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Abstract: This paper introduces the “Piggyback Bootstrap.” Like the weighted bootstrap,
this bootstrap procedure can be used to generate random draws that approximate the joint
sampling distribution of the parametric and nonparametric maximum likelihood estimators
in various semiparametric models, but the dimension of the maximization problem for each
bootstrapped likelihood is smaller. This reduction results in significant computational sav-
ings in comparison to the weighted bootstrap. The procedure can be stated quite simply.
First obtain a valid random draw for the parametric component of the model. Then take the
draw for the nonparametric component to be the maximizer of the weighted bootstrap likeli-
hood with the parametric component fixed at the parametric draw. We prove the procedure
is valid for a class of semiparametric models that includes frailty regression models arising
in survival analysis and biased sampling models that have application to vaccine efficacy
trials. Bootstrap confidence sets from the piggyback and weighted bootstraps are compared

for biased sampling data from simulated vaccine efficacy trials.

KEYWORDS: Biased sampling; Bootstrap; Censored data; Confidence sets; Empirical pro-

cess; Monte Carlo Inference; Semiparametric efficiency; Survival analysis.



1. INTRODUCTION

We propose a computationally quick alternative to the weighted bootstrap in a general class
of semiparametric models, which we call the “piggyback bootstrap.” The semiparametric
models for which the methodology is applicable include frailty regression models arising in
survival analysis and biased sampling models that have application to vaccine efficacy trials.
In the general set-up, the model consists of a parametric component # and a nonparametric
component A. More specifically, we consider likelihoods of the form []}_, ¢(0, A)(D;). Here
the contribution of the ith subject to the likelihood, 4(0, A)(D;), depends upon the data
vector D; corresponding to the ith subject, a vector # € R?, and a nonnegative function of
bounded variation A(t) defined for ¢ in some finite interval [0,7]. In our survival analysis
applications A(t) is a cumulative hazard, and in our biased sampling application A(t) is
a cumulative distribution function (cdf). Our regularity conditions given in Section 5 will
further constrain the likelihood.

Simulation methods such as the bootstrap provide a way to use information from a sample
of size n to generate random draws which accurately approximate the Gaussian limit process
of the maximum likelihood estimates (MLEs), 0, and A,, of § and A. These draws should
be realizations of random variables 6,, and A,, that satisfy the following asymptotic property:
Vn(6, — én, A, — fin) converges weakly, given the sample data, to the same distribution that
\/ﬁ(én — 0y, A, — Ap) does unconditional on the sample data, as n — oco. We make this
statement precise in Section 2.

Computationally simple simulation methods have been developed for the Cox model for
right censored data. Kim and Lee (2003) propose an empirical Bayes method. The regression
coefficients 6, are drawn from a posterior distribution for € given the data. For each draw so
obtained, one samples A for from the posterior distribution of A given 6,,, which conveniently
involves only generating gamma random variables. Unfortunately, this technique relies on the
special structure of the Cox partial likelihood, a feature not shared by other semiparametric
survival models. Shen (2002) gives conditions on appropriate priors for the parametric and
nonparametric components in a more general semiparametric setting. However, no general
method is given for finding these priors, if they even exist. And there is no guarantee that
the posterior distributions will be computationally easy to sample from.

Lin, Fleming, and Wei (1994) propose a Monte Carlo method for the Cox Model. In

their scheme the MLEs are computed, and then independent standard normal variables are



plugged in to a simple expression involving the MLEs to obtain the random draws. Although
this method is very simple computationally, it is unclear if an analogous approach can be
devised for other semiparametric settings.

In contrast to these two simulation methods, the weighted bootstrap (Rubin 1981, Praest-
gaard and Wellner 1993) is broadly applicable to many semiparametric models. Each term
of the likelihood is weighted by a positive random variable satisfying specified moment con-
ditions. The resulting bootstrap likelihood is maximized over § and A to give a random
draw. Unfortunately, this maximization is computationally intense in most semiparametric
models, and must be repeated for each desired draw.

Tsodikov (2003) recommends using profile likelihood maximization in order to reduce the
computational difficulty in obtaining the MLEs. Let £,(6, A) = nP,£(6, A) denote the log-
likelihood function based on a sample of size n, and £ (A, 0) = P2 4(0, A) = P,nt(0, A)/(P,n)
denote a corresponding bootstrap log-likelihood. The profile bootstrap log-likelihood is de-
fined by

pla(0) = sup £,(6, 4) = 6,0, 47)

where A3 = argmax ¢2(0, A). Then the value of # which maximizes pf’ () coincides with
the 6 component of the joint maximizer of £; (6, A), and is thus the bootstrap MLE, which
we will denote by QA;’Z. And for the full parameter ¢p = (6, A), the bootstrap MLE is thus
z/;fb = (é;, A;g). Dropping the superscript “o”, the above applies to the original likelihood.
In Tsodikov’s scheme, one must use a search algorithm, such as Newton-Raphson or
the Powell method (Press et al. 1994) employed by Tsodikov, to find the value of # which
maximizes pl2(f). And for each candidate search value #*, one must compute AS., which
we call a “profile computation”. In the Cox Proportional Hazards model, A, and Ag have
explicit forms in terms of . For instance, Ay is Breslow’s estimator. In the other models we

consider, the most explicit expression we have for fl; is a self-consistency equation:
A;(t) = f'ﬂ(t’ 05 A;)a

where f,(t;0, A) is based on the n observations. And so we must accomplish the profile
computation by iterations of a fixed point algorithm, which we describe in detail in Section
2. Tsodikov (2003) presents ways to obtain the relevant self-consistency equation in a variety
of semiparametric settings. He points out that this procedure can be viewed as an MM or EM

algorithm. Since the fixed point algorithm often requires many iterations (see the simulation



study in Section 4 for some specific average iterations), it ends up being the main source of
computational cost in the weighted bootstrap.

