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Abstract 

By starting from an infinite dimensional quaternionic separable Hilbert space and its companion 

Gelfand triple as a base model, the paper uses the capabilities and the restrictions of this model 

in order to investigate the origins of some basic fields. A special method is introduced that 

generates normal operators and parameter spaces from existing quaternionic number systems. 

The same method is used to relate functions that use these parameter spaces with 

corresponding normal operators. Continuum eigenspaces of operators that reside in the Gelfand 

triple will represent the investigated basic fields. 

The paper exploits all known aspects of the quaternionic number system and it uses 

quaternionic differential calculus as well as Maxwell based differential calculus. This is done in 

order to investigate the properties and behavior of the investigated basic fields. The two toolkits 

offer different views on the basic fields. The views do not affect the behavior of the investigated 

field. 

Maxwell based differential calculus is commonly used to investigate the electromagnetic field, 

but the application of this set of equations is certainly not restricted to the EM field. The EM field 

is compared with another basic field that acts as a background embedding continuum. Both 

basic fields can be investigated by the Maxwell based equations and by the quaternion 

differential calculus. It will be shown that the fundamental difference between the basic fields is 

located in the artifacts that vibrate and deform these basic fields. 

The paper produces an algorithm that calculates the electric charge and color charge of 

elementary objects from the symmetry properties of their local parameter spaces. The electric 

charges generate the electric field. Also the spin of elementary objects is considered. 

Via the analysis of the Dirac equation the paper indicates that the wave equation is the result of 

the coupling between two first order differential equations that hold for different parameter 

spaces. 

The paper reveals that dedicated mechanism control the coherence of the dynamics of the fields. 

The behavior of photons and dynamic electromagnetic fields is used in order to investigate the 

long range behavior of these fields. The paper shows that the usual interpretation of a photon as 
an electric wave is not correct. In addition the relation between gravitation and inertia is 

explained. 
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1 Introduction 
Indications suggest that electrical charges are properties of space. The major indication is the 

fact that quaternionic number systems exist in several versions that differ in their symmetry 

properties. These symmetry properties are related to the way that these versions are ordered. 

Ordered number systems are often used as parameter spaces. This paper introduces the reverse 

bra-ket method, which can relate parameter spaces and functions that use these parameter 

spaces to operators, which reside in Hilbert spaces. Apart from a countable number of local 

exceptions, the function is supposed to be continuous. In reverse, not all operators can be 

related to a pair consisting of a parameter space and a function that uses this parameter space. 

As a consequence of the possibility to define operators from a combination of a function and its 
parameter space, it makes sense to introduce the notion of types of spaces where each type has 

its own symmetry flavor. An important category of these spaces are symmetry centers. 

Symmetry centers float on a covering background space that has its own symmetry flavor. 

Within a separable Hilbert space such types of spaces can coexist as eigenspaces of 

corresponding types of quaternionic operators. That is why we will use an infinite dimensional 

separable quaternionic Hilbert space ℌ as part of our base model. Each infinite dimensional 

separable Hilbert space owns a companion Gelfand triple ℋ, which is a non-separable Hilbert 

space. In the separable Hilbert space ℌ the eigenspaces of operators are countable. In the 

Gelfand triple ℋ the eigenspaces of operators can be continuums. Together, the two Hilbert 

spaces form the base model. 

In the separable quaternionic Hilbert space we introduce the concept of well-ordered normal 
reference operators. A well-ordered normal reference operator offers eigenvalues that have 

unique real parts. The eigenvalues can then be ordered with respect to the values of their real 
parts. We will define a well-ordered reference operator ℛ whose eigenspace ℛ acts as a model-

wide quaternionic parameter space. The well-ordered reference operator ℛ that provides the 

countable parameter space ℛ in the separable Hilbert space ℌ owns a companion reference 

operator ℜ in the Gelfand triple ℋ that provides a quaternionic continuum eigenspace ℜ. That 

eigenspace will be used as the natural parameter space of the quaternionic functions that define 

operators in the Gelfand triple. 

Fields will appear as continuum eigenspaces of normal operators that reside in the Gelfand 

triple. We will show that a category of fields can be defined by using the reverse bra-ket method 

and quaternionic functions that use the eigenspace of the reference operator ℜ as their 

parameter space. This procedure relates the function and the parameter space to a unique 

normal operator that resides in the Gelfand triple. The same methodology can also be applied in 

the separable Hilbert space. 

Symmetry centers reside in the separable Hilbert space and are maintained in finite dimensional 
subspaces. Symmetry centers exist in a small number of types that differ in the corresponding 

symmetry flavor. Corresponding normal operators 𝕾𝑛
𝑥  map these subspaces onto themselves. 

Superscript  𝑥 refers to the type dependent properties of the symmetry center. Subscript 𝑛 

enumerates the individual symmetry centers. The center location of the symmetry center 

corresponds to the value of a quaternionic mapping function of its quaternionic location in the 

parameter space that is defined via the well-ordered reference operator ℛ and its companion ℜ. 

That value is a location in a background continuum ℭ. ℜ is the parameter space of the 

quaternionic function ℭ(𝑞) that defines continuum ℭ and its corresponding operator ℭ. 
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The wave equation appears to be the result of the coupling of two first order partial differential 

equations for which the subjected functions each use a parameter space that differs from the 

parameter space of the other function. 
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2 Quaternions 
Quaternions can be interpreted as combinations of a real scalar and a three dimensional real 

vector [1]. The vector forms the imaginary part of the quaternion. The combination supports 

numeric arithmetic. The vector part introduces a non-commutative multiplication. 

We will indicate the real part of quaternion 𝑎 by subscripted 𝑎0 and the vector part will be put in 

bold font face 𝒂. 

𝑎 = 𝑎0 + 𝒂 

𝑎∗ is the quaternionic conjugate of 𝑎.  

𝑎∗ = 𝑎0 − 𝒂 

 

The sum of two quaternions is defined by: 

𝑐 = 𝑐0 + 𝒄 = 𝑎 + 𝑏 

𝑐0 = 𝑎0 + 𝑏0 

𝒄 = 𝒂 + 𝒃 

 

The product rule is defined by: 

𝑐 = 𝑎 𝑏 = (𝑎0 + 𝒂)(𝑏0 + 𝒃) = 𝑎0 𝑏0 − 〈𝒂, 𝒃〉 + 𝑎0𝒃 + 𝑏0𝒂 ± 𝒂 × 𝒃 

𝑐0 = 𝑎0 𝑏0 − 〈𝒂, 𝒃〉 

𝒄 = 𝑎0𝒃 + 𝑏0𝒂 ± 𝒂 × 𝒃 

 

〈𝒂, 𝒃〉 is the inner vector product. 𝒂 × 𝒃 is the outer vector product. The ± sign signalizes the 

choice between a right handed and a left handed external vector product. This choice indicates 

that quaternionic number systems exist in multiple versions. Due to the four dimensions of 

quaternions will quaternionic number system exist in sixteen different symmetry flavors. This is 
treated in more detail in the section about symmetry flavors. The handedness depends on the 

symmetry flavor. 

 

𝑑 = (𝑎 𝑏)∗ = 𝑏∗ 𝑎∗ = 𝑐∗ = 𝑎0 𝑏0 − 〈𝒂, 𝒃〉 − 𝑎0𝒃 − 𝑏0𝒂 ± 𝒃 × 𝒂 

 

The norm of a quaternion is defined by: 

|𝑎| = √𝑎𝑎∗ = √𝑎0𝑎0 + 〈𝒂, 𝒂〉 

The norm of a quaternionic function is defined by: 

‖𝑓‖ = ∫𝑓(𝑞)𝑓∗(𝑞)
𝑞

 𝑑𝑞 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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3 Quaternionic Hilbert spaces 
Separable Hilbert spaces are linear vector spaces in which an inner product is defined. This 

inner product relates each pair of Hilbert vectors. The value of that inner product must be a 

member of a division ring. Suitable division rings are real numbers, complex numbers and 

quaternions. This paper uses quaternionic Hilbert spaces [2][3][4]. 

Paul Dirac introduced the bra-ket notation that eases the formulation of Hilbert space habits [5]. 

〈𝑥|𝑦〉 = 〈𝑦|𝑥〉∗ 

〈𝑥 + 𝑦|𝑧〉 = 〈𝑥|𝑧〉 + 〈𝑦|𝑧〉 

〈𝛼𝑥|𝑦〉 = 𝛼 〈𝑥|𝑦〉 

〈𝑥|𝛼𝑦〉 = 〈𝑥|𝑦〉 𝛼∗ 

〈𝑥| is a bra vector. |𝑦〉 is a ket vector.  𝛼 is a quaternion. 

This paper considers Hilbert spaces as no more and no less than structured storage media for 

dynamic geometrical data that have an Euclidean signature. Quaternions are ideally suited for 

the storage of such data. Quaternionic Hilbert spaces are described in “Quaternions and 

quaternionic Hilbert spaces” [6]. 

The operators of separable Hilbert spaces have countable eigenspaces. Each infinite dimensional 

separable Hilbert space owns a Gelfand triple. The Gelfand triple embeds this separable Hilbert 

space and offers as an extra service operators that feature continuums as eigenspaces. In the 

corresponding subspaces the definition of dimension loses its sense. 

3.1 Tensor products 
The tensor product of two quaternionic Hilbert spaces is a real Hilbert space [7]. For that reason 

this model does not apply tensor products. As a consequence Fock spaces are not applied in this 

paper. 

Instead the paper represents the whole model by a single infinite dimensional separable 

quaternionic Hilbert space and its companion Gelfand triple. Elementary objects and their 

composites will be represented by subspaces of the separable Hilbert space. Their local living 

spaces coexist as eigenspaces of dedicated operators. 

3.2 Representing continuums and continuous functions 
Operators map Hilbert vectors onto other Hilbert vectors. Via the inner product the operator 𝑇 

may be linked to an adjoint operator 𝑇†.  

〈𝑇𝑥|𝑦〉 ≡ 〈𝑥|𝑇†𝑦〉 

〈𝑇𝑥|𝑦〉 = 〈𝑦|𝑇𝑥〉∗ = 〈𝑇†𝑦|𝑥〉∗ 

A linear quaternionic operator 𝑇, which owns an adjoint operator 𝑇† is normal when 

𝑇† 𝑇 =  𝑇 𝑇†  

𝑇0 = (𝑇 + 𝑇†)/2 is a self adjoint operator and 𝑻 = (𝑇 − 𝑇†)/2 is an imaginary normal operator. 

Self adjoint operators are also Hermitian operators. Imaginary normal operators are also anti-

Hermitian operators. 

By using what we will call reverse bra-ket notation, operators that reside in the Hilbert space and 

correspond to continuous functions, can easily be defined by starting from an orthonormal base 

(1) 

(2) 

(3) 

(4) 

(1) 

(2) 

(3) 
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of vectors. In this base the vectors are normalized and are mutually orthogonal. The vectors span 

a subspace of the Hilbert space. We will attach eigenvalues to these base vectors via the reverse 
bra-ket notation. This works both in separable Hilbert spaces as well as in non-separable Hilbert 

spaces.  

Let {𝑞𝑖} be the set of rational quaternions in a selected quaternionic number system and let 
{|𝑞𝑖〉} be the set of corresponding base vectors. They are eigenvectors of a normal operator ℛ =
|𝑞𝑖〉𝑞𝑖〈𝑞𝑖|. Here we enumerate the base vectors with index 𝑖. 

ℛ ≡ |𝑞𝑖〉𝑞𝑖〈𝑞𝑖|  

ℛ is the configuration parameter space operator. 

This notation must not be interpreted as a simple outer product between a ket vector |𝑞𝑖〉,  a 

quaternion 𝑞𝑖 and a bra vector 〈𝑞𝑖|. It involves a complete set of eigenvalues {𝑞𝑖} and a complete 

orthomodular set of Hilbert vectors {|𝑞𝑖〉}. It implies a summation over these constituents, such 

that for all bra’s 〈𝑥|〉 and ket’s |𝑦〉: 

〈𝑥|ℛ 𝑦〉 = ∑〈𝑥|𝑞𝑖〉𝑞𝑖〈𝑞𝑖|𝑦〉

𝑖

 

ℛ0 = (ℛ + ℛ†)/2 is a self-adjoint operator. Its eigenvalues can be used to arrange the order of 

the eigenvectors by enumerating them with the eigenvalues. The ordered eigenvalues can be 

interpreted as progression values. 

𝓡 = (ℛ − ℛ†)/2 is an imaginary operator. Its eigenvalues can also be used to order the 

eigenvectors. The eigenvalues can be interpreted as spatial values and can be ordered in several 

ways. 

 

Let 𝑓(𝑞) be a mostly continuous quaternionic function. Now the reverse bra-ket notation defines 

operator 𝑓 as: 

𝑓 ≡ |𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖|  

𝑓 defines a new operator that is based on function 𝑓(𝑞). Here we suppose that the target values 

of 𝑓 belong to the same version of the quaternionic number system as its parameter space does. 

Operator 𝑓 has a countable set of discrete quaternionic eigenvalues. 

For this operator the reverse bra-ket notation is a shorthand for 

〈𝑥|𝑓 𝑦〉 = ∑〈𝑥|𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖|𝑦〉

𝑖

 

 

In a non-separable Hilbert space, such as the Gelfand triple, the continuous function ℱ(𝑞) can be 

used to define an operator, which features a continuum eigenspace. 

 

ℱ = |𝑞〉ℱ(𝑞)〈𝑞|  

 

(4) 

(5) 

(6) 

(7) 

(8) 



10 
 

Via the continuous quaternionic function ℱ(𝑞), the operator ℱ defines a curved continuum ℱ. 

This operator and the continuum reside in the Gelfand triple, which is a non-separable Hilbert 

space. 

 

ℜ = |𝑞〉𝑞〈𝑞| 

 

The function ℱ(𝑞) uses the eigenspace of the reference operator ℜ as a flat parameter space that 

is spanned by a quaternionic number system {𝑞}. The continuum ℱ represents the target space 

of function ℱ(𝑞).  

Here we no longer enumerate the base vectors with index 𝑖. We just use the name of the 

parameter. If no conflict arises, then we will use the same symbol for the defining function, the 
defined operator and the continuum that is represented by the eigenspace. 

For the shorthand of the reverse bra-ket notation of operator ℱ the integral over 𝑞 replaces the 

summation over 𝑞𝑖. 

 

〈𝑥|ℱ 𝑦〉 = ∫〈𝑥|𝑞〉ℱ(𝑞)〈𝑞|𝑦〉
𝑞

 𝑑𝑞 

 

Remember that quaternionic number systems exist in several versions, thus also the operators 𝑓 

and ℱ exist in these versions. The same holds for the parameter space operators. When relevant, 

we will use superscripts in order to differentiate between these versions.  

Thus, operator 𝑓𝑥 = |𝑞𝑖
𝑥〉𝑓𝑥(𝑞𝑖

𝑥)〈𝑞𝑖
𝑥| is a specific version of operator 𝑓. Function 𝑓𝑥(𝑞𝑖

𝑥) uses 

parameter space ℛ𝑥.  

Similarly, ℱ𝑥 = |𝑞𝑥〉ℱ𝑥(𝑞𝑥)〈𝑞𝑥| is a specific version of operator ℱ. Function ℱ𝑥(𝑞𝑥) and 

continuum ℱ𝑥 use parameter space ℜ𝑥. If the operator ℱ𝑥 that resides in the Gelfand triple ℋ 

uses the same defining function as the operator ℱ𝑥 that resides in the separable Hilbert space, 

then both operators belong to the same quaternionic ordering version. 

