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Abstract

The wave-particle duality is one of the most remarkabteepts in physics ever
discovered. It is a central pillar upon which the enttheory of quantum
mechanics is based. However the origin of the waveeparduality is
unrevealed yet and is generally taken as a postulate eaprgsa fundamental
fact of nature. Here we disclose the origin of thisad@ble fact of nature. We
show that the introduction of (fermionic or bosonigtlgange symmetry for the
state describing a group of particles of matter would nayuesdd those particles
to demonstrate wave-like character from particle-likearabter. Thus the
existence of (fermionic or bosonic) exchange symmetrgrgnthe particles of
matter is absolutely necessary for their wave charéetmanifest thus shedding
light on the microscopic origin of the peculiar quantoehavior of matter.
Keywords. wave character of matter, exchange symmetry, quantum

superposition, double slit experiment

1 Introduction
The fundamental nature of light had been an importardtigmein the time of

Sir Isaac Newton. Newton proposed, in the year 1704,atpuscular theory of



light in which he argued the light to be composed of fiayticles called
corpuscles [1]. According to his theory light consistsaadtream of particles
whose path is modified when it hits objects. Using the&tupe he explained
various phenomena associated with light e.g. reflactirefraction etc. A
contemporary proposal by Christian Huygens however eldithat light was
actually made up of moving disturbances in its medium of gatman giving
rise to the wave theory of light [2]. For around atuoen after Newton, the
corpuscular theory of light was generally accepted agsdhgre of light however
with the experiments of Thomas Young in the year 1801, Higgeave theory
of light was vindicated [3]. At the start of the™6entury the quantum theory of
light was initiated by Max Planck when he explainedrduiation spectrum of a
black body by assuming the quantized nature of the lighdéssoni from the black
body [4]. This quantum theory of light was furthered ragjteened by Albert
Einstein in 1905 when he explained the photoelectric etigcassuming the
guantized absorption of light by a metal [5]. Thus thbtligas argued to consist
of both the wave and particle characteristics as#ime time depending upon the
experiments performed on them. In some experiments dKé&action,
interference etc. light demonstrated a wave like behawbile in other
experiments like the photoelectric effect it needed rigka like description.
Such a dichotomy led to the birth of wave-particle dualtijght.

Striking an analogy with the wave-particle duality ghli, Louis de Broglie
in 1924 postulated that just as the light contains dual diesir@eave and particle
like) similarly even the matter contains a dual chataof being simultaneous
wave like and particle like [6]. He proposed a wave toabsociated with a

moving particle of matter of momentum ‘p’ with a wavejémi=h/pwhere h is



the Planck constant, in analogy with the case of .lighe light particles, i.e.
photons, are known to propagate with the spee299792458 m/s). However
de Broglie hypothesis was applicable to matter particlessimg at non-
relativistic speeds too. The hypothesis was later vdritiy a number of
experiments which then became a fundamental fact wirenagiving birth to
guantum mechanics [7-10]. However, the applicability ofdaeBroglie theory
to non-relativistic massive particles is curious.

The origin of this wave-particle duality of matter hasnained elusive and
has, so far, been accepted only as a postulate reprngsanftindamental fact of
nature. In this papewe go a step ahead aedlcidate the origin of this wave-
particle duality of matter. We intend to disclose therascopic mechanism for
the formation of wave character from the particlesnatter. We stress on the
importance of the fermionic or bosonic exchange symnationg the particles
of matter as a necessary component for forming waeeelharacter from them.
Quantitative estimations for the properties of quantuystesns are well
established via Schrodinger or Dirac formalisms. The wvkngsues regarding
guantum mechanics mainly arise from an interpretatigaaht of view and

would form the subject of this paper.

2 Reaultsand Discussion

One of the most revealing experiments as far as thetwuaproperties of
matter are concerned is the double slit experiment peedwith electrons [11].
This experiment involves shining a beam of mono-energlatrens upon two

parallel, closely spaced (spacidgs of the order of the de Broglie wavelength of



the electrons) narrow slits and measuring the ele@attern on a detector screen
beyond the double slit. Surprisingly the electron pattexeais interference
fringes characteristic of the wave character foriticglent electrons. The same
experiment when repeated with reduced incident electreadlto an extent that
only a single electron could pass through the apparatugiraeasurprisingly,
reproduces the interference fringes like before, cleaglealing the wave
phenomena to be associated with ‘individual’ electrons.

We, too, in our discussion will begin with the double skperiment with
electrons. In this case the incident electron begpnagided by an electron gun.
Let us, for the sake of illustrating the origin of wawehavior from electrons,
approximate the electron reservoir (infinitely many &tats) inside the electron
gun to represent a gas of classical particles i.e. lappsoximate every incident
electron to be a classical particle. Since clasgeaticles have well defined
trajectories, we will associate every electron vativell defined trajectory for its
travel through the double slit apparatus. Few electrondasie an overlap of the
trajectory so there will be a statistical distriloutiof the number of electrons as a
function of their trajectories. If we shine infingeimany electrons over the
double slit, the predicted statistical distribution Vol ultimately obtained. Now
let us, for illustrative purpose, take an example ofetltfistinct trajectories ‘A’,
‘B’ and ‘C’ (see Fig.1). Let us put an electron into lea¢ these trajectories. Let
us assume that the electron in ‘A’ is moving throughdbeble slit at an instant
of time. Now we introduce fermionic exchange symmetnyorag the three
electrons (and subsequently among all electrons akervoir) and evaluate its
consequences for the trajectory of the moving electgae (supplementary