The contribution of our paper is to take advantage of the profile structure elucidated
by Tsodikov to perform computationally efficient inference for semiparametric models. In
our proposed piggyback bootstrap, we assume that draws for the parametric component 6,
are readily available (we discuss methods of obtaining such draws in Section 2) and that
Vn(b, — én), given the sample data, converges in distribution to the unconditional limiting
distribution of \/n(f, — 6p). Then, for each parametric draw 6,, the piggyback bootstrap
draw is A, = argmaxy £; (0, A), resulting in the pair (6,, A,).

Thus the piggyback bootstrap decreases the dimension of the maximization problem
for each set of bootstrap weights. This method requires only one profile computation for
each set of bootstrap weights. In contrast, the full weighted bootstrap requires a profile
computation for each candidate value in the search for the parametric maximizer. Since the
profile computations are accomplished using computationally costly iterations of a fixed point
algorithm, we use the number of profile computations required by a procedure as a measure
of its computational complexity. We show that the piggyback bootstrap is significantly less
computationally complex than the weighted bootstrap.

Section 2 describes our method in more detail. Section 3 presents several example mod-
els for which the piggyback bootstrap works. In Section 4, we provide a numerical study
comparing the weighted and piggyback bootstraps in a biased sampling analysis of simulated
vaccine efficacy data. Sufficient regularity conditions are given in Section 5, and Section 6
contains a brief discussion. Details on the proofs of the results are given in Appendix A, and

Appendix B discusses verification of the regularity conditions.
2. THE PIGGYBACK BOOTSTRAP

In this section we introduce our piggyback bootstrap approach to obtaining appropriate
random draws for semiparametric inference.

The main idea is to first obtain valid random draws for the parametric component of the
model. Usually, it is possible to do this in a manner that is computationally much less intense
than repeatedly maximizing profile likelihoods. The second step is to piggyback the draws
for the nonparametric component onto the parametric draws, by plugging the parametric
draws into a bootstrap likelihood and maximizing over the nonparametric component holding

the parametric part fixed. That is, for each ok drawn, £ = 1,...,m, we generate i.i.d.
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random bootstrap weights 7y, ...,n,, and compute A;%k) = argmaxAK;fL(ch),A), where /07 is
the bootstrapped log-likelihood using the given bootstrap weights. We assume that these
bootstrap weights are nonnegative, with mean and variance 1 and with fooo \/fmdx <
o0o. The bootstrap weights should be generated so that they are independent of the data.
Further, the draws for 6, should be i.i.d. and independent of the bootstrap weights.

Due to measurability issues which may arise in applying our theory to specific cases,
we use empirical process results from van der Vaart and Wellner (1996) (hereafter abbre-
viated VW). The precise form of the bootstrap log-likelihood is £5(A,0) = Pl(6,A) =
P.nl(0, A)/(P,n). Hoffmann-Jgrgensen (HJ) weak convergence is denoted by ~-.

Section 1.12 of VW gives a useful characterization of HJ weak convergence in a metric
space D to a tight limit. For a metric space D, define BL; to be the set of all f : D +— R with
[ fllp = supgep |f(z)| < 1 and |f(z) — f(y)| < d(z,y) for every z,y, where d is the metric
on D. Then X, ~» X, where X is tight if and only if supscp;, |E*f(Xn) — Ef(X)| — 0.

Loosely speaking, we define B, =~ (), to mean that B, has a limit law conditional on
the data equal to the limit law of C,. In specific, if G denotes the limit law of C,,, we
require sup,epy, |Enh(B,) — Eh(G)| — 0 in outer probability and that B, is asymptotically
measurable unconditionally. This has the form of the conclusion of Theorem 2.9.6 of VW,
which we employ in Appendix A.

Now we state the main theorem. If we consider 021), .. .,0,({”) to be realizations of a

random vector 6,,, then the following establishes the validity of the new approach:

THEOREM 1 Under regularity conditions, /(0 — 6y, fl‘)n—/ién) ~ /n(6,—b,, flén—AO).

The regularity conditions are given and discussed in Section 5. Appendix B provides an
outline for verifying the regularity conditions in applications, with specific detail given for
the odds-rate and biased sampling models introduced in Section 3. Four of the six regularity
conditions simply involve verifying the structure of derivatives of the log-likelihood, which
should be simple in practice. The remaining two regularity conditions should be easy to
verify when the MLEs are known to be efficient and the weighted bootstrap is known to be
a valid simulation method for a model.

The proof of Theorem 1, given in Appendix A, is a consequence of expansion (6). Ex-
pansion (6) follows from a series of Lemmas, which can be established through technically
detailed but rather straightforward proofs. In particular, Lemma 4 establishes a functional

Taylor expansion using 2.4.8 of Abraham, Marsden, and Ratiu (1988). Then the regularity
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conditions, limit arguments, and a Multiplier Central Limit Theorem (Theorem 2.9.6 of van
der Vaart and Wellner (1996)) are used to show this Taylor expansion implies (6). Since we
can generate the bootstrap weights and the draws 6,, so that they are independent of each
other, it is straightforward to show that the limiting covariance matrix of the right hand side
of (6) is the inverse of the information operator, proving Theorem 1.

Before utilizing this result, it is necessary to obtain draws 05{“), k=1,...,m, that have
the right conditional distribution. The regularity condition that 0, is efficient implies that
V1(6, — 6) is asymptotically mean zero normal with variance I;*, where I, is the efficient
Fisher information for . Thus one way to obtain the desired draws is to estimate I, with
a consistent, estimator Vp, and then let 6% = 4, + n’l/szol/QZ(’“), k =1,...,m, where the
Z®) are independent standard normal vectors of length p, where p is the dimension of 4.

In some settings, such as the Cox model for right-censored data, a consistent estimator
of Vj, is not difficult to construct. Corollary 3 of Murphy and van der Vaart (2000) can be
used to consistently estimate this covariance matrix in a number of other semiparametric
settings. For the biased sampling example, we verify in Appendix B that the hypotheses of
Corollary 3 of Murphy and van der Vaart hold, justifying our estimate described in Section
4.

