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Abstract 

 The wave-particle duality is one of the most remarkable concepts in physics ever 

discovered. It is a central pillar upon which the entire theory of quantum 

mechanics is based. However the origin of the wave-particle duality is 

unrevealed yet and is generally taken as a postulate representing a fundamental 

fact of nature. Here we disclose the origin of this remarkable fact of nature. We 

show that the introduction of exchange symmetry among a group of particles of 

matter would naturally lead them to demonstrate wave-like character from 

particle-like character. Thus the existence of exchange symmetry among the 

particles of matter is absolutely necessary for their wave character to manifest 

thus shedding light on the microscopic origin of the peculiar quantum behavior 

of matter.  

Keywords: wave character of matter, exchange symmetry, quantum 

superposition, double slit experiment 

 

1 Introduction 

The fundamental nature of light had been an important question in the time of 

Sir Isaac Newton. Newton proposed, in the year 1704, the corpuscular theory of 
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light in which he argued the light to be composed of tiny particles called 

corpuscles [1].  According to his theory light consists of a stream of particles 

whose path is modified when it hits objects. Using this picture he explained 

various phenomena associated with light e.g. reflection, refraction etc. A 

contemporary proposal by Christian Huygens however claimed that light was 

actually made up of moving disturbances in its medium of propagation giving 

rise to the wave theory of light [2]. For around a century after Newton, the 

corpuscular theory of light was generally accepted as the nature of light however 

with the experiments of Thomas Young in the year 1801, Huygen’s wave theory 

of light was vindicated [3]. At the start of the 20th century the quantum theory of 

light was initiated by Max Planck when he explained the radiation spectrum of a 

black body by assuming the quantized nature of the light emission from the black 

body [4]. This quantum theory of light was furthered strengthened by Albert 

Einstein in 1905 when he explained the photoelectric effect by assuming the 

quantized absorption of light by a metal [5]. Thus the light was argued to consist 

of both the wave and particle characteristics at the same time depending upon the 

experiments performed on them. In some experiments like diffraction, 

interference etc. light demonstrated a wave like behavior while in other 

experiments like the photoelectric effect it needed a particle like description. 

Such a dichotomy led to the birth of wave-particle duality of light. 

Striking an analogy with the wave-particle duality of light, Louis de Broglie 

in 1924 postulated that just as the light contains dual character (wave and particle 

like) similarly even the matter contains a dual character of being simultaneous 

wave like and particle like [6]. He proposed a wave to be associated with a 

moving particle of matter of momentum ‘p’ with a wavelength λ=h/pwhere h is 
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the Planck constant, in analogy with the case of light. The light particles, i.e. 

photons, are known to propagate with the speed ‘c’ (=299792458 m/s). However 

de Broglie hypothesis was applicable to matter particles moving at non-

relativistic speeds too. The hypothesis was later verified by a number of 

experiments which then became a fundamental fact of nature giving birth to 

quantum mechanics [7-10]. However, the applicability of the de Broglie theory 

to non-relativistic massive particles is curious. 

The origin of this wave-particle duality of matter has remained elusive and 

has, so far, been accepted only as a postulate representing a fundamental fact of 

nature. In this paper we go a step ahead and elucidate the origin of this wave-

particle duality of matter. We intend to disclose the microscopic mechanism for 

the formation of wave character from the particles of matter. We stress on the 

importance of the exchange symmetry among the particles as a necessary 

component for forming wave-like character from them. Quantitative estimations 

for the properties of quantum systems are well established via Schrödinger or 

Dirac formalisms. The unknown issues regarding quantum mechanics mainly 

arise from an interpretational point of view and would form the subject of this 

paper. 

 

2 Results and Discussion  

 

One of the most revealing experiments as far as the quantum properties of 

matter are concerned is the double slit experiment performed with electrons [11]. 

This experiment involves shining a beam of mono-energetic electrons upon two 

parallel, closely spaced (spacing d is of the order of the de Broglie wavelength of 
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the electrons) narrow slits and measuring the electron pattern on a detector screen 

beyond the double slit. Surprisingly the electron pattern reveals interference 

fringes characteristic of the wave character for the incident electrons. The same 

experiment when repeated with reduced incident electron fluxes to an extent that 

only a single electron could pass through the apparatus at a time, surprisingly, 

reproduces the interference fringes like before, clearly revealing the wave 

phenomena to be associated with ‘individual’ electrons. 

We, too, in our discussion will begin with the double slit experiment with 

electrons. In this case the incident electron beam is provided by an electron gun. 

