical physics formula or relativistic formula depends on 

which it is derived from and which system it is consistent with.       is derived from 

classical electromagnetic theory and is consistent with ether-based classical theory, 

therefore, it is primarily a classical formula. After the advent of special relativity, 

physicists reinterpreted the meaning of c, making it the speed of light in any inertial frames 

rather than only in ether frame. This reinterpretation of c does not change the fact that 

      in ether frame is a classical physics formula. 

Since       in ether frame is a classical physics formula and in Newtonian 

mechanics     , we can obtain       for light wave packets in their ether frame. 

The velocity of light wave packets is c, so cPvPm //  in ether frame and Maxwell’s 

electromagnetic momentum /P E c  implies 

2

/P E c E
m

v c c
   ,  

            (4) 

This explains why Preston (1875), Poincaré (1900), De Pretto (1903) and Hasenöhrl (1904) 

had proposed or derived similar mass-energy relations well before Einstein postulated the 

constancy of the speed of light. Becquerel used conversion of mass into energy to explain 

the radioactive energy of radium in 1900, and the conversion ratio that he used is in the 

same order of magnitude as the mass-energy equation (Nature 2000). Rutherford (1904) 

and Soddy (1904) also proposed conversion of mass into energy as a source of radioactive 

energy before special relativity. 

As        for light wave packets in their ether frame is implied in classical 

physics, we can ask what the relationships between mass and energy in other reference 

frames should be. Following the design of the Michelson-Morley experiment, we can 

consider first the scenario where the direction of light rays is perpendicular to the direction 

of the velocity of the reference frame in question. Here the velocity of the reference frame 

is that relative to the ether frame, as in the Michelson-Morley experiment. Since in 

classical physics the velocity of light follows the Huygens principle, we have the two-way 
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velocity of light when the direction of light rays is perpendicular to the direction of the 

velocity of the reference frame    , 

   
 

 
            (5) 

In equation (5), d is the length of two-way light path, t the time interval needed for the light 

ray to cover the length d, and v the velocity of the reference frame relative to the ether 

frame. The two-way velocity of light has to be used because one-way velocity of light 

cannot be measured. 

 Using the classical momentum formula     , we obtain the momentum of light 

wave packets when the direction of light rays is perpendicular to the direction of the 

velocity of the reference frame, 

                     
  

  
             (6) 

We may draw an analogy from the influence of frame velocity on kinetic energy from the 

classical kinetic energy formula   
 

 
   . As energy is proportion to the square of 

velocity while momentum is proportional to the velocity, for a velocity change from c to 

       we have the energy of light wave packets when the direction of light rays is 

perpendicular to the direction of the velocity of the reference frame, 

      
     

  
        (7) 

In equations (6) and (7), m and E are the mass and the energy implied by the momentum of 

light wave packets in the ether frame respectively, and    and    are the momentum and 

energy of the light wave packets in the frame moving relative to the ether frame at v 

respectively.  If we use the values of momentum, energy and velocity of light measured in 

this frame, and         , we obtain the relationship between mass and energy 

           

       
         (8) 
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If we substitute equations (5), (6) and (7) into equation (8), we still have the same   

   , 

    
     

  
           

 
          

       

So       is true in this moving frame as well. This result shows that we can also derive 

equation (8) from       in the ether frame. 

 When the direction of light rays is parallel to the direction of the velocity of the 

reference frame, the two-way velocity of light measured by the moving frame is 

    
 

 
 

     

 
       (9) 

We have 

     
     

 
      

  

  
      

  

  
     (10) 

For a velocity change from c to          , we have 

     
       

 

  
       (11) 

If we use the values of momentum, energy and velocity of light measured in this frame, 

and         , we obtain the relationship between mass and energy 

           

       
         (12) 

In equations (10) - (12),    and    are the momentum and energy of the light wave packets 

in the frame moving relative to the ether frame at v respectively, when the direction of light 

rays is parallel to the direction of the velocity of the reference frame. 

If we substitute equations (9) - (11) into equation (12), we obtain 
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Therefore, in classical physics,       is true in all inertial reference frames. Again, we 

can also derive equation (12) from       in the ether frame. 

In the above analysis I have shown that in classical physics       or       
 , 

where A stands for any inertial reference frame, is true in all inertial reference frames, if 

energy, momentum and the velocity of light are all measured in the same reference frame. 

Being consistent with the invariant mass across different frames in classical physics, the 

mass implied by      and       is also invariant across different frames, while P 

and the velocity of light change across different frames.  

      
  tells us the relationship between mass and energy in the same reference 

frame, and we may ask a further question on the relationship between energy values 

measured in two different reference frames, for example, between those measured in the 

ether frame and in a moving frame. We could obtain the relationship between energy 

values measured in the ether frame and in a frame moving relative to it at v by using the 

velocity of light in the ether frame c for both frames. 