An alternative Monte Carlo approach is presented in Lee (2000). This method builds on
the results of Murphy and van der Vaart (2000). The proposed MCMC scheme generates 6,
from the density proportional to exp{pl,(#)}. Provided the draws stay sufficiently close to
0,,, we have \/n(0,—0,) ~= /n(0,—b,). See Lee (2000) for numerical studies of this algorithm,
and Dixon (2003) for an implementation of this method in applying the piggyback bootstrap
to an odds-rate regression on a Non-Hodgkin’s Lymphoma data set.

In order to piggyback the draws for A onto the draws for # we use the fixed point algorithm
discussed in the Introduction. The same fixed point algorithm is used in implementing
Tsodikov’s (2003) method for computing the MLEs in the weighted bootstrap, as described
in the Introduction. Before giving details on the algorithm, we mention that in the models
we consider, we take the estimator for the nonparametric piece to be a step function with
jumps only at observation points. In the biased sampling models A is a cdf, and Vardi (1985)
shows that the maximizer puts mass only at the observation points. In the survival analysis
settings, the jumps are at observed failure times only. Murphy (1994) and Parner (1998)

provide nice discussions of this issue. We will denote the jump at an observation ¢ by AA, (t).



Here and in what follows, for a right continuous function f we define Af(t) = f(t) — f(t—).
Then the fixed point algorithm for evaluating AAy(t) for a fixed 6 at each observation ¢

is as follows:
e Step 1: Set AAy(t)® = g¢(¢) for all observations ¢, where g is some initial guess function.

e Step 2: Compute
Adg()THD) = f(t; 0, AT

at each observation ¢.

e Step 3: If sup, |Afl§’+1) (t) — AAgT)(t)\ < ¢, stop and set Ay = Ag“). Otherwise repeat
step 2 with r replaced by r + 1. Where € is some tolerance level. (We took e = .0001

in our simulation study in Section 4.)

In our simulation study the algorithm described above always converged. And for the
biased sampling model we consider in that study, Vardi (1985) has shown the self-consistency
equation has a unique solution. Thus we know the resulting step function is the nonpara-
metric MLE.

The next section describes several models that satisfy the regularity conditions of Theo-

rem 1.
3. EXAMPLES

In this section we describe several models for which the piggyback bootstrap is applica-
ble. The first example is the Cox model for right censored data. While computationally
efficient inference for this model can be done with empirical Bayes (Kim and Lee 2003)
or the Monte Carlo approach of Lin, Fleming, and Wei (1994), the example provides a
straightforward illustration of the methodology. The second example, odds-rate regression
for right-censored data, is developed in detail and the regularity conditions are rigorously
established in Appendix B. The next example is the correlated (and shared) gamma frailty
model for right-censored data. A final example is the biased sampling model. The regularity
conditions for this last example are also established in Appendix B. Technical restrictions
which simplify or are necessary in the verification of the regularity conditions are given for
the biased sampling and odds-rate models in Appendix B. See Dixon (2003) for technical

restrictions on the other models, as well as a detailed verification of the regularity conditions



for these models.
3.1 Cox Proportional Hazards Model

Efficient inference for # in the Cox model for right censored data is based on the profile
likelihood which is equivalent to the partial likelihood. The data consists of n i.i.d. realiza-
tions of (X, 0, Z), where X = T A C' is the smaller of a failure time 7" and right censoring
time C, Z(-) is a d-dimensional caglad (its components are left-continuous with right-hand
limits) covariate process, and § = I{T < C} is the censoring indicator, where I{-} is the
indicator function. The survival function for this model is given by S(¢|2) = P(T > t|Z) =
exp {— Ot e (s)dA(s)}. Here 6 is a d-vector of regression coefficients, and A(t), the cumula-
tive baseline hazard, is a cadlag (right-continuous with left-hand limits) function of bounded
variation on some finite interval [0, 7]. Let 0, be the partial likelihood estimator for f, and
let Vy be the corresponding estimator of the variance of \/n(, — 0;). The baseline hazard
function can be estimated with Breslow’s estimator flén, where

A t P,dN(s
Ay(t) = /0 W)eg,;(s),

N(t) = I{X <t,0 =1}, Y(t) = I{X > t}, and P, is the empirical measure based on the
data. A piggyback bootstrap is accomplished by drawing 6, = 0, +n~/2V;"/>Z, where Z is
a p-variate standard normal deviate. Then A, is obtained by computing Breslow’s estimate
with bootstrap weights ¢ (-) = P,7n(-)/(P,n) replacing the empirical weights P, (-).
3.2 Odds-Rate Model

A flexible regression model for right-censored data, which includes the Cox propor-
tional hazards model and the proportional odds model as special cases, is the odds-rate
regression model considered in Dabrowska and Doksum (1988), Scharfstein, Tsiatis and
Gilbert (1998), and Lee (2000). The survival function for this model is defined as S(t|Z) =
P(T > t|Z) = F [exp {—W fot eﬂlz(s)dA(s)H Z], where 3 is a d-vector of regression co-
efficients, W is an unobserved nonnegative gamma frailty with mean 1 and nonnegative
variance v, and A(t), the cumulative baseline hazard, is a cadlag function of bounded
variation on some finite interval [0,7]. After integrating over W, the survival function
simplifies to S(¢|Z) = g,([; e##®)dA(s)), where g,(u) = (1 + yu)~"/7 for v # 0 and
go(u) = lim,_,0 g, (u) = e~*. By multiplying the baseline hazard e##(dA(t) by the random
variable W, we are making an adjustment for misspecified or omitted covariates. Setting
v = 0 results in the Cox model, while setting v = 1 yields the proportional odds model. We

will focus on the case where 7 is unknown.



Letting @ = (7, §) and assuming that censoring is independent of T given Z, the log-
likelihood function for ¢ = (0, A) in the odds-rate model is given by

b (¢) = 1Py, {/OT [vlog g,(Hy,(Y)) + B'Z(s) + loga(s)] dN(s) + loggy(qu(Y))} (1)

where H,(f = [ f(5)e??()dA(s) and a = dA/dt.