In general the dimension of a subspace loses its significance in the non-separable Hilbert space.  

The continuums that appear as eigenspaces in the non-separable Hilbert space ℋ can be 

considered as quaternionic functions that also have a representation in the corresponding 

infinite dimensional separable Hilbert space ℌ. Both representations use a flat parameter space 

ℜ𝑥 or ℛ𝑥 that is spanned by quaternions. ℛ𝑥 is spanned by rational quaternions. 

The parameter space operators will be treated as reference operators. The rational quaternionic 

eigenvalues {𝑞𝑖
𝑥} that occur as eigenvalues of the reference operator ℛ𝑥 in the separable Hilbert 

space map onto the rational quaternionic eigenvalues {𝑞𝑖
𝑥} that occur as subset of the 

quaternionic eigenvalues {𝑞𝑥} of the reference operator ℜ𝑥 in the Gelfand triple. In this way the 

reference operator ℛ𝑥 in the infinite dimensional separable Hilbert space ℌ relates directly to 

the reference operator ℜ𝑥, which resides in the Gelfand triple ℋ. 

All operators that reside in the Gelfand triple and are defined via a mostly continuous 

quaternionic function have a representation in the separable Hilbert space. 

(9) 

(10) 
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3.3 Stochastic operators 
Stochastic operators do not get their data from a continuous quaternionic function. Instead a 

stochastic process delivers the eigenvalues. Again these eigenvalues are quaternions and the real 

parts of these quaternions can be interpreted as progression values. The generated eigenvalues 

are picked from a selected parameter space. 

Stochastic operators only act in a step-wise fashion. Their eigenspace is countable. Stochastic 

operators may act in a cyclic fashion. 

The mechanisms that control the stochastic operator can synchronize the progression values 

with the model wide progression that is set by a selected reference operator. 

Characteristic for stochastic operators is that the imaginary parts of the eigenvalues are not 

smooth functions of the real values of those eigenvalues. 

 Density operators 
The eigenspace of a stochastic operator may be characterized by a continuous spatial density 

distribution. In that case the corresponding stochastic process must ensure that this continuous 

density distribution fits. The density distribution can be constructed afterwards or after each 

regeneration cycle. Constructing the density distribution involves a reordering of the imaginary 

parts of the produced eigenvalues. This act will usually randomize the real parts of those 

eigenvalues. A different operator can then use the continuous density distribution in order to 

generate its functionality. The old real parts of the eigenvalues may then reflect the reordering. 

The construction of the density distribution is a pure administrative action that is performed as 

an aftermath. The constructed density operator represents a continuous function and may 

reside both in the separable Hilbert space and in the Gelfand triple. The construction of the 

density function involves a selected parameter space. That parameter space need not be the 

same as the parameter space from which the stochastic process picked its eigenvalues. 
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3.4 Notations 
The reverse bra-ket notation enables the definition of some special operators that play an 

unique role in the model. We will reserve special symbols for these operators and we will also 

use special symbols in order to distinguish separable from non-separable Hilbert spaces. 

Symbol Meaning Applied in As 
ℌ Separable Hilbert space Model Structured storage  
ℋ Non-separable Hilbert space, Gelfand triple Model Structured storage 
ℛ Reference operator ℌ Parameter space 
ℜ Reference operator ℋ Parameter space 
ℭ Embedding continuum operator ℋ Field, function 
𝔄 Symmetry related field operator ℋ Field, function 
𝔖  Symmetry center operator ℌ Floating parameter space 
ℴ Coherent swarm operator ℌ Dynamic location distribution 
𝒷 Mapped coherent swarm operator ℌ Dynamic location distribution 
ρ Density operator ℋ Density function 

 

The defining function in the reverse bra-ket notation enables the definition of operators in both 

the separable Hilbert space ℌ and in the Gelfand triple ℋ. Still different symbols are used for 

reference operators ℜ and ℛ.  

ℴ is a stochastic operator. 𝒷 maps the eigenspace of ℴ in parameter space ℛ. ρ is the 

corresponding density operator. 

4 Change of base 
In quaternionic Hilbert space a change of base can be achieved by: 

 

〈𝑥|ℱ̃ 𝑦〉 = ∫ 〈𝑥 |𝑞̃〉 {∫〈𝑞|𝑞〉ℱ(𝑞)〈𝑞|𝑞̃〉 𝑑𝑞
𝑞

} 〈𝑞̃|𝑦〉 𝑑𝑞̃
𝑞̃

 

= ∫〈𝑥|𝑞̃〉ℱ̃(𝑞̃)〈𝑞̃|𝑦〉
𝑞̃

 𝑑𝑞̃ 

ℱ̃(𝑞̃) = ∫〈𝑞|𝑞〉ℱ(𝑞)〈𝑞|𝑞̃〉
𝑞

 𝑑𝑞  

ℜ̃(𝑞̃) = ∫〈𝑞|𝑞〉𝑞〈𝑞|𝑞̃〉
𝑞

 𝑑𝑞  

〈𝑥|ℜ̃ 𝑦〉 = ∫〈𝑥|𝑞̃〉ℜ̃(𝑞̃)〈𝑞̃|𝑦〉
𝑞̃

 𝑑𝑞̃ 

ℜ̃ = |𝑞̃〉𝑞̃〈𝑞̃| 

However, as we see in the formulas this method merely achieves a rotation of parameter spaces 

and functions. In the complex number based Hilbert space it would achieve no change at all. 

4.1 Fourier transform 
A Fourier transform uses a different approach. It is not a direct transform between parameter 

spaces, but instead it is a transform between sets of mutually orthogonal functions, which are 

formed by inner products, which are related to different parameter spaces. The quaternionic 

(1) 

(2) 

(3) 

(4) 

(5) 
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Fourier transform exists in three versions. The first two versions have a reverse Fourier 

transform.  

The left oriented Fourier transform is defined by: 

 

ℱ̃𝐿(𝑞̃𝐿) = ∫〈𝑞̃𝐿|𝑞〉 ℱ(𝑞)
𝑞

 𝑑𝑞  

Like the functions 〈𝑞|𝑞′〉 and 〈𝑞̃𝐿|𝑞̃𝐿
′ 〉, the functions 〈𝑞̃𝐿|𝑞〉 and 〈𝑞|𝑞̃𝐿〉 form sets of mutually 

orthogonal functions, as will be clear from:  

〈𝑞|𝑞′〉 = 𝛿(𝑞 − 𝑞′) 

〈𝑞̃𝐿|𝑞̃𝐿
′ 〉 = 𝛿(𝑞̃𝐿 − 𝑞̃𝐿

′ ) 

∫ 〈𝑞′|𝑞̃𝐿〉〈𝑞̃𝐿|𝑞〉  𝑑𝑞̃𝐿
𝑞̃𝐿

= 𝛿(𝑞 − 𝑞′) 

∫〈𝑞̃𝐿
′ |𝑞〉〈𝑞|𝑞̃𝐿〉  𝑑𝑞

𝑞

= 𝛿(𝑞̃𝐿 − 𝑞̃𝐿
′ ) 

 

The reverse transform is: 

ℱ(𝑞) = ∫ 〈𝑞|𝑞̃𝐿〉ℱ̃𝐿(𝑞̃𝐿) 𝑑𝑞̃𝐿 =
𝑞̃𝐿

∫ ∫ 〈𝑞|𝑞̃𝐿〉〈𝑞̃𝐿|𝑞
′〉ℱ(𝑞′) 𝑑𝑞̃𝐿

𝑞′𝑞̃𝐿

𝑑𝑞′  

= ∫ {∫ 〈𝑞|𝑞̃𝐿〉〈𝑞̃𝐿|𝑞
′〉 𝑑𝑞̃𝐿

𝑞̃𝐿

}ℱ(𝑞′)
𝑞′

𝑑𝑞′ = ∫ 𝛿(𝑞 − 𝑞′)ℱ(𝑞′) 𝑑𝑞′ 
𝑞′

 

 

The reverse bra-ket form of the operator ℱ̃𝐿 equals: 

ℱ̃𝐿 = |𝑞̃𝐿〉ℱ̃𝐿(𝑞̃𝐿)〈𝑞̃𝐿|  

 

Operator ℜ̃𝐿 provides the parameter space for the left oriented Fourier transform ℱ̃𝐿(𝑞̃𝐿) of 

function ℱ(𝑞) in equations (1) and (6).  

ℜ̃𝐿 = |𝑞̃𝐿〉𝑞̃𝐿〈𝑞̃𝐿|  

 

Similarly the right oriented Fourier transform can be defined. 

ℱ̃𝑅(𝑞̃) = ∫ℱ(𝑞′)〈𝑞′|𝑞̃〉
𝑞

 𝑑𝑞′  

The reverse transform is: 

ℱ(𝑞) = ∫ ℱ̃𝑅(𝑞̃𝑅)〈𝑞|𝑞̃𝑅〉 𝑑𝑞̃𝑅 =
𝑞̃𝑅

∫ ∫ ℱ(𝑞′)〈𝑞′|𝑞̃𝑅〉〈𝑞̃𝑅|𝑞〉 𝑑𝑞′ 𝑑𝑞̃𝑅
𝑞′𝑞̃𝑅

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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= ∫ ℱ(𝑞′) {∫ 〈𝑞′|𝑞̃𝑅〉〈𝑞̃𝑅|𝑞〉  𝑑𝑞̃𝑅
𝑞̃𝑅

}𝑑𝑞′

𝑞′
= ∫ ℱ(𝑞′) 𝛿(𝑞 − 𝑞′) 𝑑𝑞′ 

𝑞′
 

 

Also here the functions 〈𝑞|𝑞′〉, 〈𝑞̃𝑅|𝑞̃𝑅
′ 〉, 〈𝑞̃𝑅|𝑞〉 and 〈𝑞|𝑞̃𝑅〉 form sets of mutually orthogonal 

functions. 

The reverse bra-ket form of the operator ℱ̃𝑅 equals: 

ℱ̃𝑅 = |𝑞̃𝑅〉ℱ̃𝑅(𝑞̃𝑅)〈𝑞̃𝑅|  

 

Operator ℜ̃𝑅 provides the parameter space for the right oriented Fourier transform ℱ̃𝑅(𝑞̃𝑅) of 

function ℱ(𝑞) in equations (9) and (10).  

ℜ̃𝑅 = |𝑞̃𝑅〉𝑞̃𝑅〈𝑞̃𝑅|  

 

The third version of the Fourier transform is: 

ℱ̃(𝑞̃𝐿, 𝑞̃𝑅) =
ℱ̃𝐿(𝑞̃𝐿) + ℱ̃𝑅(𝑞̃𝑅)

2
= ½∫{〈𝑞̃𝐿|𝑞〉ℱ(𝑞) + ℱ(𝑞)〈𝑞|𝑞̃𝑅〉} 𝑑𝑞

𝑞

  

In contrast to the right and left version, the third version has no reverse.  

  

(11) 

(12) 

(13) 
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5 Well-ordered reference operators 
The eigenvalues of a normal operator 𝑇 that resides in a separable Hilbert space can be ordered 

with respect to the real part of the eigenvalues. Operator 𝑇0 = (𝑇 + 𝑇†)/2 is the corresponding 

self-adjoint operator. If each real value occurs only once, then the operator 𝑇 and its adjoint 𝑇† 
can be well-ordered. The imaginary part of the eigenvalues can then still be ordered in different 

ways. Operator 𝑻 = (𝑇 − 𝑇†)/2 is the corresponding anti-Hermitian operator. For example it 

can be ordered according to Cartesian coordinates or according to spherical coordinates. Also 

each of these orderings can be done in different ways.  

The reference operators ℛ𝑥 will all be considered to be well-ordered. All reference operators ℛ𝑥 

share the same Hermitian part ℛ0. The property of being well-ordered is restricted to operators 

with countable eigenspaces. However, via the defining functions, the well-orderedness can be 

transferred to the corresponding operator in the Gelfand triple. Thus the reference operators ℜ𝑥 

that reside in the Gelfand triple will also be well–ordered. 

If a normal operator that is defined by using the reverse bra-ket notation and a continuous 

function that uses a well-ordered parameter space, then we qualify this operator as being 

indirectly well-ordered. This qualification is independent of the fact that the target values of the 

function are no longer well-ordered. 

 Progression ordering 
A single self-adjoint reference operator that offers an infinite set of rational eigenvalues can 

synchronize a category of well-ordered normal operators. We use ℛ0 for this purpose. The 

ordered eigenvalues of this self-adjoint operator act as progression values. In this way the 

infinite dimensional separable Hilbert space owns a model wide clock. With this choice the 

separable Hilbert space steps with model-wide progression steps. 

The selected well-ordered normal reference operator ℛ⓪ that resides in an infinite dimensional 

separable quaternionic Hilbert space is used in the specification of the companion quaternionic 

Gelfand triple. There it corresponds to reference operator ℜ⓪. In that way progression steps in 

the separable Hilbert space and flows in the companion Gelfand triple. Both reference operators 

will be used to provide parameter spaces. We will often omit the superscript for the reference 

operators ℛ⓪ and ℜ⓪. 

The countable set of progression values of the Hermitian part ℛ0 = (ℛ + ℛ†)/2 of the well-

ordered reference operator ℛ can be used to enumerate other ordered sequences. 

 Cartesian ordering 
The whole separable Hilbert space can at the same time be spanned by the eigenvectors of a 

reference operator whose eigenvalues are well-ordered with respect to the real parts of the 

eigenvalues, while the imaginary parts are ordered with respect to a Cartesian coordinate 

system.  

For Cartesian ordering, having an origin is not necessary. In affine Cartesian ordering only the 

direction of the ordering is relevant. Affine Cartesian ordering exists in eight symmetry flavors. 

Affine and normal Cartesian ordering suppose a unique orientation of the Cartesian axes. 

The well-ordered reference operator ℛ is supposed to feature affine Cartesian ordering.  
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 Spherical ordering 
Spherical ordering starts with a selected Cartesian set of coordinates. In this case the origin is at 

a unique center location. Spherical ordering can be done by first ordering the azimuth and after 

that the polar angle is ordered. Finally, the radial distance from the center can be ordered. 

Another procedure is to start with the polar angle, then the azimuth and finally the radius. Such, 

spherical orderings may create a symmetry center. Since the ordering starts with a selected 

Cartesian coordinate system, spherical ordering will go together with affine Cartesian ordering.  

Each symmetry center is described by the eigenspaces of an anti-Hermitian operator 𝕾𝑛
𝑥  that 

map a finite dimensional subspace of Hilbert space ℌ onto itself. Superscript  𝑥 refers to the 

ordering type of the symmetry center. Subscript 𝑛 enumerates the symmetry centers. If there is 

no reason for confusion, then this subscript will be omitted. 𝕾𝑛
𝑥  has no Hermitian part. Only 

through its ordering it can synchronize with progression steps. 

6 Symmetry flavor 
Quaternions can be mapped to Cartesian coordinates along the orthonormal base vectors 1, 𝒊, 𝒋 

and 𝒌; with 𝒊𝒋 = 𝒌  

Due to the four dimensions of quaternions, quaternionic number systems exist in 16 well-

ordered versions {𝑞𝑥} that differ only in their discrete Cartesian symmetry set. The quaternionic 

number systems {𝑞𝑥} correspond to 16 versions {𝑞𝑖
𝑥} of rational quaternions.  

Half of these versions are right handed and the other half are left handed. Thus the handedness 

is influenced by the symmetry flavor. 