 In the scenario where the direction of light rays is perpendicular to the direction of 

the velocity of the reference frame, instead of          if we use 

                   (13) 

and substitute equations (6) and (7) into it, we have 

      
  

  
              

   
   

   
  

  

 
  

   
  

  

       (14) 
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In equation (14), we let        be the energy measured in the ether frame. 

Equation (14) shows the relationship between energy values measured in the ether frame 

and the frame moving relative to the ether frame at v, when the direction of light rays is 

perpendicular to the direction of the velocity of the reference frame. This equation has the 

same function form as that discovered by Laue (1911) and Klein (1918) for special 

relativity. 

Again, in the scenario where the direction of light rays is parallel to the direction of 

the velocity of the reference frame, instead of          if we use 

                   (15) 

by substitute equations (9), (10) and (11) into equation (15),  we obtain 

      
  

  
   

       
 

  
 

   
   

     
 

   

       
 

  

       
     (16) 

The equation (16) shows that when the direction of light rays is parallel to the direction of 

the velocity of the reference frame, the relationship between energy values measured in the 

ether frame and the moving frame is different from that when the direction of light rays is 

perpendicular to the direction of the velocity of the reference frame.  

 The difference between equations (14) and (16) reflects the fact that 

electromagnetism is not covariant under Galilean transformations. The design of the 

Michelson-Morley experiment was to measure the velocity of the earth relative to the ether 

frame by exploiting the difference between           and        , but they failed to 

find a significant one. Fitzgerald (1889) and Lorentz (1992, 1904) hypothesized length 

contraction to explain the null result in the attempts to measure the difference between  

         and        . With Fitzgerald-Lorentz length contraction, equation (16) will 

have the same function form as that of equation (14). 
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 From analysis in this section, we see that classical physics could not only logically 

have       and      , but also logically arrive almost at the relativistic formula 

  
   

        
 

  

        
 . Therefore, it is not logically justified to assert that       is a 

relativistic formula and       is an exclusively relativistic equation. The contribution 

of Lorentz ether theory in this is to ensure light rays in any directions have the same 

relationship with the ether frame via the Fitzgerald-Lorentz length contraction, and special 

relativity replaces the ether frame with any inertial frame. 

5. Einstein’s derivation in 1905 and its flaws as a relativistic proof 

It is Einstein’s first derivation (Einstein 1905) that links the mass-energy equation 

with special relativity. The derivation is based on a thought experiment that is unlikely to 

be achievable in laboratory (Ohanian 2009; Hecht 2011). Its key part is quoted here. 

“Let a system of plane waves of light, referred to the system of co-ordinates (x, y, z), 

possess the energy L; let the direction of the ray (the wave-normal) make an angle  with 

the axis of x of the system. If we introduce a new system of co-ordinates () moving in 

uniform parallel translation with respect to the system (x, y, z), and having its origin of co-

ordinates in motion along the axis of x with the velocity v, then this quantity of light—

measured in the system ()—possesses the energy 

22 /1

cos1

*
cv

c

v

LL







      [(17)] 

where c denotes the velocity of light. We shall make use of this result in what follows. 

Let there be a stationary body in the system (x, y, z), and let its energy—referred to 

the system (x, y, z) be E0. Let the energy of the body relative to the system () moving 

as above with the velocity v, be H0. 
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Let this body send out, in a direction making an angle  with the axis of x, plane 

waves of light, of energy ½L measured relatively to (x, y, z), and simultaneously an equal 

quantity of light in the opposite direction. Meanwhile the body remains at rest with respect 

to the system (x, y, z). The principle of energy must apply to this process, and in fact (by 

the principle of relativity) with respect to both systems of co-ordinates. If we call the 

energy of the body after the emission of light E1 or H1 respectively, measured relatively to 

the system (x, y, z) or () respectively, then by employing the relation given above we 

obtain 

LLEE
2

1

2

1
10         [(18)] 

22
1

2222
10

/1/1

cos1

2

1

/1

cos1

2

1

cv

L
H

cv

c

v

L
cv

c

v

LHH















 [(19)] 

By subtraction we obtain from these equations 

 
















 1

/1

1
)(

22
1100

cv
LEHEH .   [(20)] 