As dlscussed in the Introduction, we consider A constant except for jumps at the observed
failure times, replacing a(s) with AA(s)(= A(s)— A(s—)). Then the MLE may be computed
in two steps via profile likelihood. For each 6, define 1 = (0, /19) The maximizer Ay is a
solution of the following self-consistency equation: Aa fo [ (u; wg ] - dG,(u), for all
t € [0, 7], where G,,(u) = P,0I{X < wu} and

Walu; A,0) = Py [ (14+07)e# “0Y (w)/ (1 + v HX (1))

(Scharfstein et al. 1998). The MLE for 6 is 6,, = argmax,pt,,(0), and the joint maximizer is
thus 1, = (én,flén).

The weighted bootstrap can be used to obtain draws for the parametric and nonparamet-
ric components of the model, as proven in Kosorok, Lee and Fine (2004) (the arguments are
similar to those used in the proof of Lemma 8 in Appendix B). However, maximizing over
both the parametric and nonparametric pieces, as required by the bootstrap, is computa-
tionally intense. The difficulty is that for each candidate value of the parametric maximizer,

one must compute A;, which is the solution to the self consistency equation

As(t) = / (W2 (u;0, A3)1dG: (u) (2)

where G2 (u) = P,ndl{X < u} and W2 (u;0,A4) =P, [n(1 + 67)e? ZWY (u)/(1 + fijf(l))] :

Our piggyback approach applies in this situation, simplifying computations. To obtain
draws for the parametric component, #, we show in Appendix B that Corollary 3 of Murphy
and van der Vaart (2000) holds. For each of the draws 6, one generates bootstrap weights
and plugs 0&’“) into the corresponding bootstrap likelihood. Then the bootstrap likelihood
(k)

is maximized over the nonparametric component to obtain Ay ’. We verify in Appendix
B that the resulting piggybacked pairs (Hfzk),A,(zk)), k =1,...,m, satisfy the conditions of
Theorem 1 and thus have the desired asymptotic property. In addition, these piggyback
draws are relatively easy to compute.

Alternatively, one may use the MCMC scheme described in Lee (2000) to generate draws

for . See Dixon (2003) for an implementation of this method in applying the piggyback
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bootstrap to an odds-rate regression on a Non-Hodgkin’s Lymphoma data set.
3.3 Correlated (and Shared) Gamma Frailty Model

Much of the theory for the odds-rate model is derived in a manner similar to the results
of Parner (1998). Parner considers the correlated gamma frailty model for clustered data.
The data is right censored with the observations for each of n clusters (e.g., family, pair
of twins, group) consisting of m realizations of (Xj,d;, Z;(u)), i = 1,...,n. We associate
with the ijth individual, i = 1,...,n, j = 1,...,m, a frailty WY = W,y + W;;. The
frailty components Wy, Wiy, ..., W;,, are assumed to be independent, unobservable, gamma-
distributed random variables with parameters (v,n), (v*,n),...,(v*,n), respectively. We
adopt the parameterization used by Parner by considering the frailty parameters of the
model to be 6 = var(Wy) = v/n* and 6* = var(W;) = v*/n*>. When 6* is set equal to 0 we
have the shared frailty model. The full parameter for the model is ¥ = (0, 6%, 5, A). The
log-likelihood function is given by

n

> {Z 16:(8'Zi5(Xi5) + log a(Xy))] +1og Y | au(k, ¢)} :

i=1 keK;

where k = (ki,...,kn) and K; = {k|k; € {0,0;;},7 =1,...,m}. And the «;(k,v) are given

by
0% T(00-2 + ;. — k.) ﬁ{ (0702 + k) 1 }
T(06:-2)(1+ 0.7 (1p))%0 40—k 25 072) (14 0.My(x))070 " +ki
where Ajj(¥) = [ Yij(s) exp(8'Zi;(s))da(s), Yi;(t) = I{Xi; > t}, 6. = 6+06%, and otherwise a

subscript “-” denotes summation over the corresponding index, e.g. d;. = Z;nzl d;5. Using the
bootstrap which assigns weight to the sth cluster, 7 = 1, ..., n, the bootstrap self-consistency

equation for A is given by

iw=[ (%Zn

=1 j=1

m

-1
Zz(j)w, 0*, 8, A;)Y;J(S) exp(ﬁ'Xij(S))) dNO(S)

Here Z7 () = Zio(1) + Zi;(1h) with

. _ D ke, ik, ¥)bio(k, ) 5 2ker; @k V)i (k. ¥)
ZZ()(’L/J) = ZkeKi ai(k’ ¢) and Zij (d)) ZkeKz o (k ¢) ’
h
(ke ¥) = =gy and byl ¥) = e
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N2 =3 miy jmy Nij, and (analogously to the odds-rate model setting) Ni;(s) = I{ X;
s,0;; = 1}. Taking 7; = 1 with probability 1, we have the self consistency equation for An
previously revealed by Parner (1998).

We omit verification of the conditions here, but with some additional technical restric-
tions, the piggyback bootstrap can be shown to be readily applicable to the correlated gamma
frailty example. See Dixon (2003) for details.

3.4 Biased Sampling Model

As a final application, we consider a class of biased sampling models (Gilbert 2000).
Here the data consists of n ii.d. realizations of X = (I,Y). Here I € {1,...,s} is a
random stratum, taking on the value ¢ with selection probability A\; > 0,7 =1,...,s, with
> X =1 Given I =14, Y € [0, 7] has distribution F; defined on a sigma field of subsets
B of [0,7] by F;(B,0,A) = W; (0, A) [, wi(u,0)dA(u) for B € B. The w;, i =1,...,s, are
nonnegative (measurable) stratum weight functions assumed to be known up to the finite
dimensional parameter § € ©. W;(0,A) = [ wi(u,0)dA(u) is assumed to be finite for all
f € ©. The probability measure A is the unknown infinite dimensional parameter of interest.
The goal is to estimate it based on information from samples from the F; distributions,
1=1,...,s. Thus the semiparametric log-likelihood is given by

nP, {Af%dfl{)f}} .