Let us approximate the electron reservoir (infinitely many electrons) inside the 

electron gun to represent a gas of classical particles i.e. let us approximate every 

incident electron to be a classical particle. Since classical particles have well 

defined trajectories, we will associate every electron with a well defined 

trajectory for its travel through the double slit apparatus. Few electrons will have 

an overlap of the trajectory so there will be a statistical distribution of the number 

of electrons as a function of their trajectories. If we shine infinitely many 

electrons over the double slit, the predicted statistical distribution will be 

ultimately obtained. Now let us, for illustrative purpose, take an example of three 

distinct trajectories ‘A’, ‘B’ and ‘C’ (see Fig.1). Let us put an electron into each 

of these trajectories. Let us assume that the electron in ‘A’ is moving through the 

double slit at an instant of time. Now we introduce exchange symmetry among 

the three electrons (and subsequently among all electrons of the reservoir) and 

evaluate its consequences for the trajectory of the moving electron (see 

supplementary information section A for a more elaborate discussion). The 

introduction of exchange symmetry between the electrons occupying ‘A’ and ‘B’ 
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will force the moving electron to pass through ‘B’ simultaneously with ‘A’ (and 

vice versa). Similarly, an exchange with the electron in ‘C’ will force the moving 

electron to simultaneously pass through ‘C’ along with ‘A’ and so on so forth. 

Thus the exchange symmetry among all the infinite electrons of the reservoir will 

force the electron in ‘A’ (and all other electrons too) to simultaneously pass 

through the trajectories of all other electrons of the reservoir giving rise to its 

(their) presence in an extended region of the space (a typical behavior expected 

from a wave). Since there are infinitely many electrons in the reservoir their 

trajectories will form a continuum inside the cross-section of the incident 

electron beam. Thus we see that the effect of the exchange symmetry is to smear 

the electron’s probability distribution from a Dirac delta function (corresponding 

to a ‘point’ particle) to a ‘wavefront’ extending over the surface of the beam 

cross-section of the electron gun.  For any overlap of trajectories the number of 

electrons possessing the exchange symmetry increases proportionately, leading 

to an increase of the amplitude of the ‘wavefront’ at that point consistent with the 

classical statistical distribution. Thus we appreciate the importance of the 

exchange symmetry in compressing the entire information of the classical 

statistical distribution for the electron beam inside one incident electron such that 

the single electron probability distribution in space resembles the classical 

statistical distribution. Thus we observe that the exchange symmetry leads to (i) 

the formation of a ‘wavefront’ of the probability distribution for the electron in 

space and (ii) the simultaneous propagation of all the electrons of the reservoir 

through the double slit. All of the electrons move through the double slit at once 

but partially such that their integrated probability flux equals the incident 

electron flux (see supplementary information section A).  
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Thus a well defined trajectory, a hallmark of classical behavior of the 

particles, is incompatible with the existence of exchange symmetry between 

those particles. Instead, as described above, the electron trajectory spreads over 

the region of the classical statistical distribution forming a ‘wavefront’ in space 

laying the groundwork for the formation of wave nature of electrons. However a 

wave has many other attributes like e.g. wavelength, phase etc. too. It remains a 

task to justify these attributes as arising because of the exchange symmetry. The 

wavelength of a matter wave is given by the de Broglie formula. For justifying 

the applicability of the de Broglie formula to matter waves and to elucidate its 

origin from the exchange symmetry among particles, we refer the reader to the 

supplementary information section B. The interesting issue is related to the phase 

of the matter wave.  From elementary wave theory it is well known that a wave 

has both +ve and -ve phases corresponding to +ve and -ve displacements of a 

physical quantity about a reference value. The phase differences among 

superposing waves are responsible for generating the interference pattern which 

is the characteristic of their wave nature. In the case of the electron waves in the 

double slit experiment, we argue that the origin of different phases arise from the 

passage of the two (‘partial’) electrons either through same slit or through 

different slits. It is argued that these two different passages would contribute 

differently towards the interference pattern. The passage of the two electrons 

through the same slit would not contribute to the interference pattern while their 

passage through different slits would contribute to the interference pattern. This 

information is encoded (and distinguished) in the phase of the electron wave. 

Without loss of generality we can assume that the passage through different slits 

generates a +ve phase while the passage through the same slit generates a -ve 
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phase. Since there are infinitely many electrons in the reservoir, for any arbitrary 

electron nominally passing through the upper slit, equal number of electrons 

passes through the upper slit and through the lower slit all of which have 

exchange symmetry with it. As a result the passage of the electron (nominally 

through the upper slit) would generate a wave of equal amplitude for both the 

phases at any arbitrary point ‘P’ on the other side of the double slit (in general, 

there will be a phase difference between both the phases reflecting the path 

length difference for the point ‘P’ from both the slits.). Thus we rationalize the 

emergence of two different phases in a matter wave from such an argument. 