The superscript  𝑥 can be  ⓪,  ①,  ②,  ③,  ④,  ⑤,  ⑥,  ⑦,  ⑧,  ⑨,  ⑩,  ⑪,  ⑫,  ⑬,  ⑭, or ⑮.  

This superscript represents the symmetry flavor of the superscripted subject. 

The reference operator ℛ⓪ = |𝑞𝑖
⓪〉 𝑞𝑖

⓪ 〈𝑞𝑖
⓪

| in separable Hilbert space ℌ maps into the 

reference operator ℜ⓪ = |𝑞⓪〉𝑞⓪〈𝑞⓪| in Gelfand triple ℋ. 

The symmetry flavor of the symmetry center 𝕾𝑥, which is maintained by operator 

𝕾𝑥 = |𝖘𝑖
𝑥〉𝖘𝑖

𝑥〈𝖘𝑖
𝑥| is determined by its Cartesian ordering and then compared with the reference 

symmetry flavor, which is the symmetry flavor of the reference operator ℛ⓪.  

Now the symmetry related charge follows in three steps. 

1. Count the difference of the spatial part of the symmetry flavor of 𝕾𝑥 with the spatial part 

of the symmetry flavor of reference operator ℛ⓪. 

2. If the handedness changes from R to L, then switch the sign of the count. 

3. Switch the sign of the result for anti-particles. 

 

Symmetry flavor 
Ordering 
x   y   z    τ 

Super 
script 

Handedness 
Right/Left 

Color 
charge 

Electric 
charge * 3 

Symmetry center type. 
Names are taken from the 
standard model 

 ⓪ R N +0 neutrino 

 ① L R −1 down quark 

 ② L G −1 down quark 

 ③ L B −1 down quark 
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 ④ R B +2 up quark 

 ⑤ R G +2 up quark 

 ⑥ R R +2 up quark 

 ⑦ L N −3 electron 

 ⑧ R N +3 positron 

 ⑨ L R −2 anti-up quark 

 ⑩ L G −2 anti-up quark 

 ⑪ L B −2 anti-up quark 

 ⑫ R B +1 anti-down quark 

 ⑬ R R +1 anti-down quark 

 ⑭ R G +1 anti-down quark 

 ⑮ L N −0 anti-neutrino 

 

 

Per definition, members of coherent sets {𝑎𝑖
𝑥} of quaternions all feature the same symmetry 

flavor that is marked by superscript  𝑥. 

Also continuous functions and continuums feature a symmetry flavor. Continuous quaternionic 

functions 𝜓𝑥(𝑞𝑥) and corresponding continuums do not switch to other symmetry flavors  𝑦.  

The reference symmetry flavor 𝜓𝑦(𝑞𝑦) of a continuous function 𝜓𝑥(𝑞𝑦) is the symmetry flavor 
of the parameter space {𝑞𝑦}.  

If the continuous quaternionic function describes the density distribution of a set {𝑎𝑖
𝑥} of 

discrete objects 𝑎𝑖
𝑥, then this set must be attributed with the same symmetry flavor  𝑥. The real 

part describes the location density distribution and the imaginary part describes the 

displacement density distribution. 

7 Symmetry centers 
Each symmetry center corresponds to a dedicated subspace of the infinite dimensional 
separable Hilbert space. That subspace is spanned by the eigenvectors {|𝖘𝑖

𝑥〉} of a corresponding 

symmetry center reference operator 𝕾𝑛
𝑥 . Here the superscript  𝑥 refers to the type of the 

symmetry center. The subscript 𝑛 enumerates the symmetry centers. The type covers more than 

just the symmetry flavor. We will often omit the subscript. 

Symmetry flavors relate to affine Cartesian ordering. Each symmetry center will own a single 

symmetry flavor. The symmetry flavor of the symmetry center relates to the Cartesian 

coordinate system that acts as start for the spherical ordering. The combination of affine 

Cartesian ordering and spherical ordering puts corresponding axes in parallel. Spherical 

ordering relates to spherical coordinates. Starting spherical ordering with the azimuth 
corresponds to half integer spin. The azimuth runs from 0 to π radians. Starting spherical 

ordering with the polar angle corresponds to integer spin. The polar angle runs from 0 to 2π 

radians. These selections add to the type properties of the symmetry centers.  

The model suggests that symmetry centers are maintained by special mechanisms that ensure 

the spatial and dynamical coherence of the coupling of the symmetry center to the background 

space. Several types of such mechanisms exist. Each symmetry center type corresponds to a 

mechanism type. These mechanisms are not part of the separable Hilbert space. 

Symmetry centers are resources where the coherence ensuring mechanisms can take dynamic 

locations that are stored in quaternionic eigenvalues of dedicated stochastic operators, in order 
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to generate coherent location swarms that represent point-like objects. The type of the point-

like object corresponds to the type of the controlling mechanism.  

The basic symmetry center is independent of progression. Once created, a symmetry center 

persists until it is annihilated. However, during creation its ordering can be synchronized with 

selected progression steps. Any progression dependence that concerns a symmetry center is 

handled by a type dependent mechanism. The type depends on the symmetry flavor and on the 

spin. Further, it depends on other characteristics that will not be treated in this paper, but that 

will appear as properties of the point-like object that will be supported by the controlling 

mechanism. An example is the generation flavor of the point-like particle. In this way the same 

symmetry center type can support electrons, muons and tau particles. Symmetry flavor and spin 

can be related to ordering of the symmetry center. Generation flavor is a property of the 

controlling mechanism. 

The mechanisms that control the usage of symmetry centers act mostly in a cyclic fashion. When 

compared to mechanisms that care about particles, the cycles that occur in equivalent 

mechanisms that care about corresponding anti-particles act in the reverse direction. As a 

consequence many of the properties of the anti-particles are the opposite of the properties of the 

corresponding particles. This holds for the sign of the symmetry related charge and it holds for 

the color charge, but it does not hold for the mass and for the energy of the (anti)particle. 

Symmetry centers have a well-defined spatial origin. That origin floats on the eigenspace of the 

reference operator ℛ⓪. Symmetry centers are formed by a dedicated category of compact anti-
Hermitian operators {𝕾𝑛

𝑥}𝑛.  

An infinite dimensional separable Hilbert space can house a set of subspaces that each represent 

such a symmetry center. Each of these subspaces then corresponds to a dedicated spherically 

ordered reference operator 𝕾𝑛
𝑥 . The superscript  𝑥 distinguishes between symmetry flavors and 

other properties, such as spin and generation flavor. Symmetry centers correspond to dedicated 

subspaces that are spanned by the eigenvectors {|𝖘𝑖
𝑥〉} of the symmetry center reference 

operator 𝕾𝑥. (Here we omit subscript 𝑛). 

 

𝕾𝑥 = |𝖘𝑖
𝑥〉𝖘𝑖

𝑥〈𝖘𝑖
𝑥| 

 

𝕾𝑥† = −𝕾𝑥 

 

Only the location of the center inside the eigenspace of reference operator ℛ⓪ is a progression 
dependent value. This value is not eigenvalue of operator 𝕾𝑛

𝑥 . The location of the center inside 

ℛ⓪ is eigenvalue of a central governance operator ℊ. 

Symmetry centers feature a symmetry related charge that depends on the difference between the 

symmetry flavor of the symmetry center and the symmetry flavor of the reference operator ℛ⓪, 

which equals the symmetry flavor of the embedding continuum ℭ. The symmetry related 

charges raise a symmetry related field 𝔄. The symmetry related field 𝔄 influences the position of 

the center of the symmetry center in parameter space ℛ⓪ and indirectly it influences the 

position of the map of the symmetry center into the field that represents the embedding 

continuum ℭ. Both fields, 𝔄 and ℭ use the eigenspace of the reference operator ℜ as their 

parameter space. 

(1) 

(2) 
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The closed subspaces that correspond to a symmetry center have a fixed finite dimension. This 

dimension is the same for all types of symmetry centers. This ensures that symmetry related 

charges all appear in the same short list. 

7.1 Synchronization via coupling 
The basic symmetry center is independent of progression. Any progression dependence that 

concerns a symmetry center is handled by a type dependent mechanisms that controls the usage 

of the symmetry center. The type dependent mechanism acts in a progression dependent 

fashion. On certain progression steps the mechanism selects a location from the symmetry 

center that will be used to embed a point-like object in the background space. 

The background space, is maintained by reference operator ℛ. Embedding the symmetry center 

into the eigenspace of this operator ensures the synchronization of the symmetry center with 

the background space. That is why the embedding occurs at instances that are selected from the 

progression values, which are offered as eigenvalues by ℛ0 = (ℛ + ℛ†)/2. However, the 

controlling mechanism does not embed the center location, but instead the mechanism uses a 

stochastic process in order to select a location somewhere inside the symmetry center. Further, 
not all eigenvalues {𝖘𝑖

𝑥} of 𝕾𝑛
𝑥  will be used in the embedding process. A special operator ℴ𝑛

𝑥 that 

is dedicated to the type of the embedded point-like object describes the selected locations in its 

eigenvalues. The eigenspace of operator ℴ𝑛
𝑥 is mapped onto the eigenspace of ℛ. This converts 

operator ℴ𝑛
𝑥 into operator 𝒷𝑛. Operator 𝒷𝑛 has an equivalent ℭ(𝒷𝑛) in the Gelfand triple. 

Function ℭ(𝑞)maps eigenvalues of 𝒷𝑛 onto continuum ℭ. 

The embedding location represents a point-like object that resides in the symmetry center. That 

embedding location is mapped onto the embedding continuum, which resides as the eigenspace 

of operator ℭ in the Gelfand triple ℋ. This continuum is defined as a function ℭ(𝑞) over 

parameter space ℜ. 

The locations in the symmetry center that for the purpose of the embedding are selected, form a 

coherent location swarm and a hopping path that characterize the dynamic behavior of the 

point-like object. The embedding process deforms continuum ℭ.This embedding process is 

treated in more detail in [8]. 
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8 Central governance 
The eigenvalues of the central governance operator ℊ administer the relative locations of the 

symmetry centers with respect to the reference operator ℛ⓪ which resides in the separable 

Hilbert space ℌ and maps to the reference continuum ℜ⓪ in the Gelfand triple ℋ. A further map 

projects onto the embedding continuum ℭ.The central governance operator ℊ resides in the 

separable Hilbert space ℌ. Operator ℊ has an equivalent ℭ(ℊ) in the Gelfand triple. Function 

ℭ(𝑞)maps eigenvalues of ℊ onto continuum ℭ. 

The reference continuum ℜ⓪ acts as a parameter space of the function 𝔄(𝑞) that specifies the 

symmetry related field 𝔄, which is eigenspace of the corresponding operator.  

Each symmetry center owns a symmetry related charge, which is located at its geometric center. 

Each symmetry related charge owns an individual field 𝜑 that contributes to the overall 

symmetry related field 𝔄. 

The reference continuum ℜ⓪ also acts as a parameter space of the function ℭ(𝑞) that specifies 

the embedding continuum ℭ, which is eigenspace of the corresponding operator ℭ. 

A fundamental difference exists between field 𝔄 and field ℭ. However both fields obey the same 

quaternionic differential calculus. The difference originates from the artifacts that cause the 

discontinuities of the fields. In the symmetry related field 𝔄 these artifacts are the symmetry 

related charges. In the embedding continuum ℭ these artifacts are the embedding events. What 

happens in not too violent conditions will be described by the homogeneous quaternionic 

second order partial differential equation and the Poisson equation of the corresponding field 

and will be affected by the local and current conditions. Since the elementary point-like objects 

reside inside their individual symmetry center, the embedding continuum will also be affected 

by what happens to the symmetry centers.  

Double quaternionic differentiation of field 𝔄 shows the relation between 𝔄 and ℊ.  

 

∇∗∇ 𝔄 = ℊ 

 

Function ℭ(𝑞) maps both 𝜑 and the eigenspace of ℊ onto continuum ℭ. 

8.1 Embedding symmetry centers 

The well-ordered eigenspace of a quaternionic normal operator ℛ⓪ that resides in an infinite 

dimensional separable Hilbert space acts as a reference operator from which the parameter 

space ℜ⓪ of the embedding continuum ℭ will be derived. This parameter space resides as 

continuum eigenspace of a corresponding operator ℜ⓪ in the Gelfand triple. This parameter 

space also acts as parameter space of a symmetry related field 𝔄. It is sparsely covered by 

locations of symmetry centers. The central governance operator ℊ administers these locations. 

The symmetry centers contain symmetry related charges. The locations of these charges are 

influenced by the symmetry related field 𝔄.  

It will appear that the defining function of field 𝔄 can be reformulated into a function that uses a 

different parameter space. The behavior of that new function can be described by Maxwell based 

differential calculus. This description can show the wave behavior that field 𝔄 does not show via 

quaternionic differential calculus.   

(1) 
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9 Field dynamics 
In this chapter we will use a switch ⊛ =  ±1 that selects between two different sets of 

differential calculus. One set concerns low order quaternionic differential calculus. The other set 

concerns Maxwell based differential calculus. The switch will be used to highlight the great 

similarity and the significant differences between these sets. 

9.1 Differentiation 
In the model that we selected, the dynamics of the fields can be described by quaternionic 

differential calculus. Apart from the eigenspaces of reference operators and the symmetry 

centers we encountered two fields that are defined by quaternionic functions and corresponding 

operators. One is the symmetry related field 𝔄 and the other is the embedding field ℭ.  

𝔄 determines the dynamics of the symmetry centers. ℭ gets deformed and vibrated by the 

recurrent embedding of point-like elementary particles that each reside on an individual 

symmetry center.  

Apart from the way that they are affected by point-like artifacts that disrupt the continuity of the 

field, both fields obey, under not too violent conditions and over not too large ranges, the same 

differential calculus. However, especially field 𝔄 is known to show wave behavior that cannot 

properly be described by quaternionic differential calculus. For that reason we will also 

investigate what a change of parameter space brings for the defining functions of the basic fields 

𝔄 and ℭ 

9.2 Quaternionic differential calculus. 
For quaternionic differential calculus the switch ⊛ equals 1. 

Under rather general conditions the change of a quaternionic function 𝑓(𝑞) can be described by: 

 

𝑑𝑓(𝑞) ≈ ∑{
𝜕𝑓

𝜕𝑞𝜇
+ ∑

𝜕

𝜕ν

𝜕𝑓

𝜕𝑞𝜇
𝑑𝑞𝜈

𝜇=0…3

}

𝜇=0…3

𝑑𝑞𝜇 = 𝑐𝜇(𝑞)𝑑𝑞𝜇 + 𝑐𝜇𝜈(𝑞)𝑑𝑞𝜇𝑑𝑞𝜈 

 

Here the coefficients 𝑐𝜇(𝑞) and 𝑐𝜇𝜈(𝑞) are full quaternionic functions. 𝑑𝑞𝜇 are real numbers. 𝑒𝜈 

are quaternionic base vectors. 

The conditions that are treated by equation (1) still do not require more than second order 

differentiation. Thus, these conditions cannot be considered as general conditions! 

Under more moderate and sufficiently short range conditions the function behaves more 

linearly.  