information section A for a more elaborate discussiolrhe introduction of



fermionic exchange symmetry between the electrons occupiirand ‘B’ will
force the moving electron to pass through ‘B’ simultasgowith ‘A’ (and vice
versa). Similarly, an exchange with the electron in ‘@ill force the moving
electron to simultaneously pass through ‘C’ along withaAd so on so forth.
Thus the fermionic exchange symmetry among all the iefiaiectrons of the
reservoir will force the electron in ‘A’ (and alltleer electrons too) to
simultaneously pass through the trajectories of arogectrons of the reservoir
giving rise to its (their) presence in an extended regithe space (a typical
behavior expected from a wave). Since there are infinitany electrons in the
reservoir their trajectories will form a continuunside the cross-section of the
incident electron beam. Thus we see that the effetheofermionic exchange
symmetry is to smear the electron’s probability disttion from a Dirac delta
function (corresponding to a ‘point’ particle) to a Wedront’ extending over the
surface of the beam cross-section of the electron gkor any overlap of
trajectories the number of electrons possessing thadric exchange symmetry
increases proportionately, leading to an increase of ammplitude of the
‘wavefront’ at that point consistent with the clasdistatistical distribution. Thus
we appreciate the importance of the fermionic exchangemsyry in
compressing the entire information of the classicdissizal distribution for the
electron beam inside one incident electron such that ihgleselectron
probability distribution in space resembles the classtatistical distribution
Thus we observe that the fermionic exchange symmetdy kea(i) the formation
of a ‘wavefront’ of the probability distribution fohé¢ electron in space and (ii)
the simultaneous propagation of all the electrons efrdservoir through the

double slit. All of the electrons move through the doubteaslonce but partially



such that their integrated probability flux equals thedent electron flux (see
supplementary information section A).

Thus a well defined trajectory, a hallmark of classibahavior of the
particles, is incompatible with the existence of the ferme (or bosonic)
exchange symmetry between those particles. Instead, esbddsabove, the
electron trajectory spreads over the region of thssecal statistical distribution
forming a ‘wavefront’ in space laying the groundwork for thlemation of wave
nature of electrons. However a wave has many otheibwaes like e.g.
wavelength, phase etc. too. It remains a task to justéget attributes as arising
because of the fermionic (or bosonic) exchange symnietiey.wavelength of a
matter wave is given by the de Broglie formula. Fstifying the applicability of
the de Broglie formula to matter waves and to elucideteofigin from the
fermionic (or bosonic) exchange symmetry among partiglestefer the reader
to the supplementary information section B. The intergsssue is related to the
phase of the matter wave. From elementary waveyhes well known that a
wave has both +ve and -ve phases corresponding to +veeaddplacements of
a physical quantity about a reference value. The pha$eresices among
superposing waves are responsible for generating the istecéepattern which
is the characteristic of their wave nature. In theeoaf the electron waves in the
double slit experiment, we argue that the origin of diffiéiphases arise from the
passage of the two (‘partial’) electrons either throwgime slit or through
different slits. It is argued that these two differgatssages would contribute
differently towards the interference pattern. The agssof the two electrons
through the same slit would not contribute to the fatence pattern while their

passage through different slits would contribute to tiberference pattern. This



information is encoded (and distinguished) in the phastheofelectron wave.
Without loss of generality we can assume that the gadssough different slits
generates a +ve phase while the passage through thesbgenerates a -ve
phase. Since there are infinitely many electronfienréservoir, for any arbitrary
electron nominally passing through the upper slit, equal numbelectrons
passes through the upper slit and through the lower s$libfalvhich have
fermionic exchange symmetry with it. As a result fassage of the electron
(nominally through the upper slit) would generate a wavegokl amplitude for
both the phases at any arbitrary point ‘P’ on the asiter of the double slit (in
general, there will be a phase difference between thetiphases reflecting the
path length difference for the point ‘P’ from both 8i#s.). Thus we rationalize
the emergence of two different phases in a matter Wwawesuch an argument.
Following the origin of two different phases of a mattave in a double slit
experiment, a natural question arises as to how orlaiegghe existence of two
such phases in a matter wave propagating in free spage Wigge is no such
physical double slit arrangement present. In order to exgieg we need to take
recourse to the single slit diffraction experimentevdin a mono-energetic
electron beam falls on a single slit and then gefftsadied (see Fig.2). This
diffracted electron beam is collected on a screen &iet the single slit and the
diffraction pattern is observed akin to the one ob=@mwhen we shine photons,
instead of electrons, on the single slit. The themakanalysis of this diffraction
experiment involves dividing the slit widtd)(into two equal halves and treating
them as harboring the continuum of double ‘infiniteslyakide slits arranged
side by side along the slit width. These are not phystis rather they are