Following the origin of two different phases of a matter wave in a double slit 

experiment, a natural question arises as to how one explains the existence of two 

such phases in a matter wave propagating in free space where there is no such 

physical double slit arrangement present. In order to explain this we need to take 

recourse to the single slit diffraction experiment wherein a mono-energetic 

electron beam falls on a single slit and then gets diffracted (see Fig.2). This 

diffracted electron beam is collected on a screen kept after the single slit and the 

diffraction pattern is observed akin to the one observed when we shine photons, 

instead of electrons, on the single slit. The theoretical analysis of this diffraction 

experiment involves dividing the slit width (d) into two equal halves and treating 

them as harboring the continuum of double ‘infinitesimally’ wide slits arranged 

side by side along the slit width. These are not physical slits rather they are 

‘virtual’ slits (Following Huygen’s principle every point on the wavefront acts 

like a secondary source of light emitting spherical waves [2]. Thus every point 

along the slit width acts like a point source for the spherical wavefront. Using 

this concept we can hypothetically divide the slit width into a continuum of 
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infinitesimally wide sections each of which can act like the ‘point’ source). Then 

the differences in the path lengths arising from these continuum ‘virtual’ double 

slits are calculated for any arbitrary point ‘P’ on the screen in order to calculate 

the diffraction pattern. Note that the point ‘P’ has a contribution from an equal 

length of the upper slit continuum and the lower slit continuum. Thus the wave at 

‘P’ will contain both the phases having equal amplitudes except with a phase 

difference (corresponding to the path length difference for point ‘P’ from the 

upper and lower slit continuum) between both of them (see supplementary 

information section C). The observed diffraction pattern is a result of this phase 

difference. The free space can then be simulated by taking the limit d→∞. In this 

limit we recover the uniform intensity as expected for a wave moving in an 

isotropic space since the diffraction pattern vanishes. Thus we have explained 

qualitatively how the different attributes of a wave character emerge within 

particles when we switch on the exchange symmetry among them. 

Going back to the double slit experiment, an electron passing through the 

upper slit would then generate a secondary electron wave from the ‘point’ source 

of the upper slit and an electron passing through the lower slit would do the same 

from the lower slit. These secondary electron waves then interfere to generate an 

interference pattern marked by a complete destructive interference from waves of 

equal amplitudes with phase difference of ‘π’ among them. 

Following the origin of the wave nature of matter as arising due to the 

existence of the exchange symmetry, a question arises whether wave theory 

could be applied to classical objects in everyday life like bat, bus, football etc. To 

date, it is generally believed that since all physical objects are made up of 

‘quantum’ particles (like e.g. proton, neutrons, electrons etc.) the wave theory 
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which is applicable to these quantum particles is naturally applicable even to 

such macroscopic objects but since their energy scales are much higher than 

those for the quantum particles, the quantum effects are not visible among them. 

Philosophical debates about the validity of quantum mechanics have occurred in 

the past, the famous one being the Schrödinger’s cat paradox [12], which were 

often used to discredit quantum mechanics (or certain interpretations of quantum 

mechanics). Our position over this is that a paradox like the Schrödinger’s cat 

paradox is non-existent since one cannot apply quantum mechanics to the two 

body system of a cat and a radioactive atom trigger since there is no exchange 

symmetry between both of them. Thus the extrapolation that quantum mechanics 

would be naturally applicable to macroscopic objects is against our view. In our 

opinion quantum mechanics only applies to particles having exchange symmetry 

among themselves (see supplementary information section D). In fact all the 

experimental evidences obtained so far concerning the observation of quantum 

behavior has always been obtained from such particles which is consistent with 

our viewpoint. And even for these cases it applies only under certain conditions 

where such exchange symmetry is maintained. There are situations where the 

exchange symmetry can be suppressed among the so-called identical particles via 

localization process [13] or via specific experimental techniques used [14]. In 

such cases the electron under study would fail to exhibit quantum behavior. 

 

3 Conclusion  

In summary, we highlight the origin of the wave theory of particles within the 

realm of quantum mechanics. We argue that the presence of exchange symmetry 

among the particles of matter is indispensable for the manifestation of quantum 
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behavior among them. The origin of their wave character is rationalized through 

the presence of exchange symmetry among them. We justify different attributes 

of their wave character through the exchange symmetry. Finally, we argue that 

quantum mechanics is not applicable for everyday macroscopic objects due to 

the absence of exchange symmetry among them but instead claim its 

applicability only for identical particles which possess exchange symmetry 

among themselves. 
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Fig.1. Schematic diagram for the double slit experiment with electrons: An 

electron gun shoots mono-energetic electrons at the double slit (width d) 

arrangement. Three electron trajectories ‘A,’ ‘B’ and ‘C’ are shown for 

illustration. Trajectory ‘A’ passes through upper slit, trajectory ‘B’ passes 

through lower slit and trajectory ‘C’ hits the barrier in between the double slit. 