 

𝑑𝑓(𝑞) ≈ ∑
𝜕𝑓

𝜕𝑞𝜇
𝜇=0…3

𝑑𝑞𝜇 = 𝑐𝜇(𝑞)𝑑𝑞𝜇 

 

(1) 

(2) 
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Under even stricter conditions the functions become real functions 𝑐0
𝜇(𝑞) attached to 

quaternionic base vectors: 

 

𝑑𝑓(𝑞) = 𝑐0
𝜏 𝑑𝑞𝜏 + 𝑐0

𝑥 𝒊 𝑑𝑞𝑥 + 𝑐0
𝑦
 𝒋 𝑑𝑞𝑦 + 𝑐0

𝑧 𝒌 𝑑𝑞𝑧 = 𝑐0
𝜇(𝑞) 𝑒𝜇 𝑑𝑞𝜇 

= ∑(∑
𝜕𝑓𝜍

𝜕𝑞𝜇

3

𝜍=0

𝑒𝜍)𝑒𝜇𝑑𝑞𝜇

3

𝜇=0

= ∑ 𝛷𝜇𝑒𝜇𝑑𝑞𝜇

3

𝜇=0…3

 

𝛷𝜇 = 𝑐0
𝜇

= ∑
𝜕𝑓𝜍

𝜕𝑞𝜇

3

𝜍=0

𝑒𝜍 =
𝜕𝑓𝜍

𝜕𝑞𝜇
𝑒𝜍 =

𝜕𝑓

𝜕𝑞𝜇
 

 

Thus, in a rather flat continuum we can use the quaternionic nabla ∇. 

 

∇= {
𝜕

𝜕𝜏
,
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
} =  

𝜕

𝜕𝜏
+ 𝒊

𝜕

𝜕𝑥
+ 𝒋

𝜕

𝜕𝑦
+ 𝒌

𝜕

𝜕𝑧
= 𝛻0 +  𝜵 = ∑

𝜕𝑓

𝜕𝑞𝜇
𝑒𝜇

3

𝜇=0

 

 

𝛷 = 𝛷0 + 𝜱 = 𝛻𝜓 = (𝛻0 +  𝜵)(𝜓0 + 𝝍) 

Thus, in a rather flat continuum we can use the quaternionic nabla ∇. 

 

∇= {
𝜕

𝜕𝜏
,
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
} =  

𝜕

𝜕𝜏
+ 𝒊

𝜕

𝜕𝑥
+ 𝒋

𝜕

𝜕𝑦
+ 𝒌

𝜕

𝜕𝑧
= 𝛻0 +  𝜵 

 

𝛷 = 𝛷0 + 𝜱 = 𝛻𝜓 = (𝛻0 +  𝜵)(𝜓0 + 𝝍) 

 

This form of the partial differential equation highlights the fact that in first order and second 

order partial differential equations the nabla operator can be applied as a multiplier. 

 

𝛷0 = 𝛻0𝜓0 −⊛ ⟨𝜵,𝝍⟩ 

 

𝜱 = 𝛻0𝝍 + 𝜵𝜓0 ± 𝜵 × 𝝍 

 

These equations represent only low order partial differential equations. In this form the 

equations can still describe point-like disruptions of the continuity of the field. 

(3) 

(4) 

(5) 

(5) 

(6) 

(7) 

(8) 

(9) 
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𝛷∗ = (𝛻𝜓)∗ = 𝛻∗𝜓∗ − 2 𝜵 × 𝝍 

 

𝛻∗(𝛻∗𝜓∗)∗ = 𝛻∗𝛷 = 𝛻∗𝛻𝜓 

 

Double partial differentiation will then result in the quaternionic non-homogeneous second 

order partial differentiation equation: 

 

𝜉 = 𝜉0 + 𝝃 = 𝛻∗𝛻𝜓 = (𝛻0 −  𝜵)(𝛻0 +  𝜵)(𝜓0 + 𝝍) = {𝛻0𝛻0 + ⊛ 〈𝜵, 𝜵〉}𝜓 

=
𝜕2𝜓

𝜕𝜏2
+⊛

𝜕2𝜓

𝜕𝑥2
+⊛

𝜕2𝜓

𝜕𝑦2
+⊛

𝜕2𝜓

𝜕𝑧2
 

 

𝜁0 = 𝛻0𝜙0 +⊛ 〈𝜵,𝝓〉 

= 𝛻0𝛻0𝜑0 −⊛ 𝛻0〈𝜵,𝝋〉 +⊛ 〈𝜵, 𝜵〉𝜑0 +⊛ 𝛻0〈𝜵,𝝋〉 ±⊛ 〈𝜵, 𝜵 × 𝝋〉 

= (𝛻0𝛻0 +⊛ 〈𝜵,𝜵〉)𝜑0 

 

𝜻 = −𝜵𝜙0 + 𝛻0𝝓 ∓ 𝜵 × 𝝓 

= −𝜵𝛻0𝜑0 +⊛ 𝜵〈𝜵,𝝋〉 + 𝛻0𝜵𝜑0 + 𝛻0𝛻0𝝋 ± 𝛻0𝜵 × 𝝋 

∓𝜵 × 𝜵𝜑0 ∓ 𝜵 × 𝛻0𝝋 − 𝜵 × 𝜵 × 𝝋 

= −𝜵𝛻0𝜑0 +⊛ 𝜵 × 𝜵 × 𝝋 +⊛ 〈𝜵,𝜵〉𝝋 + 𝛻0𝜵𝜑0 + 𝛻0𝛻0𝝋 ± 𝛻0𝜵 × 𝝋 

∓𝜵 × 𝜵𝜑0 ∓ 𝜵 × 𝛻0𝝋 − 𝜵 × 𝜵 × 𝝋 

= (𝛻0𝛻0 +⊛ 〈𝜵,𝜵〉)𝝋 

 

Here 𝜉 is a quaternionic function that for a part 𝜌 describes the density distribution of a set of 

point-like artifacts that disrupt the continuity of function 𝜓(𝑞).  

 

𝜌 = 𝜌0 + 𝝆 = 〈𝜵, 𝜵〉𝜓 =
𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
+

𝜕2𝜓

𝜕𝑧2
 

 

𝜉 − 𝜌 = 𝛻0𝛻0𝜓 

 

In case of a single static point-like artifact, the solution 𝜓 will describe the corresponding 

Green’s function. 

Function 𝜓(𝑞) describes the mostly continuous field 𝜓. 

The second order partial differential equation can be split into two continuity equations: 

(10) 

(11) 

(10) 

(11) 

(12) 

(13) 

(14) 
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𝛷 = 𝛻𝜓 

 

𝜌 = 𝛻∗𝛷 

 

If 𝜓 and Φ are normalizable functions and ‖𝜓‖ = 1, then with real 𝑚 and ‖𝜁‖ = 1 

 

𝛻𝜓 = 𝑚 𝜁 

 

9.3 Fourier equivalents 
In this quaternionic differential calculus, differentiation is implemented as multiplication. 

This is revealed by the Fourier equivalents of the equations (4) through (10) in the previous 

paragraph: 

𝛷̃ = 𝛷̃0 + 𝜱̃ = 𝑝 𝜓̃ = (𝑝0 +  𝒑)(𝜓̃0 + 𝝍̃) 

 

The nabla 𝛻 is replaced by operator 𝑝. 𝛷̃ is the Fourier transform of 𝛷. 

 

𝛷̃0 = 𝑝0𝜓̃0 − ⟨𝒑, 𝝍̃⟩ 

 

𝜱̃ = 𝑝0𝝍̃ + 𝒑𝜓̃0 ± 𝒑 × 𝝍̃ 

 

The equivalent of the quaternionic second order partial differential equation is: 

 

𝜉 = 𝜉0 + 𝝃̃ = 𝑝∗𝑝 𝜓̃ = {𝑝0𝑝0 + 〈𝒑, 𝒑〉}𝜓̃ 

 

𝜌̃ = 𝜌̃0 + 𝝆̃ = 〈𝒑, 𝒑〉𝜓̃ 

 

The continuity equations result in: 

𝛷̃ = 𝑝𝜓̃ 

 

𝜌̃ = 𝑝∗𝛷̃ 

9.4 Poisson equations 
The screened Poisson equation is a special condition of the non-homogeneous second order 

partial differential equation in which some terms are zero or have a special value.  

(15) 

(16) 

(17) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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∇∗∇𝜓 = ∇0∇0𝜓 +⊛ ⟨𝛁,𝛁⟩𝜓 = 𝜉 

 

⊛ ∇0∇0𝜓 + ⟨𝛁,𝛁⟩𝜓 =⊛ 𝜉 

 

⊛ ∇0∇0𝜓 = −𝜆2 𝜓 

 

⟨𝛁, 𝛁⟩𝜓 − 𝜆2𝜓 = ⊛ 𝜉 

 

The 3D solution of this equation is determined by the screened Green’s function 𝐺(𝑟). 

Green functions represent solutions for point sources. 

 

𝐺(𝑟) =
exp(−𝜆 𝑟)

𝑟
 

 

𝜓 =  ∭𝐺(𝒓 − 𝒓′) 𝜌(𝒓′) 𝑑3𝒓 ′ 

 

G(r) has the shape of the Yukawa potential [9] 

In case of 𝜆 = 0 it resembles the Coulomb or gravitation potential of a point source. 

If 𝜆 ≠ 0 and ⊛ = 1, then a solution of equation (3) is: 

 

𝜓 = 𝑎(𝒙) exp (± 𝑖 𝜔 𝜏); 𝜆 = ± 𝑖 𝜔 

 

9.5 Solutions of the homogeneous second order partial differential equation 
Solutions of the quaternionic homogeneous second order partial differential equation are of 

special interest because for odd numbers of participating dimensions this equation has solutions 

in the form of shape keeping fronts. 

This homogeneous partial differential equation is given by: 

 

∇∗∇𝜓 = ∇0∇0𝜓 +⊛ ⟨𝛁,𝛁⟩𝜓 =
𝜕2𝜓

𝜕𝜏2
+⊛

𝜕2𝜓

𝜕𝑥2
+⊛

𝜕2𝜓

𝜕𝑦2
+⊛

𝜕2𝜓

𝜕𝑧2
= 0 

 

Let us start with: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(1) 
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∇∗∇𝜓0 = 0 

 

Equation (2) has three-dimensional spherical shape keeping fronts as its solutions. 𝜓0 is a scalar 

function. By changing to polar coordinates it can be deduced that a solution is given by: 

 

𝜓0(𝑟, 𝜏) =
𝑓0(𝒊𝑟 − 𝑐𝜏)

𝑟
 

 

Where 𝑐 = ±1 and 𝒊 represents a base vector in radial direction. In fact the parameter 𝒊𝑟 − 𝑐𝜏 of 
𝑓0 can be considered as a complex number valued function. It keeps its shape during its travel 

through the field. Its amplitude quickly diminishes as 1/𝑟 with distance 𝑟 from the trigger point. 

Next we investigate: 

 

∇∗∇𝝍 = 0 

 

Here 𝝍 is a vector function. 

Equation (4) has one-dimensional shape keeping fronts as its solutions: 

 

𝝍(𝑧, 𝜏) = 𝒇(𝒊𝑧 − 𝑐𝜏) 

 

Again the parameter 𝒊𝑧 − 𝑐𝜏 of 𝒇 can be interpreted as a complex number based function. 

The imaginary 𝒊 represents the base vector in the 𝑥, 𝑦 plane. Its orientation 𝜃 may be a function 

of 𝑧. 

That orientation determines the polarization of the one-dimensional shape keeping front. 

9.6 Special formulas 
 

𝜵〈𝒌, 𝒙〉 = 𝒌 

 

𝒌 is constant. 

 

〈𝛁, 𝐱〉 = 𝟑 

 

𝛁 × 𝐱 = 𝟎 

(2) 

(3) 

(4 

(5) 

(1) 

(2) 

(3) 
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𝛁|𝐱| =
𝐱

|𝐱|
 

 

𝛁
1

|𝐱 − 𝐱′|
= −

𝐱 − 𝐱′

|𝐱 − 𝐱′|3
 

 

〈𝛁,
𝐱 − 𝐱′

|𝐱 − 𝐱′|3
〉 = 〈𝛁,𝛁〉

1

|𝐱 − 𝐱′|
= 〈𝛁, 𝛁

1

|𝐱 − 𝐱′|
〉 = 4𝜋 𝛿(𝐱 − 𝐱′) 

 

Similar formulas apply to the quaternionic nabla and parameter values. 

 

𝛻𝑥 = 1 − 3 ;  𝛻∗𝑥 = 1 + 3;  𝛻𝑥∗ = 1 + 3 

 

𝛻(𝑥∗𝑥) = 𝑥 

 

𝛻|𝑥| = 𝛻√(𝑥∗𝑥) =
𝑥

|𝑥|
 

 

𝛻
1

|𝑥 − 𝑥′|
= −

𝑥 − 𝑥′

|𝑥 − 𝑥′|3
 

 

 𝛻∗
𝑥 − 𝑥′

|𝑥 − 𝑥′|3
= 𝛻 𝛻∗

1

|𝑥 − 𝑥′|
= (

𝜕

𝜕𝜏

𝜕

𝜕𝜏
+ 〈𝛁,𝛁〉)

1

|𝑥 − 𝑥′|
≠ 4𝜋 𝛿(𝑥 − 𝑥′) 

 

Instead: 

 

(∇0∇0 + 〈𝜵, 𝜵〉)
1

|𝑥|
=

3𝜏2

|𝑥|5
−

1

|𝑥|3
+

3𝜏2

|𝑥|5
=

6𝜏2 − |𝑥|2

|𝑥|5
=

5𝜏2 − |𝒙|2

|𝑥|5
 

 

(∇0∇0 − 〈𝜵, 𝜵〉)
1

|𝑥|
= −

1

|𝑥|3
 

 

〈𝜵, 𝜵〉
1

|𝒙|
= 4𝜋 𝛿(𝒙) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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Thus, with spherical boundary conditions, 
1

4𝜋 |𝒙−𝒙′|
 is suitable as the Green’s function for the 

Poisson equation, but 
1

4𝜋 |𝑥−𝑥′|
 does not represent a Green’s function for the quaternionic 

operator (∇0∇0 + 〈𝛁,𝛁〉) ! 

For a homogeneous second order partial differential equation a Green’s function is not required. 

Thus, the deficit of a green’s function does not forbid the existence of a quaternionic 
homogeneous second order partial differential equation. Still equation (6) forms the base of the 

Poisson equation. 

9.7 Field equations 
In this section, we will compare two sets of differential equations. Both sets use pure space as 

part of the parameter space. 

 Quaternionic differential equations 

o These equations use progression as one of its parameters. 

 Maxwell based differential equations 

o These equations use quaternionic distance as one of its parameters. 

 

By introducing new symbols 𝕰 and 𝕭 we will turn the quaternionic differential equations into 

Maxwell-like quaternionic differential equations. We introduced a simple switch ⊛= ±1 that 

apart from the difference between the parameter spaces, will turn one set into the other set.  

Maxwell based differential equations split quaternionic functions into a scalar function and a 

vector function. Instead of the quaternionic nabla ∇= ∇0 + 𝛁 the Maxwell based equations use 

the scalar operator ∇0=
𝜕

𝜕𝑡
 and the vector nabla 𝛁 as separate operators. Maxwell equations use 

a switch 𝛼 that controls the structure of a gauge equation. 

𝜘 = 𝛼
𝜕

𝜕𝑡
 𝜑0 + 〈𝜵,𝝋〉 

For Maxwell based differential calculus is 𝛼 = +1 and ∇0=
𝜕

𝜕𝑡
. The switch value is ⊛ −1. 

For quaternionic differential calculus is 𝛼 = −1 and ∇0=
𝜕

𝜕𝜏
. The switch value is ⊛= +1. 

In EMFT the scalar field 𝜘 is taken as a gauge with 

𝛼 = 1; Lorentz gauge 

𝛼 = 0; Coulomb gauge 

 𝛼 = −1; Kirchhoff gauge.  