‘virtual’ slits (Following Huygen’s principle every pointnathe wavefront acts



like a secondary source of light emitting spherical @gaf2]. Thus every point
along the slit width acts like a point source for tphéesical wavefront. Using
this concept we can hypothetically divide the slit widthoia continuum of
infinitesimally wide sections each of which can ak¢ khe ‘point’ source). Then
the differences in the path lengths arising from thesareant ‘virtual’ double
slits are calculated for any arbitrary point ‘P’ on 8Soeeen in order to calculate
the diffraction pattern. Note that the point ‘P’ hasaatribution from an equal
length of the upper slit continuum and the lower slitzwmum. Thus the wave at
‘P’ will contain both the phases having equal amplitudesept with a phase
difference (corresponding to the path length differefuzepoint ‘P’ from the
upper and lower slit continuum) between both of thene (sepplementary
information section C). The observed diffraction eattis a result of this phase
difference. The free space can then be simulated loygtéike limitd—co. In this
limit we recover the uniform intensity as expected fowae moving in an
isotropic space since the diffraction pattern vanishésisTwe have explained
qgualitatively how the different attributes of a wavearacter emerge within
particles when we switch on the fermionic (or bosomigrhange symmetry
among them.

Going back to the double slit experiment, an electronimggsbrough the
upper slit would then generate a secondary electron waxretfre ‘point’ source
of the upper slit and an electron passing through the Idiverasild do the same
from the lower slit. These secondary electron wdkies interfere to generate an
interference pattern marked by a complete destructivdenteace from waves of

equal amplitudes with phase differencemfdmong them.



Following the origin of the wave nature of matter asiag due to the
existence of the fermionic (or bosonic) exchange symynet question arises
whether wave theory could be applied to classicatabjin everyday life like
bat, bus, football etc. To date, it is generally ddedd that since all physical
objects are made up of ‘quantum’ particles (like e.g. pratentrons, electrons
etc.) the wave theory which is applicable to these quaptanicles is naturally
applicable even to such macroscopic objects but since é¢heigy scales are
much higher than those for the quantum particles, the gomatfects are not
visible among them. Philosophical debates about the tyalioi quantum
mechanics have occurred in the past, the famous one beirf@chrédinger’s cat
paradox [12], which were often used to discredit quantum amech (or certain
interpretations of quantum mechanics). Our position dweris that a paradox
like the Schrodinger’s cat paradox is non-existent sione cannot apply
guantum mechanics to the two body system of a cat aradliaactive atom
trigger since there is no such exchange symmetry betiaabrof them. Thus the
extrapolation that quantum mechanics would be naturallylicafe to
macroscopic objects is against our view. In our opinion tyuamechanics only
applies to particles having fermionic (or bosonic) exckasgmmetry among
themselves (see supplementary information section D). fdct all the
experimental evidences obtained so far concerning thenat®n of quantum
behavior has always been obtained from such partidieshws consistent with
our viewpoint. And even for these cases it applies anbjer certain conditions
where such an exchange symmetry is maintained. Thergtaations where the
fermionic (or bosonic) exchange symmetry can be suppressedg the so-

called identical particles via localization process [d3yia specific experimental



techniques used [14]. In such cases the electron under stutty fambto exhibit

guantum behavior.

3 Conclusion

In summary, we highlight the origin of the wave theofyarticles within the
realm of quantum mechanics. We argue that the presenderrionic (or
bosonic) exchange symmetry among the particles of miatiedispensable for
the manifestation of quantum behavior among them. Thenooijtheir wave
character is rationalized through the presence of sxatteage symmetry among
them. We justify different attributes of their wawdharacter through such
exchange symmetry. Finally, we argue that quantum mechamcg applicable
for everyday macroscopic objects due to the absencerwidnic (or bosonic)
exchange symmetry among them but instead claim its appiigabnly for

identical particles which possess such exchange symnmtmygthemselves.

References

[1] Newton, I. (1998) Opticks - Commentary by Nicholas Hun{@ctavo ed.).
Palo Alto, Calif.: Octavo.

[2] Huygens, C. (1690) Traité de la lumiere. Leiden, NethestaRater van der
Aa.

[3] Young, T. (1803) Bakerian Lecture: Experiments and calculgtielative to
physical optics. Philosophical Transactions of the Rogaley 94, 1-16.

[4] Planck, M. (1914) The theory of Heat Radiation. P. Bla's Son & Co.

Philadelphia.

10



[5] Einstein, A. (1905) Uber einen die Erzeugung und Verwandlung.idbges
betreffenden heuristischen Gesichtspunkt. Annalen der PHBklin),
322(6), 132-148.

[6] de Broglie, L. (1924) Recherches sur la théorie des qu&fitd. thesis,
University of Paris.

[7] Davisson, C. J. (1928) The Diffraction of Electrons byrgs@l of Nickel.
Bell System Tech. J. (USA: American Tel. & Tekj1l), 90-105.

[8] Davisson, C. J. (1928) Are electrons waves? Franklitituibs Journal 205,
597-623.

[9] Doak, R. B.et. al. (1999) Towards Realization of an Atomic de Broglie
Microscope: Helium Atom Focusing Using Fresnel ZonedglaPhys. Rev.
Lett. 83, 4229-4232.

[10] Shimizu, F. (2000) Specular Reflection of Very Slow Metastditdbon

Atoms from a Solid Surface. Phys. Rev. L&36,987-990.