The screen S records the interference pattern from electrons passing through the 

double slits. 
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Fig.2. Schematic diagram for the single slit diffraction experiment with 

electrons: An electron gun shoots mono-energetic electrons at the single slit 

(width d) arrangement. Three electron trajectories A, B and C are shown for 

illustration. The screen S records the diffraction pattern from electrons passing 

through the single slit. The slit is hypothetically divided into two equal parts (for 

the diffraction analysis) into the upper slit continuum and lower slit continuum 

each containing a continuum of ‘virtual’ slits which act like sources for 

secondary electron wavefronts. Corresponding ‘virtual’ slits from the two 

continuums act like a pair of double slits that cause interference effects at ‘P’ 

(see the panel at top left. Such continuum pairs of double slits are depicted by 

different colors). The collective interference of all such pairs of ‘virtual’ double  

slits give rise to the diffraction pattern on S. 
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Supplementary Information 

Section (A) Quantum superposition and the physical meaning of the 

exchange symmetry 

Consider two electrons ‘1’ and ‘2’ forming a singlet state. Then their wave function can be written as 
1 2 1 2↑ ↓ − ↓ ↑ 〉 〉  〉 〉

. This state contains a linear combination of a two particle term and its particle 

exchanged counterpart. Note that in this state each of the electrons is in ↑ and ↓ spin states 
simultaneously. Thus we clearly see that the exchange symmetry among electrons ‘forces’ an electron 
to be in multiple states simultaneously giving rise to a superposition of states. 
 
We will try to evaluate the consequences of this superposition (arising from the exchange symmetry) 
among the electrons inside the electron gun of the double slit experiment as described in the main text 
of the manuscript.  
 
Discussion [1]  
 
The classical state for the infinite number of ‘classical’ electrons (electrons ‘1’, ‘2’, ‘3’, ‘4’…...etc. 
passing through the trajectories A, B, C, D……etc. respectively) of the electron gun can be represented 
by 1 2 3 4................A B C D upto  no. of electrons∞( 〉 〉  〉  〉 ) . When we switch on the exchange symmetry between 
electrons 1 and 2, the wave function for the infinite number of electrons would become: 
 

1 2 3 4................ 1 2 3 4................A B C D upto  no. of electrons B A C D upto  no. of electrons∞ − ∞{( 〉 〉  〉  〉 ) ( 〉 〉  〉  〉 )}  
 
In this state electron ‘1’ is passing through the trajectories A and B at the same time thus extending the 
distribution of its probability in space (along both the trajectories A and B). If now further we switch 
on the exchange symmetry among three electrons ‘1’, ‘2’ and ‘3’ then the resultant state would be: 
 

1 2 3 4................ 1 2 3 4................

1 2 3 4................ 1 2 3 4........

A B C D upto  no. of electrons A C B D upto  no. of electrons

C B A D upto  no. of electrons C A B D

∞ ∞
− ∞
{( 〉 〉  〉  〉 )−( 〉 〉  〉  〉 )

( 〉 〉  〉  〉 )+( 〉 〉  〉  〉 ........

1 2 3 4................ 1 2 3 4................

1 2 3

1 2 3 4.......

1 2 3

upto  no. of electrons

B A C D upto  no. of electrons B C A D upto  no. of electrons

A A A

B B B D

C C C

∞
∞ ∞

⊗

)

−( 〉 〉  〉  〉 )+( 〉 〉  〉  〉 )}

 〉  〉  〉

=  〉  〉  〉 ( 〉

 〉  〉  〉

.........upto  no. of electrons∞ )

 

 
The resultant state is the tensor product of the Slater determinant for the three electrons (‘1’, ‘2’ and 
‘3’) and a state for the remaining ‘classical’ electrons. One can see that in this state electron ‘1’ is 
passing through the trajectories A, B and C simultaneously.  
 
{Note: The above treatment, although demonstrated for electrons, applies, in principle, to any 
fermionic system and can easily be extended to bosons too. In fact double slit interference experiments 
have been performed for a number of fermions as well as bosons and interference phenomena has been 
observed for all of them. If we have a bosonic system then a particle exchange will not change the sign 
of the wavefunction. In that case the resultant state for the above case will become: 
 

1 2 3 4................ 1 2 3 4................

1 2 3 4................ 1 2 3 4.........