 

𝜘 ≡ 𝛼 𝛻𝑡𝜑0 + 〈𝛁,𝝋〉 ⟺ 𝜙0 =  𝛻𝜏𝜑0 − 〈𝛁,𝝋〉 

 

In Maxwell based differential calculus the scalar field 𝜘 is ignored or it is taken equal to zero. As 

will be shown, zeroing 𝜘 is not necessary for the derivation of the Maxwell based wave equation. 

(1) 

(2) 
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Maxwell equations split the considered functions in scalar functions and vector functions. The 

differential operators are also split and cannot be treated as multipliers.  

 

𝜙 = {𝜙0, 𝝓} = {∇0, 𝛁}{𝜑0, 𝝋} 

 

𝜙0 = ∇0 𝜑0 −⊛ 〈𝜵,𝝋〉 

 

𝝓 = ∇0𝝋 + 𝜵𝜑0 ± 𝜵 × 𝝋 

 

Equations (4) and (5) are not genuine Maxwell equations. We introduce them here as extra 

Maxwell equations. Choice ⊛= −1 conforms to the Lorenz gauge. 

 

𝕰 ≡ −∇0𝝋 − 𝜵𝜑0 

 

∇0𝕰 = −∇0∇0 𝝋 − ∇0𝜵𝜑0 

 

〈𝜵, 𝕰〉 = −∇0〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝜑0 

 

𝕭 ≡ 𝜵 × 𝝋 

 

These definitions imply: 

 

〈𝕰,𝕭〉 = 0 

 

∇0𝕭 = −𝜵 × 𝕰 

 

〈𝜵,𝕭〉 = 0 

 

𝜵 × 𝕭 = 𝜵〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝝋 

 

Also the following two equations are not genuine Maxwell equations, but they relate to the gauge 

equation. 

 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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∇0𝜙0 = ∇0∇0 𝜑0 −⊛ ∇0〈𝜵,𝝋〉 

 

𝜵𝜙0 = ∇0 𝜵𝜑0 − ⊛ 𝜵〈𝜵,𝝋〉 = ∇0 𝜵𝜑0 −⊛ 𝜵 × 𝜵 ×  𝝋 − ⊛ 〈𝜵, 𝜵〉 𝝋 

 

𝜁 = (∇0 +⊛ 〈𝛁,𝛁〉)𝜑 = 𝜁0 + 𝜻 ⟺ {𝜁0, 𝜻} = {∇0, −𝛁}{𝜙0, 𝜙} 

 

𝜁0 = (∇0∇0 +⊛ 〈𝛁, 𝛁〉)𝜑0 = ∇0 𝜙0 −⊛ 〈𝛁,𝕰〉 

 

𝜻 = (∇0∇0 +⊛ 〈𝛁, 𝛁〉)𝝋 = −𝜵𝜙0 − ∇0𝕰 −⊛ 𝜵 × 𝓑 

 

More in detail the equations mean: 

 

𝜁0 = 𝛻0𝜙0 +⊛ 〈𝜵,𝝓〉 

= {𝛻0𝛻0𝜑0 −⊛ 𝛻0〈𝜵,𝝋〉} + {⊛ 〈𝜵, 𝜵〉𝜑0 +⊛ 𝛻0〈𝜵,𝝋〉 ±⊛ 〈𝜵, 𝜵 × 𝝋〉} 

= (𝛻0𝛻0 +⊛ 〈𝜵,𝜵〉)𝜑0 

 

𝜁0 = ∇0 𝜙0 −⊛ 〈𝛁,𝕰〉 

= {∇0∇0 𝜑0 −⊛ ∇0〈𝜵,𝝋〉} + {⊛ ∇0〈𝜵,𝝋〉 +⊛ 〈𝜵, 𝜵〉𝜑0} 

= (𝛻0𝛻0 +⊛ 〈𝜵,𝜵〉)𝜑0 

 

𝜻 = −𝜵𝜙0 + 𝛻0𝝓 ∓ 𝜵 × 𝝓 

= {−𝜵𝛻0𝜑0 +⊛ 𝜵 × 𝜵 × 𝝋 +⊛ 〈𝜵,𝜵〉𝝋} + {𝛻0𝜵𝜑0 + 𝛻0𝛻0𝝋 ± 𝛻0𝜵 × 𝝋} 

{∓𝜵 × 𝜵𝜑0 ∓ 𝜵 × 𝛻0𝝋 − 𝜵 × 𝜵 × 𝝋} 

= (𝛻0𝛻0 +⊛ 〈𝜵,𝜵〉)𝝋 +⊛ 𝜵 × 𝜵 × 𝝋 − 𝜵 × 𝜵 × 𝝋 

 

𝜻 = −𝜵𝜙0 − ∇0𝕰 −⊛ 𝜵 × 𝓑 

= {−𝜵𝛻0𝜑0 +⊛ 𝜵 × 𝜵 × 𝝋 +⊛ 〈𝜵,𝜵〉𝝋} + {∇0∇0 𝝋 + ∇0𝜵𝜑0} −⊛ 𝜵 × 𝜵 × 𝝋 

= (𝛻0𝛻0 +⊛ 〈𝜵,𝜵〉)𝝋 

 

Equation (21) reveals why Maxwell based differential equations use the gauge 𝜘 rather than 

accept equation (4) as a genuine Maxwell equation. 

 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 
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𝜌0 =⊛ 〈𝛁,𝛁〉𝜑0 = 𝜁0 − ∇0∇0𝜑0 

𝝆 =⊛ 〈𝛁, 𝛁〉𝝋 = 𝜻 − ∇0∇0𝝋 

 

Thus a simple change of a parameter and the control switch ⊛ turn quaternionic differential 

equations into equivalent Maxwell differential equations and vice versa. This makes clear that 

both sets represent two different views from the same subject, which is a field that can be stored 

in the eigenspace of an operator that resides in the Gelfand triple. 

Still the comparison shows an anomaly in equation (21) that represents a significant difference 

between the two sets of differential equations that goes beyond the difference between the 

parameter spaces. A possible clue will be given in the section on the Dirac equation. This clue 

comes down to the conclusion that equations do not represent a coupling of a first and a second 

order partial differential equation, but instead they represent a coupling between two first order 

differential equations that each represent either particle behavior or antiparticle behavior. 

9.8 Genuine Maxwell wave equations 
The scalar part of the genuine Maxwell based differential equals zero. This is oppressed by the 

Lorenz gauge. 

The genuine Maxwell differential equations deliver different inhomogeneous wave equations: 

 

𝕰 ≡ −∇0𝝋 − 𝜵𝜑0 

 

𝕭 ≡ 𝜵 × 𝝋 

 

The following definitions follow from the definitions of 𝕰 and 𝕭. 

 

∇0𝕰 ≡ −∇0∇0 𝝋 − ∇0𝜵𝜑0 

 

〈𝜵, 𝕰〉 ≡ −∇0〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝜑0  

 

∇0𝕭 ≡ −𝜵 × 𝕰 

 

〈𝜵,𝕭〉 ≡ 0 

 

𝜵 × 𝕭 ≡ 𝜵〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝝋 

 

The Lorenz gauge means: 

(23) 

(24) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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∇0𝜑0 + 〈𝜵,𝝋〉 = 0 

 

The genuine Maxwell based wave equations are: 

 

(𝛻0𝛻0 − 〈𝜵, 𝜵〉)𝜑0 = 𝜌0 = 〈𝜵,𝕰〉 

 

(𝛻0𝛻0 − 〈𝜵, 𝜵〉)𝝋 = 𝐽 = 𝜵 × 𝕭 − ∇0𝕰 

9.9 Poynting vector 
The definitions invite the definition of the Poynting vector: 

 

𝑺 = 𝕰 × 𝓑 

𝑢 =  ½(〈𝕰,𝕰〉 + 〈𝓑,𝓑〉) 

𝜕𝑢

𝜕𝜏
=  〈𝜵, 𝑺〉 + 〈𝑱,𝕰〉 

 

9.10 Solutions of the wave equation 
The Maxwell based differential calculus offers second order partial differential equations in the 
form of the wave equations: 

 

(∇0∇0 − ⟨𝛁, 𝛁⟩)𝜑0 =
𝜕2𝜑0

𝜕𝜏2
−

𝜕2𝜑0

𝜕𝑥2
−

𝜕2𝜑0

𝜕𝑦2
−

𝜕2𝜑0

𝜕𝑧2
= 𝜌0 

 

(∇0∇0 − ⟨𝛁, 𝛁⟩)𝝋 =
𝜕2𝝋

𝜕𝜏2
−

𝜕2𝝋

𝜕𝑥2
−

𝜕2𝝋

𝜕𝑦2
−

𝜕2𝝋

𝜕𝑧2
= 𝝆 

 Shape keeping fronts 
Like the quaternionic second order partial differential equation this wave equation offers 

solutions that represent shape keeping fronts. 

For isotropic conditions in three participating dimensions the shape keeping front solution runs: 

𝜑0  = 𝑓(𝑟 − 𝑐𝑡)/𝑟, where 𝑐 = ±1; 𝑓 is real 

This follows from  

〈𝛻, 𝛻〉𝜑0 ≡
1

𝑟2
(

𝜕

𝜕𝑟
(𝑟2

𝜕𝜑0

𝜕𝑟
)) =

𝑓′′(𝑟 − 𝑐𝑡)

𝑟
=

1

𝑐2

𝜕²𝜑0

𝜕𝑡2
 

 

(8) 

(9) 

(10) 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(4) 
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In a single participating dimension the shape keeping front solution runs: 

𝜑0  = 𝑓(𝑥 − 𝑐𝑡), where 𝑐 = ±1; 𝑓 is real 

 

The same solutions hold for vector function 𝝋. 

 Other solutions of the homogenous wave equation 
Apart from the shape keeping solutions the homogeneous wave equation offers wave form 

solutions. Some of these solutions are obtained by starting with: 

 

∇0∇0𝑓 = ⟨𝛁, 𝛁⟩𝑓 = −𝜔2𝑓 

 

𝑓(𝑡, 𝒙) = 𝑎 exp(𝑖𝜔(𝑐𝑡 − |𝒙 − 𝒙′|)) ; 𝑐 = ±1 

 

This leads to a category of solutions that are known as solutions of the Helmholtz equation. 

 The Maxwell based Poisson equations 
The screened Poisson equation in Maxwell based differential calculus runs: 

(⟨𝛁, 𝛁⟩ − 𝜆2)𝜑 =
𝜕2𝜑

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑦2
+

𝜕2𝜑

𝜕𝑧2
− 𝜆𝜑 = −𝜌 

𝜕2𝜑

𝜕𝑡2
= 𝜆2𝜑 

𝜑 = 𝑎(𝒙) exp (±𝜆𝑡) 

This differs significantly from the quaternion differential calculus version of the screened 

Poisson equation. 

10 Dirac equation 

10.1 The Dirac equation in original format 
In its original form the Dirac equation is a complex equation that uses spinors, matrices and 

partial derivatives.  

Instead of the usual {
𝜕𝑓

𝜕𝑡
 , 𝒊

𝜕𝑓

𝜕𝑥
, 𝒋

𝜕𝑓

𝜕𝑦
, 𝒌

𝜕𝑓

𝜕𝑧
} we want to use operators 𝛻 = {∇0,𝛁} 

The operator 𝛻 relates to the applied parameter space. This means that the parameter space is 

also configured of combinations 𝑥 = {𝑡, 𝒙 } of a scalar 𝑡 and a vector 𝒙. Also the functions can be 

split in scalar functions and vector functions. The subscript 0 indicates the scalar part. Bold face 

indicates the vector part. 

Here 𝑡 represents a local scalar, which is defined as the scalar part of the applied parameter 

space. 

The original Dirac equation uses 4x4 matrices 𝛂 and β. [10] [11]: 

𝛂 and 𝛽 are matrices that implement the quaternion arithmetic behavior including the possible 

symmetry flavors of quaternionic number systems and continuums.  

(5) 

(1) 

(2) 

(1) 

(2) 

(3) 



34 
 

 

𝛼1 = 𝛾1 = [
0 𝜎1

−𝜎1 0
] ↔ −𝑖 [

0 𝒊
−𝒊 0

] 

 

𝛼2 = 𝛾2 = [
0 𝜎2

−𝜎2 0
] ↔ −𝑖 [

0 𝒋
−𝒋 0

] 

 

𝛼3 = 𝛾3 = [
0 𝜎3

−𝜎3 0
] ↔ −𝑖 [

0 𝒌
−𝒌 0

] 

 

𝛽 = 𝛾0 = [
0 1
1 0

] 

 

The unity matrix 𝐼 and the Pauli matrices  𝜎1, 𝜎2, 𝜎3 are given by [12]: 

 

𝐼 = [
1  0
0 1

] , 𝜎1 = [
0  1
1 0

] , 𝜎2 = [ 
0 −𝑖
𝑖 0

] , 𝜎3 = [
1 0
0 −1

]

 

For one of the potential orderings of the quaternionic number system, the Pauli matrices 
together with the unity matrix 𝐼 relate to the quaternionic base vectors 1, 𝒊, 𝒋 and 𝒌 

 

1 ⟼ 𝐼, 𝒊 ⟼  𝑖 𝜎1, 𝒋 ⟼ 𝑖 𝜎2, 𝒌 ⟼ 𝑖 𝜎3 

 

𝜎1𝜎2 − 𝜎2𝜎1 = 2 𝑖 𝜎3;  𝜎2𝜎3 − 𝜎3𝜎2 = 2 𝑖 𝜎1; 𝜎3𝜎1 − 𝜎1𝜎3 = 2 𝑖 𝜎2 

 

𝜎1𝜎1 = 𝜎2𝜎2 = 𝜎3𝜎3 = 𝛽𝛽 = 𝐼 

 

Together with the 𝜶 matrices, the matrix 𝛽 represents quaternionic conjugation. As a 

consequence, it switches the handedness of the external vector product.  

The interpretation of the Pauli matrices as representation of a special kind of angular 

momentum has led to the half integer eigenvalue of the corresponding spin operator. 