The two differences of the form H E  occurring in this expression have simple 

physical significations. H and E are energy values of the same body referred to two 

systems of co-ordinates which are in motion relatively to each other, the body being at rest 

in one of the two systems (system (x, y, z)). Thus it is clear that the difference H E  can 

differ from the kinetic energy K of the body, with respect to the other system (), only 

by an additive constant C, which depends on the choice of the arbitrary additive constants 

of the energies H and E. Thus we may place 

CKEH  000       [(21)] 

CKEH  111
      [(22)] 
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since C does not change during the emission of light.” (Einstein 1905) 

Equations (21) and (22) are the key in Einstein’s derivation, which is equivalent to 

a statement that (the change in) non-kinetic energy has the same value in all reference 

frames, i.e. the difference in energy values of an object measured in two reference frames 

is only the difference in its values of kinetic energy. This assertion by Einstein has been a 

major source of controversy regarding the validity of Einstein’s derivation in 1905. Ives 

(1952), Jammer (1961) and Arzeliés (1966) think that the mass-energy equation is implied 

by equations (21) and (22); without justifying them, Einstein’s derivation is invalid. 

However, the current definition of kinetic energy in relativistic mechanics has implied 

equations (21) and (22), which weakens the objection of Ives, Jammer and Arzeliés. From 

equations (21) and (22), Einstein derived an approximate mass-energy equivalence. 

“So we have  

















 1

/1

1

22
10

cv
LKK      [(23)] 

The kinetic energy of the body with respect to () diminishes as a result of the 

emission of light, and the amount of diminution is independent of the properties of the 

body. Moreover, the difference K0 − K1, like the kinetic energy of the electron (§ 10), 

depends on the velocity. 

Neglecting magnitudes of fourth and higher orders we may place  

2

210
2

1
v

c

L
KK  .” (Einstein 1905)    (24) 

Equation (23) is a logical consequence of (21) and (22), which states the difference 

in the values of an object’s kinetic energy measured in one reference frame at two time 

points (i.e. 0 1K K ) equals the difference between the changes of total energy measured in 

that frame (i.e. 0 1H H ) and the frame where the object is stationary (i.e. 0 1E E ) at these 
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two time points. The right hand side of equation (24) is an approximate of the right hand 

side of equation (23), which gives an appearance of the classical expression of kinetic 

energy. From this approximate, Einstein draws the conclusion that “if a body gives off the 

energy L in the form of radiation, its mass diminishes by 2/L c ”.  

The transition from equation (23) to (24) does show Einstein’s ingenuity in dealing 

with difficult problems in physics, but as a relativistic proof of the mass-energy equation, it 

lacks sufficient logical rigour.  

Firstly, 0K and 1K are obviously relativistic kinetic energy, which would not be 

equal to 
21

2
mv because

21

2
K mv is a classical formula. If relativistic kinetic energy 

21

2
relK mv , we cannot say that 2

2

1

2
rel

L
K v

c
 implies 2L mc or 2E mc . At least, we 

cannot say that 2

2

1

2
rel

L
K v

c
 implies a precise relationship 2L mc or 2E mc . 

Secondly, the mass-energy relationship from Einstein’s derivation seems to be 

velocity dependent. When v is larger, such as 0.8v c , magnitudes of fourth and higher 

orders cannot be neglected. So 2mcE   derived implicitly by Einstein in 1905 is only an 

approximate when v is relatively small, it is not a universal relation applicable to objects at 

all velocities. Einstein (1946a) acknowledged the imprecision of his mass-energy equation 

by noting that “It is customary to express the equivalence of mass and energy (though 

somewhat inexactly) by the formula 2mcE  ”.  

Thirdly and more importantly, according to our Proposition 3, mass and energy 

should be measured in the same reference frame, but in equation (24) 0 1K K and L (hence 

2/L c ) are not measured in the same reference frame. L is the radiation energy measured in 

the frame where the emitting body is stationary, while K0 and K1 are kinetic energy 

measured in the frame where the emitting body is moving with velocity v. As mass-energy 

equivalence should not be one in frame (x, y, z) and one in frame (), Einstein’s 
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“relativistic” derivation fails to show equivalence between mass and energy measured in 

the same reference frame. 

6. Derivation of mass-energy equation from conservation of momentum  

Einstein’s equations (21) and (22) are among the main controversial points 

regarding the validity of Einstein’s derivation (Ives 1952; Jammer 1961; Arzeliés 1966). 