A B C D upto  no. of electrons A C B D upto  no. of electrons

C B A D upto  no. of electrons C A B D

∞ ∞
+ ∞
( 〉 〉  〉  〉 )+( 〉 〉  〉  〉 )

( 〉 〉  〉  〉 )+( 〉 〉  〉  〉 .......

1 2 3 4................ 1 2 3 4................

upto  no. of electrons

B A C D upto  no. of electrons B C A D upto  no. of electrons

∞
∞ ∞

)

+( 〉 〉  〉  〉 )+( 〉 〉  〉  〉 )

 

} 
 
Thus we see that by introducing the exchange symmetry among all the electrons of the electron gun we 
make electron ‘1’ pass through the trajectories of all the electrons simultaneously. Since the choice of 
the electron is arbitrary therefore the conclusions drawn for electron ‘1’ holds, in general, for every 
other electron also; that means every electron will pass through the trajectories of all the electrons 
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simultaneously. Now if we assume electron ‘1’ to be moving through the double slit at a particular 
instant of time then it is ‘forced’ to move through the trajectories of all the electrons simultaneously 
thus creating a ‘wavefront’ in space. This wavefront extends over the crosssectional area of the incident 
electron beam. Since there are infinite number of electrons in the electron gun the crossectional 
distribution of their trajectories within the incident electron beam would form a continuum. Therefore 
this ‘wavefront’ is continuous across the crosssectional area of the incident electron beam. Thus we 
argue how a wavefront arises out of the gas of moving (infinite) classical particles upon introducing the 
exchange symmetry among them. At this stage the following picture emerges: We have the distribution 
of probability for every constituent electron (electron ‘1’ as well as other electrons) into each of the 
trajectories A, B, C, D etc. For moving electrons (e.g. electron ‘1’ in above case) the resulting 
wavefront is easy to imagine and is moving in space denoting the motion of the electron. For remaining 
electrons at rest (for whom the probability is distributed, too, among all the trajectories due to the 
exchange symmetry alike electron ‘1’) the ‘wavefront’ (‘wavefront’ here implies distribution of the 
electron across different trajectories) is hard to imagine since they are at rest but nevertheless it exists. 
Thus we argue how every constituent electron (moving as well as at rest) will form a ‘wavefront’ in 
space.  
 
Discussion [2] 
 
Furthermore, there is yet another aspect for the consequences of this exchange symmetry which needs 
to be highlighted as well. 
 
Let us denote the different wavefronts by W1, W2, W3, W4,…. etc. These wavefronts can be thought of 
as different states available for the occupation of different electrons i.e. electron ‘1’, electron ‘2’, 
electron ‘3’, electron ‘4’,.….. etc. Let us assume W1, W2, W3, W4,…. etc. to be occupied by electron 
‘1’, electron ‘2’, electron ‘3’, electron ‘4’,.….. etc. respectively. Then the many electron state for such a 

system can be written as 1 2 3 4................1 2 3 4W W W W upto  no. of electrons∞( 〉 〉  〉  〉 ). Since we have assumed 
electron ‘1’ to be moving while the others are at rest therefore W1 will denote a moving wavefront 
while W2, W3, W4,…. etc. will denote wavefronts which are at rest. When there is an exchange 
symmetry between electron ‘1’ and ‘2’ then the many electron state can be written as  
 

1 2 3 4................ 1 2 3 4................1 2 3 4 2 1 3 4W W W W upto  no. of electrons W W W W upto  no. of electrons∞ − ∞{( 〉 〉  〉  〉 ) ( 〉 〉  〉  〉 )}  
 
In this state electron ‘1’ occupies the wavefronts W1 (moving) and W2 (at rest) at the same time. Thus 
we see that a part of electron ‘1’ is at rest and the remaining part is in motion simultaneously. Also we 
observe that the moving wavefront W1 is simultaneously occupied by electrons ‘1’ and ‘2’ thus clearly 
showing that both the electrons are in a simultaneous state of motion. Thus the exchange symmetry 
between both the electrons gives rise to their simultaneous motion through the double slit. Similarly 
exchange symmetry between electrons ‘1’, ‘2’ and ‘3’ gives rise to the many electron state as 
 

1 2 3 4................ 1 2 3 4................1 2 3 4 1 3 2 4

1 2 3 4................ 1 23 2 1 4 3 1

W W W W upto  no. of electrons W W W W upto  no. of electrons

W W W W upto  no. of electrons W W W

∞ ∞
− ∞
{( 〉 〉  〉  〉 )−( 〉 〉  〉  〉 )

( 〉 〉  〉  〉 )+( 〉 〉  3 4................2 4

1 2 3 4................ 1 2 3 4................2 1 3 4 2 3 1 4

1 2 31 1 1

1 22 2

W upto  no. of electrons

W W W W upto  no. of electrons W W W W upto  no. of electrons

W W W

W W

∞
∞ ∞

〉  〉 )