10.2 Splitting into two equations 
One interpretations of the Dirac equation is [13]: 

 

(𝛾0

𝜕

𝜕𝑡
− 𝛾1

𝜕

𝜕𝑥
− 𝛾2

𝜕

𝜕𝑦
− 𝛾3

𝜕

𝜕𝑧
−

 𝑚

𝑖ℏ
) {𝜓} = 0 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(1) 
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This invites splitting of the four component spinor equation into two equations for two 

component spinors: 

 

𝑖
𝜕𝜑𝐴

𝜕𝑡
− 𝑖𝜎1

𝜕𝜑𝐴

𝜕𝑥
− 𝑖𝜎2

𝜕𝜑𝐴

𝜕𝑦
− 𝑖𝜎3

𝜕𝜑𝐴

𝜕𝑧
=

 𝑚

ℏ
 𝜑𝐵 

 

𝑖
𝜕𝜑𝐵

𝜕𝑡
+ 𝑖𝜎1

𝜕𝜑𝐵

𝜕𝑥
+ 𝑖𝜎2

𝜕𝜑𝐵

𝜕𝑦
+ 𝑖𝜎3

𝜕𝜑𝐵

𝜕𝑧
=

 𝑚

ℏ
 𝜑𝐴 

 

𝑖
𝜕𝜑𝐴

𝜕𝑡
− 𝒊

𝜕𝜑𝐴

𝜕𝑥
− 𝒋

𝜕𝜑𝐴

𝜕𝑦
− 𝒌

𝜕𝜑𝐴

𝜕𝑧
= (𝑖∇0 − 𝛁)𝜑𝐴 =

 𝑚

ℏ
 𝜑𝐵 

 

𝑖
𝜕𝜑𝐵

𝜕𝑡
+ 𝒊

𝜕𝜑𝐵

𝜕𝑥
+ 𝒋

𝜕𝜑𝐵

𝜕𝑦
+ 𝒌

𝜕𝜑𝐵

𝜕𝑧
= (𝑖∇0 + 𝛁)𝜑𝐵 =

 𝑚

ℏ
 𝜑𝐴 

 

(𝑖∇0 + 𝛁)(𝑖∇0 − 𝛁)𝜑𝐴 = (−∇0∇0 − 𝛁𝛁)𝜑𝐴 = (〈𝛁,𝛁〉−∇0∇0)𝜑𝐴 

=
 𝑚

ℏ
(𝑖∇0 + 𝛁) 𝜑𝐵 =

 𝑚2

ℏ2
 𝜑𝐴 

 

(〈𝛁, 𝛁〉−∇0∇0)𝜑𝐴 =
 𝑚2

ℏ2
 𝜑𝐴 

 

(𝑖∇0 − 𝛁)(𝑖∇0 + 𝛁)𝜑𝐵 = (−∇0∇0 − 𝛁𝛁)𝜑𝐵 = (〈𝛁,𝛁〉−∇0∇0)𝜑𝐵 

=
 𝑚

ℏ
(𝑖∇0 − 𝛁) 𝜑𝐴 =

 𝑚2

ℏ2
 𝜑𝐵 

 

(〈𝛁, 𝛁〉−∇0∇0)𝜑𝐵 =
 𝑚2

ℏ2
 𝜑𝐵 

 

Thus the four component spinors {𝜓} can be converted in two component spinors { 𝜑𝐴} and 
{ 𝜑𝐵}. Quaternionic functions are not complex number based spinors, but the form of equations 

(7) and (9) offer sufficient info for the conversion. With respect to second order differentiation, 

the two component spinors and the quaternionic functions show similar behavior. 

Transferring the matrix form of the Dirac equation into quaternionic format delivers two 

quaternionic functions 𝜒𝐴 and 𝜒𝐵 that replace the spinors { 𝜑𝐴} and { 𝜑𝐵}. These functions have 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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different parameter spaces. As a consequence the nabla operators act differently onto 𝜒𝐴 and 𝜒𝐵. 

This results into two coupled first order partial differential equations.  

 

(∇0 − 𝛁)𝜒𝐴 = 𝛻∗𝜒𝐴 =
 𝑚

ℏ
 𝜒𝐵  

 

(∇0 + 𝛁)𝜒𝐵 = 𝛻𝜒𝐵 =
 𝑚

ℏ
 𝜒𝐴 

 

This also corresponds to two quite similar second order partial differential equations:  

 

(〈𝛁, 𝛁〉−∇0∇0)𝜒𝐴 =
 𝑚2

ℏ2
𝜒𝐴 

 

(〈𝛁, 𝛁〉−∇0∇0)𝜒𝐵 =
 𝑚2

ℏ2
𝜒𝐵 

 

And one homogeneous second order partial differential equation 

 

(〈𝛁, 𝛁〉−∇0∇0)𝜒 = 0 

 

This equation is a wave equation. The set of its solutions includes waves. 

Thus, the functions 𝜒𝐴 and 𝜒𝐵 describe two different solutions of the same Maxwell-like second 

order partial differential equation. 

According to the Dirac matrices the natural parameter spaces of functions 𝜒𝐴 and 𝜒𝐵 concern 

two different quaternionic number systems that differ in the handedness of their external vector 

product. 

One of these natural parameter spaces is right handed and the other natural parameter space is 

left handed. 

The factor 𝑚 couples 𝜒𝐴 and 𝜒𝐵. 

Since both 𝜒𝐴 and 𝜒𝐵 are quaternionic functions, they also obey other second order partial wave 

equations. 

 

(〈𝛁, 𝛁〉+∇0∇0)𝜒𝐴 = 𝜉𝐴 

 

(〈𝛁, 𝛁〉+∇0∇0)𝜒𝐵 = 𝜉𝐵 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 
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(2 ∇0∇0 +
 𝑚2

ℏ2 )𝜒𝐴 = 𝜉𝐴 

 

〈𝛁, 𝛁〉 𝜒𝐴 = 𝜉𝐴 +
 𝑚2

ℏ2
𝜒𝐴 

 

Natural parameter spaces are spanned by a version of the quaternionic number system. Due to 

the four dimensions of quaternions, these natural parameter spaces represent two different sign 

flavors of one and the same quaternionic field that exists in 16 versions that only differ in their 

discrete symmetry set. 

The fields that represent the two natural parameter spaces can be considered to be each other’s 

quaternionic conjugate. As a consequence, they differ in the handedness of the external vector 

product. These fields relate to the symmetry centers from which the particle generating 

mechanisms take their resources. 

In the direct environment of the free particle, apparently two kinds of potential embedding exist. 

Alongside the particle embedding with solution 𝜒𝐴 exists an antiparticle embedding with 

solution 𝜒𝐵.  

In the quaternionic Dirac equations the function 𝜒 is a local representative of the locally 

untouched particle embedding field ℭ. Function 𝜒 represents a curl free field. 

𝛻𝜒 = 𝛻∗𝜒∗ 

This short range equation also holds locally for the locally untouched embedding field ℭ.  

𝛻ℭ = 𝛻∗ℭ∗ 

10.3 Alternatives 

 Minkowski parameter space 
In quaternionic differential calculus the local quaternionic distance can represent a scalar that is 

independent of the direction of progression. It corresponds to the notion of coordinate time. 

That means that a small coordinate time step ∆𝑡 equals the sum of a small proper time step ∆𝜏 

and a small pure space step ∆𝒙. In quaternionic format the step ∆𝜏 is a real number. The space 

step ∆𝒙 is an imaginary quaternionic number. The original Dirac equation does not pay attention 

to the difference between coordinate time and proper time, but the quaternionic presentation of 

these equations show that a progression independent scalar can be useful as the scalar part of 

the parameter space. This holds especially for solutions of the homogeneous wave equation. 

 Other natural parameter spaces 
The Dirac equation in quaternionic format treats a coupling of parameter spaces that are each 

other’s quaternionic conjugate. This can also be applied when anisotropic conjugation is applied. 

This concerns conjugations in which only one or two dimensions get a reverse ordering. In that 

case the equations handle the dynamic behavior of anisotropic particles such as quarks. 

11 Double differentiation 
The partial differential equations hide that they are part of a differential equation. 

(17) 

(18) 

(19) 

(20) 
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𝛻′𝛻𝑓 = 𝜉 = ∑𝑒𝜈
′

𝜕

𝜕𝑞𝜈
′ (∑ 𝑒𝜇

𝜕𝑓

𝜕𝑞𝜇

3

𝜇=0

)

3

𝜈=0

= (𝑒𝜈
′𝑒𝜇

𝜕2

𝜕𝑞𝜇𝜕𝑞𝜈
′ )𝑓 

 

 

Single difference is defined by 

𝑑𝑓(𝑞) = ∑∑
𝜕𝑓𝜍

𝜕𝑞𝜇
𝑒𝜇𝑒𝜍  𝑑𝑞𝜇

3

𝜍=0

 

3

𝜇=0

= ∑ 𝜙𝜈𝑒𝜈𝑑𝑞𝜈

3

𝜈=0

 

 

𝜕𝑓𝜍

𝜕𝑞𝜇
𝑒𝜇𝑒𝜍 =

[
 
 
 
 
 
 
 
 
 

𝜕𝑓0

𝜕𝑞0

𝜕𝑓1

𝜕𝑞0
𝒊

𝜕𝑓2

𝜕𝑞0
𝒋

𝜕𝑓3

𝜕𝑞0
𝒌

𝜕𝑓0

𝜕𝑞1
𝒊

𝜕𝑓1

𝜕𝑞1

𝜕𝑓2

𝜕𝑞1
𝒌 −

𝜕𝑓3

𝜕𝑞1
𝒋

𝜕𝑓0

𝜕𝑞2
𝒋 −

𝜕𝑓1

𝜕𝑞2
𝒌

𝜕𝑓2

𝜕𝑞2

𝜕𝑓3

𝜕𝑞2
𝒊

𝜕𝑓0

𝜕𝑞3
𝒌

𝜕𝑓1

𝜕𝑞3
𝒋 −

𝜕𝑓2

𝜕𝑞3
𝒊

𝜕𝑓3

𝜕𝑞3 ]
 
 
 
 
 
 
 
 
 

 

 

=

[
 
 
 
 
 
 
 
 
 
𝜕𝑓0

𝜕𝑞0
−ℰ𝑥𝒊 −ℰ𝑦𝒋 −ℰ𝑧𝒌

ℰ𝑥𝒊
𝜕𝑓1

𝜕𝑞1
−ℬ𝑧1𝒌 −ℬ𝑦2𝒋

ℰ𝑦𝒋 −ℬ𝑧2𝒌
𝜕𝑓2

𝜕𝑞2
−ℬ𝑥1𝒊

ℰ𝑧𝒌 −ℬ𝑦1𝒋 −ℬ𝑥2𝒊
𝜕𝑓3

𝜕𝑞3 ]
 
 
 
 
 
 
 
 
 

 

Here  

ℬ𝑥 = ℬ𝑥1 − ℬ𝑥2;  ℬ𝑦 = ℬ𝑦1 − ℬ𝑦2;  ℬ𝑧 = ℬ𝑧1 − ℬ𝑧2 

 

𝑓̇ =
𝑑𝑓

𝑑𝜆
= ∑𝜙𝜇𝑒𝜇

𝑑𝑞𝜇

𝑑𝜆

3

𝜇=0

= ∑ 𝜙𝜇𝑒𝜇𝑞̇𝜇

3

𝜇=0

 

 

The scalar 𝜆 is can be a linear function of τ or a scalar function of q. 

(1) 

(2) 

(3) 

(4) 

(5) 
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𝑞̇ ≡
𝑑𝑞

𝑑𝜆
= 𝑒𝜇

𝑑𝑞𝜇

𝑑𝜆
= 𝑒𝜇𝑞̇𝜇 

 

Double difference is defined by: 

𝑑2𝑓(𝑞) = ∑𝑒𝜈
′ (∑

𝜕2𝑓𝜍

𝜕𝑞𝜇𝜕𝑞𝜈
′ 𝑒𝜇𝑑𝑞𝜇

3

𝜇=0

)𝑒𝜍𝑑𝑞′𝜈

3

𝜈=0

 

 

𝑓̈ ≡
𝑑2𝑓(𝑞)

𝑑𝜆2
= 𝑒𝜚𝑓̈𝜚 = ∑𝑒𝜈

′ (∑
𝜕2𝑓𝜍

𝜕𝑞𝜇𝜕𝑞𝜈
′ 𝑒𝜇

𝑑𝑞𝜇

𝑑𝜆

3

𝜇=0

)𝑒𝜍

𝑑𝑞′𝜈

𝑑𝜆

3

𝜈=0

 

= ∑𝑒𝜈
′ (∑

𝜕2𝑓𝜍

𝜕𝑞𝜇𝜕𝑞𝜈
′ 𝑒𝜇𝑞̇𝜇

3

𝜇=0

)𝑒𝜍𝑞̇
′𝜈

3

𝜈=0

= (𝑞̇𝜇𝑞̇′𝜈
𝜕2

𝜕𝑞𝜇𝜕𝑞𝜈
′ 𝑒𝜈

′𝑒𝜇)𝑓 = 𝜁𝜈𝜇 𝑓 

 

𝜁𝜈𝜇 = 𝑒𝜈
′𝑒𝜇 𝑞̇′𝜈 𝑞̇𝜇

𝜕2

𝜕𝑞𝜇𝜕𝑞𝜈
′ = 𝑒𝜈

′𝑒𝜇Υ𝜈𝜇 

Υ𝜈𝜇 =  𝑞̇′𝜈 𝑞̇𝜇
𝜕2

𝜕𝑞𝜇𝜕𝑞𝜈
′  

 

If we apply 𝜙 = 𝛻𝑓as the first differential operation and 𝜉 = 𝛻∗𝜙 as the second differential 

operation, then 𝑒 = {1,+𝒊, +𝒋,+𝒌} and 𝑒′ = {1 − 𝒊,−𝒋,−𝒌} and 

 

Υ𝜈𝜇 = [

+Υ00 +Υ01𝒊 +Υ02𝒋 +Υ03𝒌
−Υ10𝒊 ⊛ Υ11 +Υ12𝒌 +Υ13𝒋
−Υ20𝒋 −Υ21𝒌 ⊛ Υ22 −Υ23𝒊
−Υ30𝒌 −Υ31𝒋 +Υ32𝒊 ⊛ Υ33

] 

 

Here again the switch ⊛ distinguishes between quaternionic differential calculus and Maxwell 

based differential calculus. 

11.1 Deformed space 
If the investigated field represents deformed space ℭ, then the field ℜ, which represents the 

parameter space of function ℭ(𝑞) represents the virgin state of that deformed space. 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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Further, the equation 
𝑑2ℭ(𝑞)

𝑑𝜆2 = 0 represents a local condition in which ℭ is not affected by 

external influences. Here 𝜆 can be any linear combination of progression τ or is can represent 

the equivalent of local quaternionic distance: 

 

𝜆 = 𝑎 𝑞0 + 𝑏 

or 

𝜆 = |𝑞|  
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12 Quaternionic wave equation 
A quaternionic wave equation  

 

∇∇𝜓 = (∇0∇0 − 〈𝛁,𝛁〉)𝜓 = 0 

 

is achieved for fields 𝜑 and conditions 𝜉 that obey: 

 

(∇0 + 𝛁)(∇0 + 𝛁)𝜓0 ≡ ∇0∇0𝜓0 − 〈𝛁,𝛁〉𝜓0 + 2∇0𝛁𝜓0 = 𝜉0 

 

2∇0𝛁𝜓0 = 𝜉0 

 

(∇0 + 𝛁)(∇0 + 𝛁)𝝍 

≡ ∇0∇0𝝍 − 〈𝛁, 𝛁〉𝝍 − 2∇0〈𝛁,𝝍〉+2∇0𝛁 × 𝝍 + 𝛁 × 𝛁 × 𝝍 =  𝝃 

 

−2∇0〈𝛁,𝝍〉+2∇0𝛁 × 𝝍 + 𝛁 × 𝛁 × 𝝍 =  𝝃 

 

13 Asymmetric tensor 
The Maxwell-based equation 

𝜙 ⟺ {𝜙0, 𝝓} ⟺ {𝛻0, 𝜵}{𝜑0, 𝝋} = {𝛻0, −𝜵}{𝐴0, 𝑨} 

𝝓 = −𝕰 ± 𝕭 

𝔈𝜈 ≡ −(
𝜕𝜑0

𝜕𝑥𝜈
+

𝜕𝜑𝜈

𝜕𝑡
) = −𝐹0𝜈 = 𝜕0𝐴𝜈 − 𝜕𝜈𝐴0; 𝜈 = 1. .3 

𝔅𝜇𝜈 = (𝜵 × 𝝋)𝜇𝜈 = (
𝜕𝜑𝜇

𝜕𝑥𝜈
−

𝜕𝜑𝜈

𝜕𝑥𝜇
) = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇; 𝜇 = 1. .3; 𝜈 = 1. .3;  

corresponds with the asymmetric tensor 𝐹𝜇𝜈  

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 =

[
 
 
 
 
0 −𝔈𝑥 −𝔈𝑦 −𝔈𝑧

𝔈𝑥 0 +𝔅𝑧 −𝔅𝑦

𝔈𝑦 −𝔅𝑧 0 +𝔅𝑥

𝔈𝑦 +𝔅𝑦 −𝔅𝑥 0 ]
 
 
 
 

 

 

𝛻𝜇𝐹𝜈𝜇 = 4𝜋𝐽𝜈 

13.1 Critics on the design of the antisymmetric tensor 
The design of this tensor gives the false impression that the design is enforced by physical 

reality. In fact the design is based on a series of arbitrary choices. 