Denote the number of observations belonging to the ¢th stratum by n;, the total sample
size by n(= Y_;_, n;), and the ith sampling fraction by A,; = n;/n. Furthermore, let ¢;,
Jj=1,...,h, denote the distinct observed realizations of Y, each with multiplicity r;, and let
n;; be the number of observations from the ith stratum with value ¢;. The semiparametric

likelihood is then proportional to

widata) = T[] [“’z dA{t }} |

i=1j=1

As demonstrated in Vardi (1985), we may instead maximize the partial likelihood defined by

(0, Bldata) = T[] OB
nl — )
Zk 1 AnkWi; (0) By '

i=1 j=1

where B = {B,...,B,}, subject to B; > 0,4 = 1,...,s — 1 and B, = 1, and w;;(§) =
w;(t;,0). Again the MLE is computed in two steps via the notion of profile (partial)
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likelihood. The profile partial log-likelihood is given by pf,(8) = supzlog L. (6, B) =
log L, (6, B@) where B, = argmax g log Ly, (6, B) The MLE for # coincides with the profile-
partial-MLE obtained by maximizing p¢, () with respect to 6. Then we take 1, = (6,, Aén).

As demonstrated in Vardi (1985), we may compute Ay by the following procedure. First

find B defined as the solution to the self-consistency equation

dAo(t;) = h' - R — 3)
S [0 At (8.) B3 (0n)

In the weighted bootstrap case, we replace n;; with the sum nj; of n;; bootstrap weights

in the above equations, and the other terms are modified accordingly, i.e., n? = S2*_ ng,
n® =37 n{ = n (since all bootstrap weights add up to n by construction), 5 = >77_ ng,
and X\, = n/n. Note that the use of the partial likelihood is for computational purposes
only. It affects none of the theory because the nonparametric partial likelihood maximizer
coincides with the nonparametric maximizer of the full likelihood.

The weighted bootstrap can be used to obtain draws for the parametric and nonpara-
metric components of the model, as justified in Gilbert (1996). But, again, maximizing over
both the parametric and nonparametric pieces in this approach is computationally intense.
However, our piggyback approach applies in this situation, simplifying computations. To
obtain draws for the parametric component, #, Murphy and van der Vaart’s (2000) Corol-
lary 3 can be used to consistently estimate Ip. Then the draws for the nonparametric piece
are piggybacked on these draws as in the case of the odds-rate model discussed above. The

next section provides a simulation study using this approach.
4. SIMULATION STUDY

We simulated vaccine efficacy trials in order to evaluate the coverage probabilities of con-
fidence bands constructed using draws from the weighted and piggyback bootstraps. The
simulated response represents percent divergence in the V3 loop amino acid sequence be-
tween the strain of HIV found in an infected subject versus the prototype strain used in the

vaccine. These simulated data sets are modeled after ones found in Gilbert (1996).
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We generated 200 data sets consisting of 400 independent observations. Half of the 400
observations in each data set come from a placebo group, and the other half from a vaccine
group. The placebo group response was uniformly distributed on the interval [0, 35], and the
stratum bias functions are given by w(y, ) = exp(yf/35) and ws(y, ) = 1. Here group 1 is
the vaccine group and group 2 is the placebo group. Thus the cdf for the vaccine group is

given by

B f()y 6500/351[0,35](8)615 B ey00/35 -1

F &) - I
(y) fo 6300/351[0,35](8)d8 efo — 1

and the cdf for the placebo group is the Uniform[0,35] cdf.

The choice of the Uniform|0,35] distribution is inspired by the use of this distribution
in the simulation in Gilbert (1996). The value 35 corresponds to the suspected maximum
possible percent divergence, and the true value of  was taken to be 6y = 7.89, arbitrarily.

The weight functions were chosen because they allow for straightforward estimation of
relative risks, as shown in Gilbert, Self, and Ashby (1998). In particular, they show that if we
assume that infection is possible from at most one strain during follow-up, that the relative
prevalence of circulating strains is constant over [0, 7] (7 = 35), and that the probability of
being exposed to a given strain is the same for vaccinated and unvaccinated trial participants,

then e¥?/3> = RR(y)/RR(0), where

P(infected by y|one exposure to y, vaccine)

RR(y)

P(infected by y|one exposure to y, placebo)

denotes the relative risk of a strain .

For the parametric draws in our piggyback approach, we estimated the variance of the
MLE én and then drew standard normal deviates with this variance and added them to én
for each data set. To estimate the variance of én, we applied Corollary 3 of Murphy and van

der Vaart (2000). That is, we calculated

i 9108 Pl (0n + 1) —log plu(0n) _ i,

h—0 400h?

and took the variances of the normal deviates to be (400Ip)~".

Numerical experimentation, with data sets generated like those used in the simulation,
revealed that in a neighborhood of 0 the left hand side of the above expression is close to
linear in h. Thus in the simulation we estimated the limit for each data set by averaging the

values of the left hand side at two points equidistant from 0. These points were the same

14



for each data set, and set in advance before the simulation based on the numerical exper-
imentation. As a check on the validity of this method, we compare the variance estimates
so obtained with the variances of the parametric draws obtained using two other methods.
These methods are the MCMC method developed by Lee (2000) for parametric inference,
and the full semiparametric weighted bootstrap. Neither of these methods estimates the
variance before implementation as we do here. Instead, each generates parametric draws
with the appropriate distribution for each of the 200 data sets, and afterwards we calculated
the variance of the draws for each data set for the sake of this comparison. We found that
the correlation of our variance estimates with the variances from Lee’s method is .985. A
scatterplot of the variance pairs does not show any outliers, and a least squares regression
line estimates these variance estimates are 0.0210 4 0.9335 x Lee’s method variances with
coefficient of determination R? = 0.9699. Since Lee’s method is based on related results from
Murphy and van der Vaart (2000), we should expect this close agreement. The correlation
of the variances from this and Lee’s method with the variances from the full weighted boot-
strap are .815 and .798, respectively. Thus it appears the above procedure is a valid way of
estimating the variance for the parametric draws.