[11] Feynman, R. P., Leighton, R. B. and Sands, M. (1965) Hé&yman
Lectures on Physics. US: Addison-Wesley, Vol. 3, p 1.1).

[12] Schrodinger, E. (1935) Die gegenwartige Situation in der

Quantenmechanik Naturwissenschaften. Naturwissenscl23{t&07-812.

[13] Patil, S. Origin of non-Fermi liquid behavior in heavynfigsn systems: A

conceptual view. arXiv:1409.7156 (or viXra:1511.0040).

[14] Patil, S., Generalov, A. and Omar, A. (2013) The unexaeabsence of
Kondo resonance in the photoemission spectrum of £eRAlPhys.: Cond.

Matt. 25, 382205.

11



//
C d
E-gun —
B

D

Interference Pattern

Fig.1. Schematic diagram for the double slit experiment with electrons. An
electron gun shoots mono-energetic electrons at the dslitil&idth d)
arrangement. Three electron trajectories ‘A, ‘Btd@’ are shown for
illustration. Trajectory ‘A’ passes through upper sligjeéctory ‘B’ passes
through lower slit and trajectory ‘C’ hits the barrierhetween the double slit.
The screen S records the interference pattern frostretes passing through the

double slits.
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Fig.2. Schematic diagram for the single dlit diffraction experiment with
electrons: An electron gun shoots mono-energetic electrons airigée slit
(width d) arrangement. Three electron trajectories A, B amadeChown for
illustration. The screen S records the diffractiongratfrom electrons passing
through the single slit. The slit is hypothetically disl into two equal parts (for
the diffraction analysis) into the upper slit continuand lower slit continuum
each containing a continuum of ‘virtual’ slits which akelsources for
secondary electron wavefronts. Corresponding ‘virtua$ §om the two
continuums act like a pair of double slits that causrfietence effects at ‘P’
(see the panel at top left. Such continuum pairs of dalibdeare depicted by
different colors). The collective interference tfsaich pairs of ‘virtual’ double

slits give rise to the diffraction pattern on S.
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Supplementary Information

Section (A) Quantum superposition and the physical meaning of the

fermionic (or bosonic) exchange symmetry

Consider two electrons ‘1" and ‘2’ forming a singlet stdileen their wave function can be written as
|t)it)2—[L){1)2. This state contains a linear combination of a twaiga term and its particle

exchanged counterpart. Note that in this state each eofeléctrons is int and | spin states
simultaneouslyThus we clearly see that the fermionic exchange symmetry ateoirgres ‘forces’ an
electron to be in multiple states simultaneously givingtise superposition of states.

We will try to evaluate the consequences of this supeipogiarising from the fermionic exchange
symmetry) among the electrons inside the electron gtlhrealouble slit experiment as described in the
main text of the manuscript.

Discussion [1]

The classical state for the infinite number of sdigal’ electrons (electrons ‘1’, ‘2’, ‘3, ‘4'...... etc.
passing through the trajectories A, B, C, D...... etc. resygag)i of the electron gun can be represented

by (JA){B)AC)4D)x........uptow no. of electron:, When we switch on the fermionic exchange symmetry
between electrons 1 and 2, the wave function for thate number of electrons would become:

{(JA)xB)2C)qdD}u........ uptoce no. of electrons-(| )8 ¥ & )D....... upto nof electrong}

In this state electron ‘1’ is passing through the trajgées A and Bat the same timthus extending the
distribution of its probability in space (along both thagectories A and B). If now further we switch
on the fermionic exchange symmetry among three election ‘2’ and ‘3’ then the resultant state
would be:

{(JA)xB)2C)4D}u........ uptoce no. of electrons-(| 4 & B D...... upto  naof electron$
—(|C)B)4A)dD)u.........uptoeo no. of electronst-(| ¢ A B D.....uptoe no. of electrons
—(B}A)4C)4D)a........... uptoco no. of electronst(| B )& 4 D...... upto  nof electron$}
A A A)
=|(|B)r |B)2 |B)g O(|D)4....... uptoeo no. of electrons
Ch Q2 O3

The resultant state is the tensor product of the Sthtesrminant for the three electrons (‘1’, ‘2" and
‘3") and a state for the remaining ‘classical’ eleco®ne can see that in this state electron ‘1’ is
passing through the trajectories A, B andi@ultaneously

{Note: The above treatment, although demonstrated for electrons,espph principle, to any
fermionic system and can easily be extended to bosons too. In fatd diilinterference experiments
have been performed for a number of fermions as well as bosons afetémtee phenomena has been
observed for all of them. If we have a bosonic system then a partichange will not change the sign
of the wavefunction. In that case the resultant state for the ala®eewill become:

(JA)B)4C)dD)a.........uptoco no. of electrons-(| A )& B D...... upto  nof. electrong
+(|C)B)3A}4D)a......... uptoco no. of electrons-(| & A B ... uptoco no. of electrons
+(|B)JA)4C)4D)a......... uptoeo no. of electrons-(| B & A D...... upto  nof. electrong
}

Thus we see that by introducing the fermionic exchange syrynamong all the electrons of the
electron gun we make electron ‘1’ pass through the taajes of all the electronsimultaneously
Since the choice of the electron is arbitrary tfeeeethe conclusions drawn for electron ‘1’ holds, in