(1) 

(2) 

(3) 

(4) 

(5) 

(1) 

 (2) 

(3) 

(4) 

(5) 
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For the quaternionic differential calculus the same tensor can be generated. However, the tensor 

elements are not necessarily asymmetric by nature. That only holds for the terms that belong to 

the magnetic field 𝔅𝜇𝜈. The tensor does not show the nature of the partial derivatives that are 

contained in the 𝔈𝜇𝜈 terms. The tensor hides the real parts of the differential.  

Quaternionic differentiation has the advantage that the differential operator acts as a multiplier. 

In terms of the quaternionic differential calculus the tensor corresponds to the equation: 

𝜙 = 𝜙0 + 𝝓 = (𝛻0 + 𝜵)(𝜑0 + 𝝋) = 𝛻𝜑 = (𝛻0 − 𝜵)(𝐴0 + 𝑨) = 𝛻∗𝐴 

𝝓 = −𝕰 ∓ 𝕭 = (𝛻0𝝋 + 𝜵𝜑0) ∓ 𝜵 × 𝝋 = (𝛻0𝑨 − 𝜵𝐴0) ± 𝜵 × 𝑨 

𝕰 = −𝛻0𝝋 − 𝜵𝜑0 = −𝛻0𝑨 + 𝜵𝐴0 

𝕭 = 𝜵 × 𝝋 = −𝜵 × 𝑨 

The tensor hides the real parts of the differential. 

𝜙0 = 𝛻0𝜑0 − 〈𝜵,𝝋〉 = 𝛻0𝐴0 − 〈𝜵, 𝑨〉 

The tensor calculus used by current physical theories uses the terms of equation (5) as contents 

of a gauge that is used to construct the wave equation. 

𝛻0𝜙0 = 𝛻0𝛻0𝜑0 − 𝛻0〈𝜵,𝝋〉 = 𝛻0𝛻0𝐴0 − 𝛻0〈𝜵, 𝑨〉 

𝜵𝜙0 = 𝜵𝛻0𝜑0 − 𝜵〈𝜵,𝝋〉 = 𝜵𝛻0𝐴0 − 𝜵〈𝜵, 𝑨〉 

 

𝛻0𝝓 = −𝛻0𝕰 ∓ 𝛻0𝕭 = 𝛻0𝛻0𝝋 + 𝛻0𝜵𝜑0 ± 𝛻0𝜵 × 𝝋 

= 𝛻0𝛻0𝑨 − 𝛻0𝜵𝐴0 ∓ 𝛻0𝜵 × 𝑨 

𝜵𝝓 = −〈𝜵,𝝓〉 ± 𝜵 × 𝝓 = 〈𝜵,𝕰〉 ± 〈𝜵,𝕭〉 ∓ 𝜵 × 𝕰 − 𝜵 × 𝕭 

 

Thus, in terms of the 𝜑 field the tensor is not naturally asymmetric. It is only naturally 

asymmetric in terms of the 𝐴 field. However, selection between 𝜑 and 𝐴 is arbitrary. 

14 The space-progression model 
This paper supports two space progression models. Quaternions, quaternionic functions and 

quaternionic differential equations support parameter spaces that have an Euclidean signature 

and correspond to a metric tensor: 

 

𝑔𝜇𝜈 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] 

Elements of this model can directly be stored as eigenvalues of operators that reside in 

quaternionic Hilbert spaces. 

The Maxwell based equations and the parameter space of these equations support a space-time 

model with Minkowski signature and correspond to a metric tensor: 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(1) 
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𝑔𝜇𝜈 = [

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

] 

 

Elements of this model must first be dismantled into their real components before they can be 

stored as eigenvalues of Hermitian operators that reside in real, complex or quaternionic Hilbert 

spaces 

The fact that the quaternionic field can be stored in the eigenspace of an operator that resides in 

a non-separable quaternionic Hilbert space and that after dismantling into real components the 

same can be done for a Maxwell based field means that the stored fields can represent one and 

the same object. It also means that both differential equation sets can investigate the same field 

and offer different views onto that field that reveal different aspects of the behavior of that field.  

It also means that both space-progression models represent different views of the same reality. 

  

(2) 
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15 Tensor differential calculus 
We restrict to 3+1 D parameter spaces. 

Parameter spaces can differ in the way they are ordered and in the way the scalar part relates to 

the spatial part. 

Fields are functions that have values, which are independent of the selected parameter space. 

Fields exist in scalar fields, vector fields and combined scalar and vector fields.  

Combined fields exist as continuum eigenspaces of normal operators that reside in quaternionic 

non-separable Hilbert spaces. These combined fields can be represented by quaternionic 

functions of quaternionic parameter spaces. However, the same field can also be interpreted as 

the eigenspaces of the Hermitian and anti-Hermitian parts of the normal operator. The 

quaternionic parameter space can be represented by a normal quaternionic reference operator 

that features a flat continuum eigenspace. This reference operator can be split in a Hermitian 

and an anti-Hermitian part. 

The eigenspace of a normal quaternionic number system corresponds to a quaternionic number 

system. Due to the four dimensions of quaternions, the quaternionic number systems exist in 16 

versions that differ in their Cartesian ordering. If spherical ordering is pursued, then for each 

Cartesian start orderings two extra orderings are possible. All these choices correspond to 

different parameter spaces. 

Further it is possible to select a scalar part of the parameter space that is a scalar function of the 

quaternionic scalar part and the quaternionic vector part. For example it is possible to use 

quaternionic distance as the scalar part of the new parameter space. 

Tensor differential calculus relates components of differentials with corresponding parameter 

spaces. 

Components of differentials are terms of the corresponding differential equation. These terms 

can be split in scalar functions and in vector functions. Tensor differential calculus treats scalar 

functions different from vector functions. 

Quaternionic fields are special because the differential operators of their defining functions can 

be treated as multipliers. 

15.1 The metric tensor 
The metric tensor determines the local “distance”. 

𝑔𝜇𝜈 = [

𝑔00 𝑔01 𝑔02 𝑔03

𝑔10 𝑔11 𝑔12 𝑔13

𝑔20 𝑔21 𝑔22 𝑔23

𝑔30 𝑔31 𝑔32 𝑔33

] 

The consequences of coordinate transformations 𝑑𝑥𝜈 ⇒ 𝑑𝑋𝜈 define the elements 𝑔𝜇𝜈 as  

𝑔𝜇𝜈 =
𝑑𝑋𝜇

𝑑𝑥𝜈
 

15.2 Geodesic equation 
The geodesic equation describes the situation of a non-accelerated object. In terms of proper 

time this means: 

(1) 

(2) 

(1) 
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𝜕2𝑥𝜇

𝜕𝜏2
= −Г𝛼𝛽

𝜇 𝑑𝑥𝛼

𝑑𝜏

𝑑𝑥𝛽

𝑑𝜏
 

In terms of coordinate time this means: 

𝜕2𝑥𝜇

𝜕𝑡2
= −Г𝛼𝛽

𝜇 𝑑𝑥𝛼

𝑑𝑡

𝑑𝑥𝛽

𝑑𝑡
+Г𝛼𝛽

0 𝑑𝑥𝛼

𝑑𝑡

𝑑𝑥𝛽

𝑑𝑡

𝑑𝑥𝜇

𝑑𝑡
 

 Derivation: 
We start with the double differential. Let us investigate a function 𝑋 that has a parameter space 

existing of scalar 𝜏 and a three dimensional vector 𝒙 = {𝑥1, 𝑥2, 𝑥3}. The function 𝑋 represents 

three dimensional curved space. The geodesic conditions are: 

𝜕2𝑋𝜆

𝜕𝜏2
= 0 ;  𝜆 = 1,2,3 

First we derive the first order differential. 

𝑑𝑋𝜆 = ∑
𝜕𝑋𝜆

𝜕𝑥𝛽
𝑑𝑥𝛽

3

𝛽=1

 

We can use the summation convention for subscripts and superscripts. This avoids the 

requirement for summation symbols. 

𝑑𝑋𝜆

𝑑𝜏
=

𝜕𝑋𝜆

𝜕𝑥𝛽

𝑑𝑥𝛽

𝑑𝜏
 

𝑑2𝑋𝜆 = ∑ (
𝜕𝑋𝜆

𝜕𝑥𝛽
𝑑2𝑥𝛽 + 𝑑𝑥𝛽 ∑

𝜕2𝑋𝜆

𝜕𝑥𝛽𝜕𝑥𝛼

3

𝛼=1

𝑑𝑥𝛼)

3

𝛽=1

 

Now we obtained the double differential equation. 

𝑑2𝑋𝜆

𝑑𝜏2
=

𝜕𝑋𝜆

𝜕𝑥𝛽

𝑑2𝑥𝛽

𝑑𝜏2
+

𝜕2𝑋𝜆

𝜕𝑥𝛽𝜕𝑥𝛼

𝑑𝑥𝛼

𝑑𝜏

𝑑𝑥𝛽

𝑑𝜏
= 0 

The geodesic requirement results in: 

𝜕𝑋𝜆

𝜕𝑥𝛽

𝑑2𝑥𝛽

𝑑𝜏2
= −

𝜕2𝑋𝜆

𝜕𝑥𝛽𝜕𝑥𝛼

𝑑𝑥𝛼

𝑑𝜏

𝑑𝑥𝛽

𝑑𝜏
 

If we use summation signs: 

∑
𝜕𝑋𝜆

𝜕𝑥𝛽
𝑑2𝑥𝛽

3

𝛽=1

= − ∑ (𝑑𝑥𝛽 ∑ (
𝜕2𝑋𝜆

𝜕𝑥𝛽𝜕𝑥𝛼
𝑑𝑥𝛼)

3

𝛼=1

)

3

𝛽=1

 

Next we multiply both sides with 
𝜕𝑋𝜆

𝜕𝑥𝛽 and sum again: 

∑ (
𝜕𝑥𝜆

𝜕𝑋𝜇
(∑

𝜕𝑋𝜆

𝜕𝑥𝛽
𝑑2𝑥𝛽

3

𝛽=1

))

3

𝜆=1

= − ∑ (
𝜕𝑥𝜆

𝜕𝑋𝜇
∑ (𝑑𝑥𝛽 ∑ (

𝜕2𝑋𝜆

𝜕𝑥𝛽𝜕𝑥𝛼
𝑑𝑥𝛼)

3

𝛼=1

)

3

𝛽=1

)

3

𝜆=1

 

We apply the fact: 

(2) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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∑ (
𝜕𝑥𝜆

𝜕𝑋𝜇

𝜕𝑋𝜆

𝜕𝑥𝛽
)

3

𝜆=1

= 𝛿𝛽
𝜇

 

This results into: 

𝑑2𝑥𝜇 = ∑ (
𝜕𝑥𝜆

𝜕𝑋𝜇
∑ (𝑑𝑥𝛽 ∑ (

𝜕2𝑋𝜆

𝜕𝑥𝛽𝜕𝑥𝛼
𝑑𝑥𝛼)

3

𝛼=1

)

3

𝛽=1

)

3

𝜆=1

= Г𝛼𝛽
𝜇

𝑑𝑥𝛼𝑑𝑥𝛽 

Without summation signs: 

Г𝛼𝛽
𝜇

𝑑𝑥𝛼𝑑𝑥𝛽 ≡ (
𝜕𝑥𝜇

𝜕𝑋𝜆

𝜕2𝑋𝜆

𝜕𝑥𝛼𝜕𝑥𝛽
)𝑑𝑥𝛼𝑑𝑥𝛽 

 

𝑑2𝑥𝜇

𝑑𝜏2
= −Г𝛼𝛽

𝜇 𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
 

𝑑2𝑥𝜇

𝑑𝜏2
= −(

𝜕𝑥𝜇

𝜕𝑋𝜆

𝜕2𝑋𝜆

𝜕𝑥𝛼𝜕𝑥𝛽
)

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
 

𝑑2𝑥𝜇

𝑑𝑡2
= −(

𝜕𝑥𝜇

𝜕𝑋𝜆

𝜕2𝑋𝜆

𝜕𝑥𝛼𝜕𝑥𝛽
)

𝑑𝑥𝛽

𝑑𝑡

𝑑𝑥𝛼

𝑑𝑡
+ (

𝜕𝑥0

𝜕𝑋𝜆

𝜕2𝑋𝜆

𝜕𝑥𝛼𝜕𝑥𝛽
)

𝑑𝑥𝛽

𝑑𝑡

𝑑𝑥𝛼

𝑑𝑡

𝑑𝑥𝜇

𝑑𝑡
 

15.3 Toolbox 
Coordinate transformations: 

𝑆
𝜈′𝜌′
𝜇′

=
𝜕𝑥𝜇′

𝜕𝑥𝜇

𝜕𝑥𝜈

𝜕𝑥𝜈′

𝜕𝑥𝜌

𝜕𝑥𝜌′ 𝑆𝜈𝜌
𝜇

 

The Christoffel symbol plays an important role: 

2 𝑔𝛼𝛿 Г𝛽𝛼
𝛿 =

𝜕𝑔𝛼𝛽

𝜕𝑥𝛾
+

𝜕𝑔𝛼𝛾

𝜕𝑥𝛽
+

𝜕𝑔𝛽𝛾

𝜕𝑥𝛼
 

Г𝛼𝛽
𝜇

≡
𝜕𝑥𝜇

𝜕𝑋𝜆

𝜕2𝑋𝜆

𝜕𝑥𝛼𝜕𝑥𝛽
 

Г𝛽𝛼
𝛿 = Г𝛼𝛽

𝛿  

 

Covariant derivative 𝛻𝜇𝛼 and partial derivative 𝜕𝜇α of scalars 

𝜕𝜇′α =
𝜕𝑥𝜇′

𝜕𝑥𝜇
𝜕𝜇α 

Covariant derivative 𝛻𝜇𝑉𝜈 and partial derivative 𝜕𝜇𝑉𝜈of vectors 

𝛻𝜇𝑉𝜈 = 𝜕𝜇𝑉𝜈 + Г𝜇𝜆
𝜈 𝑉𝜆 

𝛻𝜇𝜑𝜈 = 𝜕𝜇𝜑𝜈 − Г𝜇𝜈
𝜆 𝜑𝜆 

𝛻𝜇𝑔𝛼𝛽 = 0 

(10) 

(11) 

(12) 

(13) 

(14) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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𝛻𝜇𝑔𝛼𝛽 = 0 

𝑔𝜈𝜇𝑔𝜈𝜇 = 𝛿𝜈
𝜇

 

𝑔 = det(𝑔𝜈𝜇) 

𝑔′ = (det(
𝜕𝑥𝜇′

𝜕𝑥𝜇 ))

−2

𝑔 

det (
𝜕𝑥𝜇′

𝜕𝑥𝜇 ) is Jacobian 

𝑑4𝑥 ≡ 𝑑𝑥0𝑑𝑥1𝑑𝑥2𝑑𝑥3 

𝑑4𝑥′ = det (
𝜕𝑥𝜇′

𝜕𝑥𝜇 )𝑑4𝑥 

  

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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16 Regeneration and detection 
The regeneration of an elementary particle by the controlling mechanism involves the creation 

of a new embedding location. Detection stops this regeneration process. At detection, the set 
{𝑎𝑖

𝑥} is no longer filled by taking locations from the members of the set {𝖘𝑖
𝑥}. No more elements 

of the set are stored in the separable Hilbert space. With other words afterwards detection 

occurred at a precisely known location. However, that location was not known beforehand. 