In order to maximize over the parametric component of the model in the weighted boot-
strap (and in finding én to apply the method described in the last two paragraphs for the
piggyback bootstrap), we used a search algorithm that returns a value which is the para-
metric MLE plus or minus .01. This algorithm is a modified grid search algorithm and does
not compute any derivatives.

We performed 2000 bootstrap repetitions for both the piggyback and weighted bootstraps
for each of the 200 simulated data sets. For reasons discussed in the Introduction, we use
the number of profile computations required by each bootstrap procedure as a measure of
computational complexity. In the weighted bootstrap, we profiled (maximized) over the
nonparametric component of the model on average 58189.755 times per data set. The mean
number of iterations of the fixed point algorithm for computing these A values was 35.758
with standard deviation 12.375. In order to obtain the variance estimates for the parametric
component for use in the piggyback bootstrap, we profiled over the nonparametric component
of the model on average 31.995 times per data set. (Note that this includes the profile
computations needed to find the MLE for each data set.) The mean number of iterations for

computing each A was 36.909 with standard deviation 12.468. In piggybacking the draws
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for A on the 2000 values of # so drawn for each of the data sets, the mean number of
iterations was 43.468 with standard deviation 9.867. Thus in the piggyback bootstrap we
profiled over the nonparametric component of the model an average of 2031.995 times per
data set compared to the average of 58189.755 times for the weighted bootstrap, a ratio
of 1 to 29. It might be possible to streamline our maximization algorithm to decrease
the number of times we must profile over the nonparametric component in the weighted
bootstrap. But to beat the piggyback bootstrap in this sense, we would need to profile
over the nonparametric component on average less than 2031.995/2000 times for each of the
2000 bootstrap likelihoods. This would require that the first candidate value we try in each
bootstrap likelihood search happens to be the MLE (plus or minus some small error) almost
all the time, which is clearly beyond even the best search algorithms.

In constructing confidence bands for the cdfs of the vaccine and placebo groups, we
considered only the middle 75 percent of the observations. The reason for this is that the
bands narrow towards the ends of the data set due to the nature of the estimate. Indeed,
the estimated value of the cdf for the largest observation will always be 1, and so the
confidence band at that point will never contain the true value. To construct a level «
pointwise confidence interval at an observation y, we find the middle o percent of the 2000
cdf estimates induced by the draws at y. A 95 percent simultaneous confidence band is
constructed by finding the smallest value of o so that 95 percent of the cdfs induced by the
draws are contained within the level o pointwise confidence intervals for all observations y
in the middle 75 percent of the observations.

See Figures 1 and 2 for the resulting confidence intervals and bands for one of the simu-
lated data sets. Since the piggyback and weighted bootstraps only specify the values of the
intervals and bands at the observation points, we interpolated to create these figures. Let
us denote the value of the upper bound of one of these confidence sets at an observation y
by U(y) and the lower by L(y). To extend the sets to the range of the data, the typical
approach is to define U(y) = U(y;) and L(y) = L(y;) for all y; < y < yo for y; and y,
adjacent observations. We call this the leftpoint interpolation scheme. In these simulations
we find the coverage of the bands is better if we define U(y) = U(y,) and L(y) = L(ys) for
all yo — (y2 —11)/2 <y < ya + (ys — y2)/2 for y; < ya < y3 adjacent response values (where
the left part of the inequalities does not apply for the smallest observation, and the right

part does not apply for the largest). Thus we used this midpoint interpolation scheme in
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the figures. Note that asymptotically the leftpoint and midpoint methods will give the same
result.

Table 1 presents the coverage of these bands so defined for the piggyback approach
and the weighted bootstrap for three interpolation schemes: none, leftpoint, and midpoint.
The values for “none” are obtained by only considering whether or not a confidence band
contains the true cdf at each observation in the data set, and not between observations as
is the case for interpolation. Note that we prove in this paper that the two methods are
asymptotically equivalent. Even for this moderate sample size, we see that the two methods
perform close to the same. Although the piggyback bootstrap does slightly better than the
weighted bootstrap for the vaccine group, and slightly worse than the weighted bootstrap
for the placebo group.

We also constructed confidence intervals for the parametric component of the model.
For each data set, the .975 and .025 percentiles of the draws for the parametric component
were taken as the ends of the corresponding confidence interval. The coverage of these
intervals was 94.5 percent using the weighted bootstrap, and 93 percent using the piggyback
bootstrap, both of which are within 2 Monte Carlo standard deviations of 0.95 (0.03 =
24/0.95 x .05/200).

5. REGULARITY CONDITIONS

In this section, we present sufficient technical conditions for the piggyback bootstrap to have
the desired asymptotic property given in Theorem 1. This section may be skipped at first
reading. Conditions (PB1) through (PB3) are conditions on the structure and smoothness
of the information operator. Condition (PB4) involves asymptotic conditions on the Monte
Carlo parameter estimates. Condition (PB5) requires sufficient smoothness of the score
operator for the infinite dimensional parameter. Condition (PB6) requires the estimators to
be efficient.

As noted in the Introduction, we consider likelihoods of the form [, £(6, A)(D;). Here
the contribution of the ith subject to the likelihood, 4(0, A)(D;), depends upon the data
vector D; corresponding to the ith subject, a vector § € R?, and a nonnegative function
of bounded variation A(t) defined for ¢ in some finite interval [0,7]. Restrictions on the
parameter spaces of # and A will be model specific. See Appendix B for restrictions on
the odds-rate and biased sampling models, and Dixon (2003) for restrictions on the other

example models.
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Let h = (hy, hy), where h; € R¢ and h, is a nonnegative function of bounded variation
on [0,7]. Let || - ||; denote the Euclidean norm for 7 = 1, the total variation norm for i = 2,
and || - |] 4| - ||z for i = 3 (ie. [[¢|[s =]|0]]1 + ||A]|2)- Let S be a set. We use 05 (Ry)(s)
to denote a term F,(s) = R,Qn(s) such that sup,.s ||@n(s)|| converges in outer probability
to 0 as n — oo (here || - || = || - ||; for i« = 1,2, or 3 as appropriate). We assume the score

operator for the model,

Un(6, Al(h) %en (0 thy, A+t /0 ' hg(u)dA(u)>

t=0

0
= = A
atfn(O—i-thl, )