The two equations are consistent with classical physics where the difference between the 

values of an object’s energy measured by two reference frames in relative motion is only 

kinetic energy. We know from the preceding section that Einstein failed to provide a valid 

derivation even with equations (21) and (22). Einstein (1935) tried to prove rest energy 

0
E m by asserting without proof that total energy 

0 2 2

1
1

1 /
E E m

v c

 
   

 
and kinetic 

energy is 
2 2

1
1

1 /
m

v c

 
 

 
. However, he did not give a derivation of 

2

0 0
E m c  . So far, 

all proofs of the mass-energy formula based on special relativity fail to show a mass-

energy equivalence in the same reference frame. 

Without equations (21) and (22), Einstein could have started with the conservation 

of momentum to derive the mass-energy relation. Then in the frame (x, y, z) where the 

radiating body is at rest, we have  

 0 1 1 0
2 2

S S
S S S

E E
P P P

c c
         (25) 

In equation (25), P stands for momentum, the subscript S indicates the frame where the 

radiating body is stationary, and  
2

E

c
 is the momentum of light wave packet in one 

direction (as in Maxwell’s classical electromagnetic theory, here Einstein’s L is replaced 

with the more conventional E for energy).  

In the frame (  ,, ) where the radiating body is moving at the velocity v,  
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2

0 1 1
2 2 2 2 2 2

cos1 cos 1 cos

2 21 / 1 / 1 /

S S
V V V S

vv v
E Ec c cP P P E

c cv c v c v c

  

    
  

  (26) 

In equation (26), the subscript V indicates the moving frame. When 0 , 

 
2

0 1
2 21 /

S

V V V

v
E

cP P P
v c

   


      (27) 

Since 22 /1/ cvvmvmP SVV   (here relativistic mass Vm is used for illustration 

purpose) , 

 2/ cEm SS  .        (28) 

In the frame where the radiating body is stationary, when energy E is emitted, there 

is a loss of mass 2/ cEm  . This mass-energy equivalence in the same reference frame is 

exact rather than approximate, which has been confirmed by experiments. From a 

measurement’s point of view, equation (28) is equivalent to equations (8) and (12); that is

2mcE  when the three quantities are measured in the same reference frame. 

From equation (27) and V VP m v , we can also obtain 

  
222 /1/ cvEcm SV      

Since 
2

S Sm c E  , let 
2

V Vm c E  , which is the energy (value) measured in the frame 

moving relative to the radiating body, we obtain 

 
22222 /1//1/ cvcmcvEE SSV  .    (29) 

Equation (29) is the relativistic formula describing the relationship between values of the 

same energy measured in two reference frames, which depends on their relative velocity v. 
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If we use subscript 0 to indicate measurements obtained in the frame where the 

radiating body is stationary, our new derivation reveals what Einstein should have proved 

is the equation (14) derived by Laue (1911) and Klein (1918)  

22
0 /1/ cvEE  .       

Equation (14) corresponds to the relativistic mass equation (Lorentz 1904) 

22
0 /1/ cvmm  .       

The essence of Einstein’s derivation in 1905 is actually an approximation of equation (14), 

2 4 6
20 0

0 0 0 2 4 6 22 2

1 3 5 1
( )
2 8 16 21 /

E Ev v v
E E E E v

c c c cv c
       


.  (30) 

Expanding the relativistic mass equation and using classical kinetic energy expression

21

2
K mv can get the same relationship when v is small, 

22 4 6
0 0 0

0 0 0 2 4 6 2 22 2

1 3 5 1
( )
2 8 16 21 /

m m v Ev v v
m m m m m

c c c c cv c
          


 (31) 

However, both equation (31) and Einstein’s derivation in 1905 describe relationships 

between variables measured in different frames, which violate Proposition 3, and need 

classical kinetic energy formula, which violates Proposition 2.  

Therefore, the relativistic result should be 
22

0 /1/ cvEE  , which is just a 

different expression of the relativistic mass equation 
22

0 /1/ cvmm  . This 

relationship between energy values measured in two reference frames has been shown by 

Laue (1911), using conservation of energy-momentum tensor and assuming that there is no 

energy flow in the rest frame. Klein (1918) extended Laue’s results to closed systems with 

or without flow of energy.   



21 
 

7. Logical shortcomings in Einstein’s derivation in 1946 and correct derivation using 

Einstein’s premise 

Einstein’s derivation in 1946 has the shortcoming of not distinguishing different 

values measured in the two reference frames. A wave complex has different energy values 

in two frames K0 and K with relative motion. In equations (1) and (2), the energy values of 

the wave complexes are those measured in frame K0, while the momentums are measured 

in frame K. The derivation is logically inconsistent, because mass-energy equivalence 

should be the equivalence when both mass and energy are measured in the same reference 

frame. 