S1



general, for every other electron also; that meaesyeslectron will pass through the trajectories of all
the electrons simultaneously. Now if we assume electroto be moving through the double slit at a
particular instant of time then it is ‘forced’ to move dhgh the trajectories of all the electrons
simultaneously thus creating a ‘wavefront’ in space. Tvasefront extends over the crosssectional
area of the incident electron beam. Since therénfinite number of electrons in the electron gun the
crossectional distribution of their trajectories hiit the incident electron beam would form a
continuum. Therefore this ‘wavefront’ is continuousass the crosssectional area of the incident
electron beam. Thus we argue how a wavefront arisesfdite gas of moving (infinite) classical
particles upon introducing the fermionic exchange symmetgng them. At this stage the following
picture emerges: We have the distribution of probalitityevery constituent electron (electron ‘1’ as
well as other electrons) into each of the trajéetoA, B, C, D etc. For moving electrons (e.g. etstt

‘1" in above case) the resulting wavefront is easy togim&aand is moving in space denoting the
motion of the electron. For remaining electronseat (for whom the probability is distributed, too,
among all the trajectories due to the exchange symmeike a&lectron ‘1) the ‘wavefront’
(‘wavefront’ here implies distribution of the electracross different trajectories) is hard to imagine
since they are at rest but nevertheless it existss We argue how every constituent electron (moving
as well as at rest) will form a ‘wavefront’ in sgac

Discussion [2]

Furthermore, there is yet another aspect for theetprences of this fermionic exchange symmetry
which needs to be highlighted as well.

Let us denote the different wavefronts by, WW,, Ws, W,,.... etc. These wavefronts can be thought of
as different states available for the occupation deriht electrons i.e. electron ‘1’, electron ‘2,
electron ‘3, electron ‘4',...... etc. Let us assume, W, W, W,,.... etc. to be occupied by electron
‘1", electron ‘2’, electron ‘3’, electron ‘4',...... etcespectively. Then the many electron state for such

system can be written &$Wi)JW,)3dW;)dW,)a........uptoeo no. of electron:, Since we have assumed
electron ‘1’ to be moving while the others are at thstefore W will denote a moving wavefront

while W,, W3, W,,.... etc. will denote wavefronts which are at rest. Whieere is a fermionic

exchange symmetry between electron ‘1’ and ‘2’ themhey electron state can be written as

{((W 1 W,)dW)dW ) 4.......uptoco no. of electrons-(| Y| W Y4 Waoooo upto  nof. electrong}

In this state electron ‘1’ occupies the wavefronts(Woving) and W (at rest)at the same timeThus
we see that a part of electron ‘1’ is at rest and d¢ingaining part is in motion simultaneously. Also we
observe that the moving wavefront, W& simultaneously occupied by electrons ‘1’ and ‘2’ thusrbjea
showing that both the electrons are in a simultanetate sf motion. Thus the fermionic exchange
symmetry between both the electrons gives rise to fimaultaneous motion through the double slit.
Similarly fermionic exchange symmetry between electrahs'2’ and ‘3’ gives rise to the many
electron state as

{(WHW,) AW W ) a........... uptoco no. of electrons-(| W W W4 Wa....... upto  nof electron$
(W)W, )W )W ) a......... uptoco no. of electronst-(| W W YW, )a........ uptow no. of electrons
— (W, W) AW dW ) a........... uptoco no. of electronst(| Y Y W Wi upto naf electron$}

Wikt Wp2 Wy
=(W,1 W2 W, O (|W,)a........ uptoo no. of electrons

|W3>1 |W3>2 |W3>
The resultant state is the tensor product of the Sthtesrminant for the three electrons (‘1’, ‘2" and
‘3") and a state for the remaining electrons. One @mntkat in this state electron ‘1’ occupies the
wavefronts W (moving), W (at rest) and \WW/(at rest)simultaneouslyHere too the moving wavefront

W/, is occupied by all the three electrons (‘1’, ‘2" and ‘3'’nhdéng the simultaneous motion of all the
three electrons.

Thus we see that the fermionic exchange symmetry feleetron ‘1’ to be in motion and at rest at the
same time. Since the choice of the electron israrjithe above conclusion holds in general for every
other electron too. Thus we conclude that every @ledf in the simultaneous state of motion and rest
which runs into contradiction with our initial assunoptiabout the motion of electron ‘1’ (and

S2



correspondingly about the motion of the remaining electr@mn)s Thus we see that the assumption that
only a particular electron moves through the doubleaslény time is incompatible with the existence
of the fermionic exchange symmetry among the electdonfact we have already shown above that
the fermionic exchange symmetry leads to the simultsiemtion of the concerned electrons. When
we switch on the fermionic exchange symmetry amorgha electrons then this leads to the
simultaneous motion of all the electrons. The elestrotove in such a way that their integrated
probability flux matches the value set for the flux af thcident electron beam. This can happen only
when all those electrons are movipgrtially. Thus we see that the introduction of the fermionic
exchange symmetry among electrons (of the experimgpparatus) has two major consequences; (i)
generation of an extended spatial distribution of thetmle - wavefront formation (concluded from
Discussion [1] and (i) thesimultaneousnotion of every constituent electron through the experirhenta
apparatupatrtially at any instant of time (concluded frdbiscussion [2).