’
t=0

N %en (9,A+t/OT hg(u)dA(u)>

t=0
exists. Denote the first term in the last line Uy, 1[0, A](h1) = nP,U;[6, A](h1) and the second
Unolf, Al(hy) = nP,Us[0, A](h). Let hy € R, and hy be a nonnegative function of bounded

variation on [0, 7]. We assume the following derivative exists

0 _ ;
%Uz [9 + Shl, A + Shg] (hz) L
= QU 04 sho, Al ()| + LU0, At sh] ()| Li=1,2 (4)
88 7 7 7 SZO as 7 ) 7 s:()’ 7 -

The following are the regularity conditions:

(PB1) The negative of the first term of (4) is of the form k!5, [0, A](h;), and the negative
of the second term of (4) is of the form [ &;2[6, A](h;)(u)dho(u) for i = 1,2, where
6110, A](h;) is a random d-vector depending upon an observation, and 6; 5[0, A](h;)(u)
is a random function of bounded variation on [0, 7] depending upon an observation for
i = 1,2. Define 6, ;[0, A](hi) = P,6,,[0, Al(hi),,j = 1,2. Then 6, [0, A](h;) has

total variation bounded by some M over all n.

(PB2) Denote o;;(0, A|(hi) = Podi [0, Al(hi),%,j = 1,2, where Fy is the expectation under
the true model. Let H = H; x Hy, where H; = R¢ and H, is a set of functions
which includes all h(s) = g95[60, Ao] " (I{s < t}) with ¢ € [0,7]. And define || - ||;{2 =
SUPhess, || - |l 4 = 1,2. Then limg 5,440 [|02,5[0, Al(h) = 2,400, Ao (R)[[* = 0, =
1,2.

(PB3) For some ¢ > 0, {5’2,1[9,14](]1)2', ||0 — (90”1 < c, ||A — A0||2 < C,h € HQ}, 1= 1, .. .,d,
and {G22[0, A](h)(u), |10 — 6ol < ¢, ||A — Aoll2 < ¢,h € Ha,u € [0,7]} are Donsker
and bounded.
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(PB4) (i) v/n(6, — 6,) ~ \/n(f, — 6y) and the common limiting distribution is tight.
(ii) \/ﬁ(Ago — Ag,) ~ /n(Ag, — Ap) and the common limiting distribution is tight and
cadlag.
(iii) v/nl[A5, — Aollz < Op(1) + 0}f2(1 + v/nl|6y — 6o[1)

Here and in what follows, Op(l) denotes a random sequence which converges

weakly to a tight, cadlag limit.
(PB5) PoUQ(eo,Ao)(') =0 and {Ug(eo, Ao)(h), h € HQ} is P()-DOIlSkeI‘.

A A

!
(PB6) /n (On — 00, A5, — AO) is asymptotically linear, regular, and efficient. And the infor-

01,1 O21
01,2 022

is continuously invertible and onto. Here, and in other cases where the full notation is

mation operator

not necessary for clarity, we abbreviate o; [0, Ao = 0, 4,5 =1, 2.

We assume the bootstrap weights 7y, ...,n, above are i.i.d., nonnegative, and with mean
and variance 1. A technical condition on the bootstrap weights useful in establishing the
validity of the weighted bootstrap and condition (PB4.ii) is that [ VP > 7ldr < oc.
Note that we assume the bootstrap weights are generated so that they are independent of
the data, and that the draws 6, generated for the parametric component are i.i.d. and
independent of the bootstrap weights.

In Appendix B we give an outline of arguments one can use in verifying the regular-
ity conditions in models such as our example models. We provide a brief overview here.
In practice, verifying Conditions (PB1), (PB2), (PB3), and (PB5) mainly consists of tak-
ing derivatives of the log-likelihood and verifying that they have a specific structure. The
Donsker conditions on the structure may be unfamiliar to some readers. Fortunately, certain
“Permanence Properties” of Donsker classes of functions, as discussed in VW, usually makes
verifying these conditions an easy task. Using these results from VW, to verify that a class
of functions is Donsker, one simply needs to check if all member functions can be expressed
in terms of Donsker preserving operations on functions from other known Donsker classes.
As an example, see the proof of Lemma 7 in Appendix B. The condition of efficiency of the
MLEs in (PB6) is often the justification for performing inference based on the MLEs. Thus

in practice, this condition on the piggyback bootstrap will not add any theoretical challenge
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over other approaches to inference. In Section 2, we discussed methods of obtaining para-
metric draws satisfying condition (PB4.i). Condition (PB4.ii) follows from arguments similar
to those which prove the validity of the weighted bootstrap (see Lemma 8 in Appendix B).
And so this condition does not add any theoretical burden to the piggyback bootstrap com-
pared to the weighted bootstrap. Verifying Condition (PB4.iii) requires relatively novel, but
straightforward, arguments, which we give in the proof of Lemma 9.

We discuss verification of the regularity conditions in detail for the odds-rate and biased
sampling examples in Appendix B. See Dixon (2003) for a detailed verification of the regu-
larity conditions for the other example models. We now discuss the relevance of the above
conditions in proving the main theorem.

Condition (PB1) specifies the structure of the likelihood. Note that the expression of the
second term of (4) as an integral is crucial in the last step of the proof of (6) in Appendix A.
In the survival analysis applications, the structure exists as a consequence of the likelihood
depending upon the integral of a hazard function. And in the biased sampling application,
it is a consequence of the dependence of the likelihood upon the integrals of stratum bias
functions. These examples were discussed in detail in Section 3.

Condition (PB2) requires that the information operators are sufficiently smooth in the
parametric and nonparametric components. This condition is useful in working with the
generalized Taylor expansions (see 2.4.8 of Abraham, Marsden, and Ratiu, 1988) in the
proof of the main theorem.