−( 〉 〉  〉  〉 )+( 〉 〉  〉  〉 )}

 〉  〉  〉

=  〉  〉 3 4................2 4

1 2 33 3 3

W W upto  no. of electrons

W W W

⊗ ∞ 〉 ( 〉 )

 〉  〉  〉

 

The resultant state is the tensor product of the Slater determinant for the three electrons (‘1’, ‘2’ and 
‘3’) and a state for the remaining electrons. One can see that in this state electron ‘1’ occupies the 
wavefronts W1 (moving), W2 (at rest) and W3 (at rest) simultaneously. Here too the moving wavefront 
W1 is occupied by all the three electrons (‘1’, ‘2’ and ‘3’) denoting the simultaneous motion of all the 
three electrons. 
 
Thus we see that the exchange symmetry forces electron ‘1’ to be in motion and at rest at the same 
time. Since the choice of the electron is arbitrary the above conclusion holds in general for every other 
electron too. Thus we conclude that every electron is in the simultaneous state of motion and rest which 
runs into contradiction with our initial assumption about the motion of electron ‘1’ (and 
correspondingly about the motion of the remaining electrons too). Thus we see that the assumption that 
only a particular electron moves through the double slit at any time is incompatible with the existence 
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of the exchange symmetry among the electrons. In fact we have already shown above that the exchange 
symmetry leads to the simultaneous motion of the concerned electrons. When we switch on the 
exchange symmetry among all the electrons then this leads to the simultaneous motion of all the 
electrons. The electrons move in such a way that their integrated probability flux matches the value set 
for the flux of the incident electron beam. This can happen only when all those electrons are moving 
partially. Thus we see that the introduction of the exchange symmetry among electrons (of the 
experimental apparatus) has two major consequences; (i) generation of an extended spatial distribution 
of the electron - wavefront formation (concluded from Discussion [1]) and (ii) the simultaneous motion 
of every constituent electron through the experimental apparatus partially at any instant of time 
(concluded from Discussion [2]). 
 
The exchange symmetry of the wave function is not just a mathematical constraint required by the 
theory (quantum field theory etc.) but on a physical level it causes both the particles to swap their 
states throughout their journey through an experiment/measurement. This has not been mentioned 
explicitly in the previous literature hence it requires a clarification. This fact is very counterintuitive 
since we usually assume that any single electron would quietly pass through the experimental apparatus 
contributing to the measurement but on the contrary it is in constant state of a swap between the two 
states. A consequence of this exchange is that at any instant of time all the electrons are simultaneously 
but partially passing through the experimental apparatus such that the integrated electron flux matches 
the value set forth for the incident electron flux within the instrument. Thus the quantum behavior is 
completely manifested within such an experiment/measurement since all electrons remain 
‘indistinguishable’ (‘indistinguishable’ because the measurement is not specifically contributed by few 
electrons more than others. No electron is preferred over others during the measurement. In fact, all the 
electrons contribute equally to the measurement at the same time. Note that indistinguishability among 
particles is a NECESSARY criterion for quantum mechanics to be applicable for them.) during the 
course of the experiment/measurement. Exceptions to this are obtained when the exchange symmetry 
of the electron under study is suppressed, either due to the electron state being localized owing to the 
electrostatic crystal lattice potential/electron correlations (ref. arXiv:1409.7156 or viXra:1511.0040) 
which does not allow its exchange symmetry with the mobile conduction electrons to fully develop or 
by specifically ‘looking’ at a single electron within an experiment via measuring its single particle 
property (which naturally ‘forces’ all other electrons to stay out from the experiment/measurement) 
(ref. J. Phys.: Cond. Matter 25, 382205 (2013)). Under such situations the ‘distinguished’ electron 
under study would not display quantum behavior. 
 
 

Section (B) Justifying de Broglie’s hypothesis to matter waves 

Louis de Broglie’s hypothesis claimed the same equation to be valid for calculating the wavelength of 
matter waves as it is for the wave length of the photon i.e. λ=h/pwhere h is the Planck’s constant and 
p is the momentum of the photon. In de Broglie’s hypothesis p becomes the relativistic momentum of a 
massive particle. This hypothesis has now become an experimentally validated fact. But the basic issue 
remains as how to justify the de Broglie hypothesis to matter waves even if the particles are moving at 
non-relativistic speeds. We present our viewpoint over its explanation. 
 