The fermionic (or bosonic) exchange symmetry of theewhinction isnot just a mathematical
constraint required by the theory (quantum field theory) but on a physical it causes both the
particles to swap their states throughout their journey through an expafmeasuremeniThis has
not been mentioned explicitly in the previous literathemce it requires a clarification. This fact is
very counterintuitive since we usually assume that amglesielectron would quietly pass through the
experimental apparatus contributing to the measuremennhiiteccontrary it is in constant state of a
swap between the two states. A consequence of this exciatiygt at any instant of time all the
electrons aresimultaneously but partiallpassing through the experimental apparatus such that the
integrated electron flux matches the value set fortthferincident electron flux within the instrument.
Thus the quantum behavior is completely manifested withat an experiment/measurement since all
electrons remain ‘indistinguishable’ (‘indistinguishablEcause the measurement is not specifically
contributed by few electrons more than others. No @ects preferred over others during the
measurement. In fact, all the electrons contribute Iggteathe measurement at the same time. Note
that indistinguishability among particles is a NECESSAg&iterion for quantum mechanics to be
applicable for them.) during the course of the experimergtaurement. Exceptions to this are obtained
when the fermionic exchange symmetry of the electronrusiely is suppressed, either due to the
electron state being localized owing to the electtimstaystal lattice potential/electron correlations
(ref. arXiv:1409.7156 or viXra:1511.0040) which does not allowfétsnionic exchange symmetry
with the mobile conduction electrons to fully developbgrspecifically ‘looking’ at a single electron
within an experiment via measuring its single particlepprty (which naturally ‘forces’ all other
electrons to stay out from the experiment/measuremeatf) J. Phys.: Cond. Matte25, 382205
(2013)). Under such situations the ‘distinguished’ electron ustigly would not display quantum
behavior.

Section (B) Justifying de Broglie’s hypothesis to matter waves

Louis de Broglie’s hypothesis claimed the same equatidie tvalid for calculating the wavelength of
matter waves as it is for the wave length of the phbtarh=h/pwhere h is the Planck’s constant and

p is the momentum of the photon. In de Broglie’'s hypathedecomes the relativistic momentum of a
massive particle. This hypothesis has now become amimgueally validated fact. But the basic issue

remains as how to justify the de Broglie hypothesisatter waves even if the particles are moving at
non-relativistic speeds. We present our viewpoint dgeexplanation.

We argue that the fermionic (or bosonic) exchange symyraetiong massive particles giving rise to
the wave nature of the particles, originates from Koh&nge of mediating particles among the massive
particles. These mediating particles propagate at thel sfdeght c irrespective of the speed of the
motion of the massive particles and carry a momenpumith them which is the same as the
momentum of the massive particles. The existenceesktiexchange mediating particles is crucial for
forming the wave character out of these massive pastiakea result all the attributes corresponding to
their wave character arise from these exchange muagligtirticles. Since the exchange mediating
particles propagate at(just like photons) the expression for the wavelenggbhotons is equally valid
for them. Therefore the de Broglie’'s formula for thavelength of matter waves remains the same as
for the wavelength of photons even in case of therptativistic motion of the massive particles. We
propose a new interpretation for the de Broglie fornmulzase of massive particles:
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A=h/p, where h is the Planck’s constant and p is relaiivisibmentum of the exchange mediating
particle.

An immediate consequence of this idea is that the feimi@r bosonic) exchange symmetry induced
correlations are not instantaneously propagating in Spaiceavel with the speed of liglst But for
most practical purposes when the distances involved ayesweall (e.g. typical distances within a
laboratory experimental setup ~ few meters) the ferrai¢mi bosonic) exchange symmetry induced
correlations can bassumedo be practically instantaneous.

Section (C) Rationalizing the amplitude/phase content of a matter wave

The results of the single slit diffraction experimenttvélectrons that we present in our manuscript can
be easily analyzed within the Fraunhofer’s diffractibeory assuming a simplified picture of a plane,
monochromatic wavefront of electrons falling on a sirglieof width d and the diffracted intensity
falling on a screen S kept at a distance ‘D’ much latggnd.

We divide the wavefront passing through the slit into égyoal halves. The upper half represents upper
slit continuum and the lower half represents the lowigrcshtinuum. These sections of the incident
wavefront will independently superpose and produce a reswitargfront at any arbitrary point ‘P’ on
the screen. Our goal is to find out and compare the ardpliand phase of the two superposed
wavefronts at ‘P’.

Note that in the Fraunhofer's theory of diffraction ef(r http://hyperphysics.phy-
astr.gsu.edu/hbase/phyopt/sinint.html¢fdBe total phase angl® (phase difference between the
secondary waves emanating from the top and bottom dflithend arriving at ‘P’ at same time) is
related to the deviation angl(angle subtended by point ‘P’ at the slit) from the @pixis and is
given by

5:M ; A — de Broglie wavelength of the electron wave
I8

When treating upper and lower slit continuum separatetpée slit width isl/2) the total phase angle
for upper and lower slit continuum will be

_ 2rnd sind _ ndsind
2. A

&

This angle is the same for both of them sificeemains practically unchanged for both of them
following our assumption of D>g-within the Fraunhofer’s diffraction theory.