A virtual map images the completely regenerated set {𝑎𝑖
𝑥} onto parameter space ℛ⓪. This 

involves the reordering from the stochastic generation order to the ordering of this new 

parameter space. This first map turns the location swarm into the eigenspace of a virtual 

operator 𝒷. A continuous location density distribution 𝜉(𝑞) describes the virtual map of the 

swarm into parameter space ℜ⓪. Actually each element of the original swarm is embedded into 

the deformable embedding continuum ℭ where that element is blurred with the Green’s function 
of this embedding continuum.  

This indirectly converts the operator ℴ, which describes the regeneration in the symmetry 

center 𝕾𝑛
𝑥  into a differently ordered operator 𝜉 that resides in the Gelfand triple ℋ. The defining 

function 𝜉(𝑞) of operator 𝜉 describes the triggers in the non-homogeneous quaternionic second 

order partial differential equation, which describes the embedding behavior of ℭ. 

𝜉 = 𝛻∗𝛻𝜓 = {𝛻0𝛻0 + 〈𝜵, 𝜵〉}𝜓 =
𝜕2𝜓

𝜕𝜏2
+

𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
+

𝜕2𝜓

𝜕𝑧2
 

Function 𝜉(𝑞) uses ℜ⓪ as its parameter space. ℴ describes the hopping of the point-like object, 

while 𝜉(𝑞) describes the density distribution of the corresponding location swarm. 

Stochastic operator ℴ describes the hopping of the point-like object, while 𝜉 describes the 

density distribution of the image of the corresponding location swarm. 

17 Photons 
Photons are configured by solutions of the quaternionic second order partial differential 

equation. For odd numbers of participating dimensions the solutions of the homogeneous 

second order partial differential equation are combinations of shape keeping fronts. In three 

dimensions the spherical shape keeping fronts diminish their amplitude as 1/𝑟 with distance 𝑟 

of the trigger point. One-dimensional wave fronts keep their amplitude. As a consequence these 

shape keeping fronts can travel huge distances through the field that supports them. Each shape 

keeping front can carry a bit of information and/or energy. In order to reach these distances the 

carrying field must exist long enough and it must reach far enough.  

The symmetry related field 𝔄 does not fulfil the requirements for long distance travel. It depends 

on the nearby existence of symmetry related charges and its amplitude also diminishes as 1/r 

with distance from the charge. 

The embedding field ℭ is a better candidate for long distance transfer of energy and information. 

ℭ exists always and everywhere. One-dimensional shape keeping fronts vibrate the ℭ field, but 

do not deform this field. They just follow existing deformations.  

Creating a string of one-dimensional shape keeping fronts requires a recurrent shape keeping 

front generation process. Such processes do not underlay the generation of symmetry related 

(1) 
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charges that support the 𝔄 field. However, such processes exist during the recurrent embedding 

of artifacts that occurs in the ℭ field. 

Recurrent generation of spherical shape keeping fronts is capable to deform the corresponding 

field. It has similar effects as a stationary deformation by a point-like artifact has. 

The fixed speed of shape keeping fronts translates in the same fixed speed for the photons. A 

string of one-dimensional shape keeping fronts can carry a quantized amount of energy. The 

relation 𝐸 = ℎ 𝜈 and the fixed speed of photons indicate that at least at relative short range the 

string of shape keeping fronts takes a fixed amount of progression steps for its creation, for its 

passage and for its absorption.  

However, observations of long range effects over cosmological distances reveal that these 

relations do not hold over huge distances. Red-shift of patterns of “old” photons that are emitted 

by atoms and arrive from distant galaxies indicate that the spatial part of field ℭ is extending as a 

function of progression. 

With the interpretation of photons as strings of shape keeping fronts this means that the 

duration of emission and the duration of absorption are also functions of progression. As a 

consequence, some of the emitted wave fronts are “missed” at later absorption. The detected 

photon corresponds to a lower energy and a lower frequency than the emitted photon has. 

According to relation 𝐸 = ℎ 𝜈 that holds locally, the detected photon appears to be red-shifted. 

The energy of the “missed” shape keeping fronts is converted into other kinds of energy or the 

missed shape keeping fronts keep proceeding as lower energy photons. Spurious shape keeping 

fronts may stay undetected. 

Thus, the quaternionic second order partial differential equation may be valid in the vicinity of 

the images of symmetry centers inside ℭ, but does not properly describe the long range behavior 

of ℭ. Due to its restricted range and the non-recurrent generation of its charges, the 𝔄 field does 

not show the equivalents of photons and red-shift phenomena. 

The long range phenomena of photons indicate that the parameter space ℜ⓪ of ℭ may actually 

own an origin. For higher progression values and for most of the spatial reach of field ℭ, that 

origin is located at huge distances. Information coming from low progression values arrives with 

photons that have travelled huge distances. They report about a situation in which symmetry 

centers were located on average at much smaller inter-distances. 

Instead of photons the 𝔄 field may support waves, such as radio waves and microwaves. These 

waves are solutions of the wave equation, which is part of Maxwell based differential calculus. 

On the other hand the wave equation also has shape keeping fronts as its solutions. 

18 Inertia 

18.1 Field corresponding to symmetry center 
Dedicated mechanisms use symmetry centers as resource for the generation of the locations of 

elementary particles. Symmetry centers are interesting as a subject for studying inertia. They 

have a spherical shape and a finite active radius. The activity of the mechanisms can be 

characterized by a normalized continuous density distribution. As an example we apply a 

Gaussian density distribution.  

𝜌(𝒓) =
𝑄

2𝜋 𝜎3√2𝜋
 exp(−

|𝒓 − 𝒓′|2

2𝜎2 ) 
(1) 
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Here 𝒓′ is the location of the center of the symmetry center. The produced distribution moves 

together with the symmetry center.  

The potential of a Gaussian density distribution 𝜌(𝑟) equals: 

 

𝜑0(𝒓 − 𝒓′) =
𝑄

4𝜋𝑟2 erf (
𝑟2

𝜎√2
) (𝒓 − 𝒓′) ≈

𝑄(𝒓−𝒓′)

4𝜋𝑟2  for large 𝑟 = |𝒓 − 𝒓′|. 

 

Here 𝑟 stands for |𝒓 − 𝒓′|. 

 

This is not the electric potential. This potential is generated in a background embedding field ℭ 

due to the recurrent temporary embedding of artifacts that are taken from the symmetry center. 
This can be shown by computing the double differential of 𝜑0(𝒓): 

 

𝜕 erf(𝑎𝑟)

𝜕𝑟
=

2𝑎

√𝜋
exp(−𝑎2𝑟2) =  

2

𝜎√2𝜋
exp (−

𝑟2

2𝜎2) ; 𝑎 =
1

𝜎√2
 

 

1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕 (
erf(𝑎𝑟)

𝑟
)

𝜕𝑟
) =

2𝑎2

√𝜋
exp(−𝑎2𝑟2) =

1

𝜎2√𝜋
exp(−

𝑟2

2𝜎2) 

The plot of the potential proves that this potential has no singularity. It is smooth near the center 

point. 

The gradient of the potential equals: 

 

𝜵𝜑0 =
𝜕𝜑0

𝜕𝑟

𝒓 − 𝒓′

𝑟
 

= −
𝑄

4𝜋𝑟2
erf (

𝑟

𝜎√2
)
𝒓 − 𝒓′

𝑟
+

𝑄

2𝜋𝑟𝜎√2𝜋
exp (−

𝑟2

2𝜎2)
𝒓 − 𝒓′

𝑟
 

 

The potential 𝜑0 adds on top of the average value of the embedding field ℭ. If the observer 

position 𝒓 moves with speed 𝒗 relative to the embedding continuum ℭ then as a consequence a 

corresponding contribution to the vector potential: 

 

𝕮(𝒓) = ℭ0
̅̅̅̅ (𝒓) 𝒗 

 

appears to exist. ℭ0
̅̅̅̅ (𝒓) is the average scalar part of the embedding field ℭ(𝒓). Thus, locally: 

 

(2) 

(3) 

(4) 

(5) 
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ℭ0(𝒓) = ℭ0
̅̅̅̅ (𝒓) + 𝜑0(𝒓 − 𝒓′) 

 

𝕮(𝒓) = ℭ0
̅̅̅̅ (𝒓) 𝒓̇ 

 

𝛁ℭ0
̅̅̅̅  ≈ 𝟎 

 

At the observer point the embedding continuum equals: 

 

ℭ = ℭ0
̅̅̅̅ (𝒓) + 𝜑0(𝒓 − 𝒓′) + ℭ0

̅̅̅̅ (𝒓) 𝒓̇ 

 

The scalar and vector potentials go together with a field 𝕰: 

 

𝕰(𝒓) ≡ −
𝜕

𝜕𝜏
𝕮 − 𝜵ℭ(𝒓) = − ℭ0

̅̅̅̅ (𝒓) 𝒓̈ − 𝛁 𝜑0(𝒓 − 𝒓′) 

 

= − ℭ0
̅̅̅̅ (𝒓) 𝒓̈ +

𝑄

4𝜋𝑟2
erf (

𝑟

𝜎√2
)
𝒓

𝑟
−

𝑄

2𝜋𝑟𝜎√2𝜋
exp (−

𝑟2

2𝜎2)
𝒓

𝑟
  

 

For large 𝑟 = |𝒓 − 𝒓′| 

 

𝕰(𝒓 − 𝒓′) ≈ − ℭ0
̅̅̅̅ (𝒓) 𝒓̈ +  

𝑄

4𝜋
𝜵(

1

|𝒓 − 𝒓′|
) = − ℭ0

̅̅̅̅ (𝒓) 𝒓̈ +
𝑄 

4𝜋|𝒓 − 𝒓′|3
(𝒓 − 𝒓′) 

 

Here again 𝒓′ is the geometric center of the symmetry center. Both the acceleration 𝒓̈ and the 

nearness of the artifact with strength Q determine the extra field 𝕰. The first term on the left 

represents what is usually is experienced as inertia. The second term represents what is usually 

is experienced as gravitation. 

In his paper “On the Origin of Inertia”, Denis Sciama used the idea of Mach in order to construct 

the rather flat field that results from uniformly distributed charges [14]. He then uses the 

constructed field in order to generate the vector potential, which is experienced by the 

uniformly moving observer. Here we use the embedding field as the rather flat background field. 

18.2 Forces between symmetry centers 
Two different symmetry centers represent two different contributions to field 𝕰. 

The forces between two symmetry centers are specified by. 

 

(6) 

(8) 
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𝑭𝟏𝟐 = −𝑭𝟐𝟏 =
𝑄1 𝑄2

4𝜋|𝒓1 − 𝒓𝟐|
3
(𝒓1 − 𝒓𝟐) 

 

18.3 Rotational inertia 
If the observer rotates with respect to the embedding field, then the observer experiences a curl 

that is defined by 

 

𝕭 = 𝜵 × 𝝋 

 

If the rotation changes, then this goes together with a rotation of the 𝕰 field, which counteracts 

the increase of the rotation. 

 

𝜕

𝜕𝜏
𝕭 = −𝜵 × 𝕰 

 

In this case the observer experiences rotational inertia. 

19 The dynamic picture 
The paper reveals an intimate relation between basic fields and Hilbert spaces. The dynamics of 

this relation is controlled by mechanisms that are ignored by mainstream physical theories. Via 

the Hilbert spaces and a category of operators that reside in these Hilbert spaces, the basic fields 

get related to pairs of flat parameter spaces and functions that use these parameter spaces.  

Symmetry centers that float relative to a reference parameter space are characterized by electric 

charges that relate to the symmetry properties of these spherical symmetric spatial parameter 

spaces. Each of these charges generates a contribution to a corresponding basic field 𝔄. The 

basic field and the charges interact dynamically. This basic field uses the reference parameter 

space on which the symmetry centers float as its natural parameter space. 

The natural reference parameter space can be interpreted as the virgin state of the second basic 

field ℭ, which acts as a model wide embedding continuum. Controlling mechanisms recurrently 

pick artifacts from the symmetry centers. The artifacts get subsequently embedded in the 

continuum ℭ. This embedding is immediately released. 

The controlling mechanisms operate on the rim between past and future. The past is left 

untouched and is kept stored in the eigenspaces of dedicated operators, which reside in the 

Hilbert spaces.  

The corresponding geometrical data are stored together with a progression stamp in the form of 

sets of discrete quaternions or as quaternionic fields in the eigenspaces of these dedicated 

operators.  

The controlling mechanisms and the restrictions that are set by the properties of the Hilbert 

spaces take care that the dynamical coherence of the model-wide step-wise embedding of the 

separable Hilbert space into the non-separable Hilbert space is ensured.  

(9) 

(1) 

(2) 
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The dynamics is enforced by the point-like artifacts, which are generated by the actions of the 

controlling mechanisms. The embedding of these artifacts cause discontinuities and vibrations 

in the affected continuum.  

In this way the sets of differential equations can describe the evolutions of the basic fields that 

play a role in this model.  

This paints the dynamic picture that is described by the differential equations, which describe 

the behavior of the mentioned basic fields, which indirectly describe the behavior of the 

recurrently embedded artifacts. 

In this interpretation the history of the model does not start with a big bang, but instead it starts 

with the virgin states of the basic fields. These virgin states are represented by their natural 

parameter space. These fields share the same natural parameter space. 

20 Conclusion 
By introducing a background space and a set of symmetry center types, this paper exploits the 

way in which quaternionic number systems can be ordered. This distinguishes between 

Cartesian ordering and spherical ordering and it reveals that these ordered versions of the 

number systems exist in several distinct symmetry flavors. Locally, the background space needs 

no origin and as a consequence it does not feature spin. The coupling of symmetry centers onto 

the background space offers the possibility to define an algorithm that computes corresponding 

symmetry related charges that are in agreement with the short list of electric charges and other 

discrete properties of elementary particles. For example, also the diversity of color charge and 

spin can be explained in this way. This indicates that elementary particles inherit these 

properties from the space in which they reside. 

An important role is played by controlling mechanisms that are not part of the Hilbert spaces, 

but that make use of the Hilbert spaces as a structured storage medium. The elementary 

particles inherit their properties both from the Hilbert space and from these controlling 

mechanisms. 

This paper also considers the embedding field ℭ. It uses the same parameter space ℜ as the 

symmetry related field 𝔄 does. The embedding field obeys the same quaternionic differential 

calculus as the symmetry related field, but the triggers that cause discontinuities differ 

fundamentally between these fields. That is why these fields behave differently. Still both fields 

determine the kinematics of elementary particles. This is treated in more detail in [8]. 

It appears that the behavior of the symmetry related field 𝔄 can be investigated better by using 

Maxwell based differential calculus, while the behavior of the embedding field ℭ can better be 

comprehended by applying quaternionic differential calculus. Both fields are stored in 

quaternionic format in the non-separable Hilbert space.  

The section about photons indicates that in contrast to what is usually suggested photons are 

not waves of the electric field 𝔄. Instead they vibrate the embedding field ℭ and follow its 

deformations. They do not themselves deform this field. 

The behavior of “old” photons indicates that the validity range of the second order partial 

differential equations is restricted. 
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