We argue that the exchange symmetry among massive particles giving rise to the wave nature of the 
particles, originates from the exchange of mediating particles among the massive particles. These 
mediating particles propagate at the speed of light c irrespective of the speed of motion of the massive 
particles and carry a momentum p with them which is the same as the momentum of the massive 
particles. The existence of these exchange mediating particles is crucial for forming the wave character 
out of these massive particles; as a result all the attributes corresponding to their wave character arise 
from these exchange mediating particles. Since the exchange mediating particles propagate at c (just 
like photons) the expression for the wavelength of photons is equally valid for them. Therefore the de 
Broglie’s formula for the wavelength of matter waves remains the same as for the wavelength of 
photons even in case of the non-relativistic motion of the massive particles. We propose a new 
interpretation for the de Broglie formula in case of massive particles: 
 
λ=h/p, where h is the Planck’s constant and p is relativistic momentum of the exchange mediating 
particle. 
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An immediate consequence of this idea is that the exchange symmetry induced correlations are not 
instantaneously propagating in space but travel with the speed of light c. But for most practical 
purposes when the distances involved are very small (e.g. typical distances within a laboratory 
experimental setup ~ few meters) the exchange symmetry induced correlations can be assumed to be 
practically instantaneous. 
 
 

Section (C) Rationalizing the amplitude/phase content of a matter wave 

The results of the single slit diffraction experiment with electrons that we present in our manuscript can 
be easily analyzed within the Fraunhofer’s diffraction theory assuming a simplified picture of a plane, 
monochromatic wavefront of electrons falling on a single slit of width d and the diffracted intensity 
falling on a screen S kept at a distance ‘D’ much larger than d. 
 
We divide the wavefront passing through the slit into two equal halves. The upper half represents upper 
slit continuum and the lower half represents the lower slit continuum. These sections of the incident 
wavefront will independently superpose and produce a resultant wavefront at any arbitrary point ‘P’ on 
the screen. Our goal is to find out and compare the amplitude and phase of the two superposed 
wavefronts at ‘P’. 
 
Note that in the Fraunhofer’s theory of diffraction (ref. http://hyperphysics.phy-
astr.gsu.edu/hbase/phyopt/sinint.html#c2) the total phase angle δ (phase difference between the 
secondary waves emanating from the top and bottom of the slit and arriving at ‘P’ at same time) is 
related to the deviation angle θ (angle subtended by point ‘P’ at the slit) from the optic axis and is 
given by  
 

2π sinθ
δ=

λ

d  ; λ → de Broglie wavelength of the electron wave 

 
When treating upper and lower slit continuum separately (whose slit width is d/2) the total phase angle 
for upper and lower slit continuum will be 
 

2π sinθ π sinθ
δ=

2λ λ

d d=  

 
This angle is the same for both of them since θ remains practically unchanged for both of them 
following our assumption of D>>d within the Fraunhofer’s diffraction theory. 
 
If A 0 is the amplitude of the incident electron wavefront then the resultant amplitude from the upper 
(Aupper) and lower (Alower) slit continuum (formed by a vector summation of individual amplitude 
elements in them) at ‘P’ would be given by; 
 

0

upper lower
A δ

A =2 sin A =A
δ 2

= , which is same for upper and lower slit continuum. 

 
However there is a phase difference between both these amplitudes as a result of the vector summation. 
This phase difference is equal to δ. Following the law for summation of vectors, the amplitude of the 
summed vector Asum is related to the resultant amplitudes from the individual elements (i.e. Aupper and 
A lower) as; 
 
Asum

 2=Aupper
2+Alower

2-2Aupper.Alower.cos(π-δ)=A2+A2-2A.A.cos(π-δ)=2A2(1+cosδ) 
 
Now for destructive interference we have Asum=0. This can happen when A=0 or when (1+cosδ)=0. 
The latter happens when δ=pπ when p is odd integer. After plugging in the expression for A the former 
can written as; 
 

0A δ δ

A=2 sin 0 sin 0 δ=2nπ
δ 2 2

= ⇒ = ⇒

, where n is any integer (≠0).  

(Note that A0≠0 since we have a finite incident wavefront). 
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Combining both these results we get the following conditions for destructive interference; 
 
δ=mπ, where m is any integer (≠0). 
 

Therefore, π sinθ
δ=mπ= sinθ=mλ

λ

d
d⇒  which is well known criterion for the destructive interference 

in a diffraction experiment performed on a single slit of width d within Fraunhofer’s diffraction theory. 
 