If Ay is the amplitude of the incident electron wavefromintithe resultant amplitude from the upper
(Auppe) @nd lower (Awer) slit continuum (formed by a vector summation of indixal amplitude
elements in them) at ‘P’ would be given by;

Auppef:zﬁsin§ = Awe=A» Which is same for upper and lower slit continuum.
5 2

However there is a phase difference between both #mepbtudes as a result of the vector summation.
This phase difference is equaldoFollowing the law for summation of vectors, the atuple of the
summed vector &nis related to the resultant amplitudes from the individleinents (i.e. fyperand
AIower) as;

Asum™=Aupper +Alower - 2Aupper Alower. COSIE8) =A%+A%-2A A, oS t-8)=2A%(1+cosD)
Now for destructive interference we havg,#0. This can happen when A=0 or when (1-&08.

The latter happens whéapriwhen p is odd integer. After plugging in the expression ftneAformer
can written as;
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A:Z%sin% = 0> sin% = 0= §=2mr, Where n is any integer().
(Note that A#0 since we have a finite incident wavefront).

Combining both these results we get the following conditior destructive interference;

o=mrt, where m is any integetQ).

Therefore, §=mz= nd sind — dsin6=ny. Which is well known criterion for the destructiveerference
I8

in a diffraction experiment performed on a single sliviafth d within Fraunhofer’s diffraction theory.

When simulating the free space within Fraunhofer’'shabis possible to increase the slit width to a
finite value much larger thakh and also to keep the distance D much larger thanorder to still
remain within the Fraunhofer limit. We can see that tptalely we still maintain the theoretical
results as we had derived for a case witeveas comparable td except that the diffraction pattern
shrinks progressively with such an increase @implying a reduction of obstacles in the path of the
electron waves). So to a certain accuracy we areqhlitatively verify the consequences of electron
waves moving in free space within Fraunhofer’s theorghénlimit d—c« we fully recover the uniform
intensity in space expected for a wave moving in an isotsgace however the Fraunhofer’s theory
cannot be applied in this limit. For a more general itneat Fresnel's theory of diffraction may be
applied.

From an incident wavefront arising due to the motion @fssive particles we have, therefore,

rationalized the existence of two different phasethefmatter waves having equal amplitudes (with a
phase difference) at any arbitrary point ‘P’ in spagigh{n Fraunhofer’s limit). The phase difference

varies across the space and is responsible for theageneof interference effects within the matter

waves giving rise to the diffraction pattern. We are thuscessful in justifying the wave character

arising out of a beam of classical particles upon introdufeirmionic (or bosonic) exchange symmetry
among them. Thus we elucidate, qualitatively, the origihefwave character of matter.

Section (D) Origin of the quantum behavior of a single electron

Even for a single electron eigenvalue problem, sagfample hydrogen atom problem solved using
the Schrédinger’s equation, we do find that the single electfisplays quantum behavior i.e.
possessing a spatially extended wavefunction, energy quéttizetic. even though we do not
‘apparently’ have any so-called ‘electron reservoir’hwithom it would be subjected to particle
exchanges analogous to that mentioned in the case of dslitbliaterference experiments with
electrons. This might raise a lot of doubt about hosvwave behavior emerges for the single electron
in the absence of any exchanges with other electfbmsanswer this we argue that the vacuum
surrounding the said electron is constantly under the mflief fluctuations in energy leading to the
formation of short lived ‘virtual’ electron-positronipadue to Heisenberg’s uncertainty principle. This
fluctuation of the vacuum and its effect under the aatfdhe electromagnetic field of the electron is a
well established fact and is known to give rise to uume polarization (ref.
https://en.wikipedia.org/wiki/Vacuum_polarizatoiThis ‘sea’ of ‘virtual’ electron-positron pairs gis
rise to the screening effect in the presence of egtremagnetic field thereby modifying the magnitude
of the original electromagnetic field analogous to whappens to a dielectric when placed in an
external electric field. The ‘virtual’ electrons thgenerated due to these fluctuations form the ‘electron
reservoir’ (note that this electron reservoir extentthebughout the space till infinity) and participate
in exchanges with the said electron for the sake of piedube wave (or quantum) behavior of that
electron.

However the probability of the exchange with these ‘vittadéctrons largely depends upon the
bound/unbound nature of the said electron in space. Hnisbe illustrated clearly while critically
analyzing the time evolution of the narrow wave packetpecs which is a well known result from
guantum mechanics. When, supposedly, an electron is kepttiontally’ localized at a particular point

in space then its wave function must be described asfthatarrow wave packet centered at that point
in space (ideally it should be Dirac delta function at thoint in space). Let us assume that such a
scenario exists till timé=0. At t=0 we ‘release’ (set free) the electron and allewitivefunction to
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evolve with time. Thus for times> 0, the dynamics of the electron is dictated by time tilependent
Schrédinger’s equation. A well known result is that the waagket, which was localized at the site of
the electron earlier, gradually spreads in space itk eventually occupying the whole of infinite
space a$- . More importantly, the wavepacket tends to flatten ath ¥ime eventually becoming
completely flat at - .o when we tend to have identical amplitude for the waveiomett every point in
the space denoting uniform probability of the existencthefelectron in space. Thustat 0, even
though the whole of the infinite space was alwaysdilth the sea of virtual electron-positron pairs,
there was no exchange happening between the localizetbeland the virtual electrons of the sea.
For if, on the contrary, the exchange was to happenttiemavefunction for the localized electron
would remain finite (i.e. non-zero) throughout the sp@sen att < 0) as a result of this exchange.
Hence, logically, we must conclude from here that tlcaliped state of the electron in space must be
devoid of its fermionic exchange symmetry with that of tiker electrons. Such an idea was
introduced earlier in arXiv:1409.7156. Our aforementionedudion lends vergtrongsupport to the
idea introduced in arXiv:1409.7156.