To derive a more precise mass-energy equation, we need to know in which 

reference frame the variables are measured. We can firstly add subscripts to the variables 

so that we can keep track of the reference frames in which they are measured. We re-write 

equations (2a) and (2b) as  

vmcEvvm KKK 2
2

1 /  .     (32a) 

2
12 / cEmmm KKKK  .     (32b) 

In equation (32), 
1K

m is the mass before the absorption in the moving frame, 
2K

m  the mass 

after the absorption in the moving frame, and 
K

E the energy measured in the moving frame. 

From equation (32b), we obtain the mass-energy equation in the moving frame 

2

K K
E m c  .       (32c) 

So far, the derivation is in classical physics with electromagnetic waves having 

momentum. What is the relationship between mass and energy in the stationary frame?  

Lorentz relativistic mass formula has given us the relationship between values of a 

mass in different reference frames. Using Lorentz relativistic mass formula, we obtain 

from equation (32b) 
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0 02 01

22 2 2 2 2 21 / 1 / 1 /

K
m m m E

cv c v c v c


  

  
,   

which gives 

222
0 /1/ cvcmEK  .     (33) 

When 0v  , we have the mass-energy equation in the stationary frame 

2
00 cmE  .       (34) 

Therefore, the relativistic energy formula is still equation (14), i.e., what Laue (1911) and 

Klein (1918) have found 

 
22

0 /1/ cvEE  . 

Equation (14) is the correct formula for relationship of relativistic energy values 

between two reference frames with relative motion. The result reveals the symmetry 

between changes in relativistic mass and in relativistic energy in the moving frame. The 

equation 
2E mc can be obtained approximately from the correct relativistic equation only 

when classical kinetic definition 
21

2
K mv is used and the requirement of measuring mass 

and energy in the same reference frame (Proposition 3) is dropped.   

8. Discussions 

Strictly speaking, the two derivations presented in this paper and many other 

derivations so far are only illustrations of the mass-energy equivalence contained in 

Newtonian mechanics and Maxwell’s electromagnetic theory with special scenarios. If in 

Newtonian mechanics there were another type of momentum which had no corresponding 

mass or inertia, 
WithoutMass

P mv , equations (2), (28) and (32) and all other similar equations 

would not be valid. If /m P v , we can obtain the mass-energy equation directly from 
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P mv and electromagnetic momentum /P E c . When a material object with mass m is 

converted completely into electromagnetic waves, the total energy released is 
2E mc .  

The mass-energy equation can be derived from classical physics without involving 

special relativity, while in Einstein’s “relativistic” derivation 
2E mc cannot be obtained 

without resorting to classical kinetic energy definition and approximation at small velocity. 

Even with classical kinetic energy definition and approximation at small velocity, Einstein 

still failed to prove 
2E mc for mass and energy measured in the same reference frame. 

Although      and       in classical physics and
22

0 /1/ cvEE  in 

special relativity have been known to physicists for a long time, most physicists and the 

general public still strongly believe that       is an exclusively relativistic result, 

overlooking the deep-rooted connection of the mass-energy equation with classical physics. 

Therefore, establishing the true identity of        is not only important in physics, but 

also philosophically and historically significant. Attributing a formula contained in 

classical physics exclusively to special relativity distorts the historical process of human 

understanding of the nature. 

From the present study, we may draw the following conclusions: 

Firstly, the mass-energy equation 2E mc is contained in Maxwell’s classical 

electromagnetic theory and the momentum definition of Newtonian mechanics. With the 

momentum definition in Newtonian mechanics P mv  and Maxwell’s electromagnetic 

momentum /P E c , the mass-energy equation 2E mc should be a logical consequence. 

Secondly, all logically valid derivations of 2E mc , where both mass m and energy 

E are measured in the same reference frame, rely on the two classical equations P mv

and /P E c . No matter whether a derivation is under classical or relativistic conditions, 

the two equations must be held true. If the two equations are denied in any of those 

derivations, it is not possible to arrive at 2E mc logically. If these two equations are held 
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true, the mass energy equation 2E mc can be obtained directly without the special 

scenarios assumed for those derivations. 

Thirdly, since 2E mc can be derived without resorting to any relativistic result, it 

is a formula from classical physics, applicable to both classical physics and special 

relativity when relativistic mass is used in the equation. 

Fourthly, the relativistic transformation of energy (values) between different 

reference frames is 22
0 /1/ cvEE  . 

Fifthly, Einstein’s “relativistic” derivation in 1905 relies on the classical kinetic 

energy definition, describes implicitly a relationship between mass and energy measured in 

different reference frames and leads only to an approximation at low velocity for a velocity 

dependent equation; hence it is not logically valid as a relativistic proof of the mass-energy 

equation 2E mc . 
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