When simulating the free space within Fraunhofer’s theory, it is possible to increase the slit width to a 
finite value much larger than λ and also to keep the distance D much larger than d in order to still 
remain within the Fraunhofer limit. We can see that qualitatively we still maintain the theoretical 
results as we had derived for a case where d was comparable to λ except that the diffraction pattern 
shrinks progressively with such an increase of d (implying a reduction of obstacles in the path of the 
electron waves). So to a certain accuracy we are able qualitatively verify the consequences of electron 
waves moving in free space within Fraunhofer’s theory. In the limit d→∞ we fully recover the uniform 
intensity in space expected for a wave moving in an isotropic space however the Fraunhofer’s theory 
cannot be applied in this limit. For a more general treatment Fresnel’s theory of diffraction may be 
applied.  
 
From an incident wavefront arising due to the motion of massive particles we have, therefore, 
rationalized the existence of two different phases of the matter waves having equal amplitudes (with a 
phase difference) at any arbitrary point ‘P’ in space (within Fraunhofer’s limit). The phase difference 
varies across the space and is responsible for the generation of interference effects within the matter 
waves giving rise to the diffraction pattern. We are thus successful in justifying the wave character 
arising out of a beam of classical particles upon introducing exchange symmetry among them. Thus we 
elucidate, qualitatively, the origin of the wave character of matter. 
 
 

Section (D) Origin of the quantum behavior of a single electron 

Even for a single electron eigenvalue problem, say for example hydrogen atom problem solved using 
the Schrödinger’s equation, we do find that the single electron displays quantum behavior i.e. 
possessing a spatially extended wavefunction, energy quantization etc. even though we do not 
‘apparently’ have any so-called ‘electron reservoir’ with whom it would be subjected to particle 
exchanges analogous to that mentioned in the case of double slit interference experiments with 
electrons. This might raise a lot of doubt about how the wave behavior emerges for the single electron 
in the absence of any exchanges with other electrons. To answer this we argue that the vacuum 
surrounding the said electron is constantly under the influence of fluctuations in energy leading to the 
formation of short lived ‘virtual’ electron-positron pairs due to Heisenberg’s uncertainty principle. This 
fluctuation of the vacuum and its effect under the action of the electric field of the electron is a well 
established fact and is known to give rise to vacuum polarization (ref. 
https://en.wikipedia.org/wiki/Vacuum_polarization). The ‘virtual’ electrons thus generated due to these 
fluctuations form the ‘electron reservoir’ and participate in exchanges with the said electron for the 
sake of producing the wave (or quantum) behavior of the electron. 
 
However the probability of the exchange is not uniform in space but rather depends upon the strength 
of the electric field in the vicinity of the said electron. More the strength of the electric field more will 
be the probability of the particle exchange to take place. Hence the probability for a particle exchange 
is more at distances close to the said electron while it vanishes far away from it effectively going to 
zero at infinity where the electric field from the said electron vanishes {Note: This is an exchange 
between a ‘real’ and a ‘virtual’ electron and not between two ‘real’ electrons.}. We see a similar profile 
being ‘imprinted’ in the profile of the wavefunction in that the wavefunction vanishes at infinity. This 
is because as the Coulomb interaction dies down far away from the said electron, the probability of 
exchanges with such ‘virtual’ electrons die down proportionately giving rise to reduced amplitude of 
the wavefunction at higher distances. Additionally, the directional dependence of the spatial profile of 
the wavefunction for states with angular momentum (l ≠ 0) is possibly due to the oriented motion of the 
electron around the nucleus giving rise enhanced/reduced electric field along specific directions in 
space causing enhanced/reduced particle exchanges in those directions thereby giving rise to 
increased/decreased amplitude of the wavefunctions in those directions. Thus in short we have 
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attempted to rationalize our idea that particle exchanges occurring between the said electron with the 
‘virtual’ electrons arisen from the vaccuum fluctuations give rise to the formation of the wave/quantum 
behavior exhibited by a single electron. 
 
Similarly the time evolution of a narrow wave packet can be explained using this picture. A well 
known result from quantum mechanics is regarding the time evolution of the narrow wave packet. 
When the wave packet (denoting a ‘real’ electron) at time t=0 is allowed to evolve with time it is 
known that the wave packet spreads with time. This spreading is due to the increased particle 
exchanges happening between the ‘real’ electron and ‘virtual’ electrons with time (t > 0). Specifically, 
when the wave packet is narrow (at t=0) then the particle exchanges do not happen. With increasing 
time the number of virtual electrons across the space participating in the exchange increases too. This 
starts from the location of the ‘real’ electron wherein particle exchanges of itself with the ‘virtual’ 
electrons lying close to it take place initially. Thereafter the ‘virtual’ electrons lying at higher distances 
from the ‘real’ electron start participating in the exchange progressively. Such a temporal spread of the 
particle exchanges from the real electron is replicated in the evolution of the wavefunction of the real 
electron leading to the ‘spreading’ of the wave packet. 