At any instant of time the two electron state foe thcalized electron and a virtual electron can be
represented as), |1),, —€°1),.1 ), » Wherejr), and|y), denote localized and virtual electron state

respectively (Note that the statg) represents a classical state for the localized efectr

lot
corresponding to its point particle like description priorswitching on the exchange mechanism
between the two electrons whilg) —represents @onstant'field’ occupying the whole of infinite

space arising due to the ‘sea’ of virtual electrons. Sudfeld’ description for virtual electrons is a
distinct facet of quantum field theory. We are indeedifig out the origin of the wave behavior of an
electron. Hence the ‘ingredients’ that form such aewvhehavior, e.g. the localized electron in this
case, should be treated as a classical particlellyitidich later on conspire to create the wave
behavior via the exchange mechanism. Moreover one cathae®nly when® = 0 we have the
antisymmetry of the two electron wavefunction while afher values of® the antisymmetry is
‘partially’ realized. At the extreme value @& = 172 we have a ‘mixed’ exchange symmetry i.e. the
wavefunction of the two electron systems becores i), —ii),|t),, Which has an exchange

symmetry in between fermionic and bosonic exchangermtny. Please see arXiv:1409.7156_supp.
info. for details) and® is function of spatial coordinates and time ®e= O(x,y,zt) or © = O(r,6,¢t)
depending upon whether we describe the space in termsrigfsi@a or spherical polar coordinates
respectively. For the above caset<d we have the situation (if we assume the localizedtren is
situated exactly at the origin i.e. the Dirac delta iavetion for the electron at the origin) that= 0

for (x,y,2=(0,0,0) andd = 172 otherwise. So there is a discontinuity in the vafu® at the origin due
to the existence of Dirac delta type of the wavefunctardéscribing the electron. When the electron
has been set free &0 then for the later timed>0) the wave packet starts ‘spreading’ within the
whole of space via the exchange mechanism. In that @dsecomes a continuous function of its
arguments all throughout the space.

loc

The ‘spreading’ of the wave packet can be understood avtiheation of the functior® in space with
time. Such an evolution is highly influenced by the dyranof the aforementioned ‘screening effect’
(due to the ‘sea’ of virtual electron-positron pairs)tfoee electromagnetic field of the localized electron
in space. Eventually at-c, when the wave packet has been fully flattened Gutecomes 0
everywhere in space.

The above case was illustrated for an ‘intentionallyalized electron at a point in space. The same
holds true in case of the localization of the boundtedas in space due to strong electrostatic fields
etc. from the nuclei of the atoms. For example, teet®nic orbitals of the Hydrogen atom are
examples of bound states which lead to a certain degtleeafzation’ of the electron in space in that
although the electronic orbitals individually extendrtbnity in space however the amplitudes of their
wavefunctions are not uniform across the space. lhdtea amplitudes are seen to peak in certain
regions of space while they diminish far away froihits giving rise to the tendency of the electron to
stay in those regions of space preferentially (orlbitahation). This preference is a consequence of the
localization of the bound electron in space. For suchse of a bound electron, its exchange with the
sea of ‘virtual’ electrons is not fully realized (i®(x,y,zt) # 0 for every point in space at any time)
since the bound electron is not able to extend all thmutghe space with equal ‘ease’ to participate in
the exchanges. The probability of the exchange is maritfi.e.©(x,y,zt) — 0) at distances close to
the bound electron and vanishes far away @@.y,zt) — 12) from it. Hence the wavefunction for
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the bound electron has large amplitude in regions clogeeid and vanishes at infinity. E.g. all of the
electronic wavefunctions for the Hydrogen atom vaaisinfinity since the strong attractive interaction
between the Hydrogen nucleus and the electron creabesirad state for the electron thus partly
suppressing its exchange with the infinite sea of virttens. On the contrary, an unbound electron
can fully demonstrate its exchange mechanism throughout sjp@cto the absence of any restrictions
on its location as such the wavefunction for an unbceledtron is not localized in space rather it
extends uniformly across the space denoting a uniform egehaith the infinite sea of virtual
electrons. The details regarding the variation of isitgrand directional dependence (for states with
angular momenturh# 0) of the spatial profile of the wavefunction foethlectron in Hydrogen atom
can only be understood after taking into considerationafbeementioned screening effect (i.e. the
estimation of®(x,y,zt) in space can only be done after studying the effedhefaforementioned
screening on the electromagnetic field of the saidtreler Thus in short we have attempted to
rationalize our idea that particle exchanges occurring batilee said electron with the ‘virtual’
electrons arisen from the vaccuum fluctuations givetasbe formation of the wave/quantum behavior
exhibited by the said electron.
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