Condition (PB3) is included to guarantee the convergence in outer probability in the proof
of Lemma 3. Note that we are assuming that the classes are Donsker, which is stronger than

necessary to guarantee the convergence in outer probability with the empirical measure P,.

o}

-, and this follows easily if

However, we need the Lemma to hold when P, is replaced by P
we make the stronger Donsker assumption. That is, if a class of functions F is Donsker,
then so is nF for our choice of bootstrap weights, and the fact that a Donsker class is
Glivenko-Cantelli then gives us the desired convergence in outer probability.

Condition (PB5) is crucial to the proofs in Appendix A, and is often proved in the process
of proving (PB6). This is done, for instance, if one uses the same methods as Parner (1998)
and Lee (2000) in verifying the conditions of the Z-Estimator Master Theorem (Theorem
3.3.1 of VW).

Condition (PB4.i) simply states that we have valid draws for the parametric component
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of the model. The tightness of the limit distribution allows us to apply Slutsky’s Theorem
(Example 1.4.7 of VW) in various parts of the proof. In Section 2 we discussed methods
of obtaining such draws in practice. Condition (PB4.ii) requires that the bootstrap is valid
when 0 is fixed at 6y. This should hold whenever the bootstrap is valid for the full 7). Note
that we require the limit in (PB4.ii) to be tight and cadlag. This is useful in various parts
of the proofs in light of Lemma 1 below.

LEMMA 1 Suppose we have an expression of the form
Qult) = Vi [ L) wdg(w (5)
0

where fn(h) = 0l*>(1)(h) has total variation bounded by some M over all n, and \/ngy,
converges weakly to a tight, cadlag limit. Then @Q,(h) = 0}**(1)(h).

See Appendix A for a proof.
For example we use Lemma 1 in the last step of the proof of Lemma 6, taking g, = Ago —Ag

and
Fa(h) (1) = Ppb22[00, Ag + tn(h)(Ag, — Ag)](h) (1) — 022[0, Ao] () (u).

A similar lemma is useful in going from the second to last to the last line of the proof of
Lemma 4. Note that we first observe fl;n —flén = (A;n —Ay)— (flén —Ay), and the integral on
the second to last line is broken up accordingly. The integral with respect to d[\/ﬁ(flén —Ay)]
that results can be dealt with using Lemma 1 above. But we do not necessarily have that
\/ﬁ(A;n — Ap) converges weakly to a tight, cadlag limit. Condition (PB4.iii) is a weaker
condition than this, which turns out to be easier to verify in our examples. In this case we

use the following Lemma, taking g, = A;n — Ap and
Fa(1) (@) =P {600, + ta(B) (0 — ), Az, + ta(B) (A5, — A5 ))(B)(w) } — 02,2100, Ao](B) (u).

LEMMA 2 Suppose we have an expression of the form (5) where f,(h) = o}*(1)(h) and
Vngall2 < Op(1) + 022 (1+/nl|0, —bo|]1) = ¢4 (The notation gb is referred to in the proof
of this lemma.) Then Qn(h) = 0}*>(1)(h).

See Appendix A for a proof of this lemma.
The fact that the information operator is continuously invertible and onto in condition

(PBG6) is particularly useful in the last step of the proof of (6) in Appendix A.
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6. DISCUSSION

We have demonstrated that in semiparametric models where both the finite dimensional
parameter § and the infinite dimensional parameter A are /n consistent, it is possible
to significantly decrease the dimensionality of the maximization required for Monte Carlo
inference compared to the weighted bootstrap.

The proposed piggyback bootstrap algorithm is easy to implement. First, draws for the
parametric component 6,, are generated with the same sampling distribution as the MLE 0,
Under the regularity conditions, this can often be accomplished by estimating the covariance
matrix of 6§, and adding normal deviates with this covariance to f,,. In some models, such as
the Cox model, a theoretical estimate of the covariance is readily available. In other models,
such as the biased sampling model in the simulation study, one can use Corollary 3 of Murphy
and van der Vaart (2000) to accomplish the variance estimation. This involves computing
a limit involving the profile likelihood evaluated at various values of #. We gave details on
this method in Section 4. An alternative is Lee’s (2000) MCMC approach, which is based
on other results from Murphy and van der Vaart (2000). Next, for each parametric draw
6,,, we piggyback the draw for A onto the draw for # by performing the profile computation
A, = argmaxy ¥, (6,,A). This computation can be accomplished using the fixed point
algorithm given in Section 2. Our main result is that the resulting pair (6,, A,) has the
correct limit distribution for joint semiparametric inference, as discussed in Section 2.

The regularity conditions necessary for the method, given in Section 5, are not difficult to
check in practice. Conditions (PB1), (PB2), (PB3), and (PB5) can be verified by computing
derivatives of the log-likelihood and verifying that they have a specified structure. Although
the Donsker classes mentioned in these conditions may be unfamiliar to some practition-
ers, verifying that a class of functions is Donsker is often very simple using the “Donsker
Permanence” properties discussed in van der Vaart and Wellner (1996). We expect that
practitioners will be turning to the piggyback bootstrap for models for which they already
know maximum likelihood estimation is efficient and that the weighted bootstrap is valid.
Condition (PB6) is the result that the MLEs are efficient, and Conditions (PB4.ii) follows
from arguments similar to those that can be used to verify the validity of the weighted boot-
strap. Condition (PB4.iii) is verified by relatively novel, but straightforward, arguments
given in the proof of Lemma 9. Condition (PB4.i) requires that appropriate draws for the

parametric component of the model are available. In the previous paragraph we discussed
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obtaining these draws in practice.

For right censored survival data, the method applies to the Cox proportional hazards
model, the proportional odds model, and the odds-rate model. In the case of clustered
survival data, the procedure applies to the shared and correlated gamma frailty models.
An application not arising in survival analysis is to biased sampling models, which arise in
vaccine efficacy trials.

In the odds-rate model, the frailty W is assumed to be gamma distributed with mean
1 and variance . We are confident the method can be proved valid for frailties following
other distributions with unknown parameters. Asymptotic theory for some such models has
been worked out by Kosorok, Lee, and Fine (2004), including the validity of the weighted
bootstrap. In addition, the method should be applicable to the more general proportional
hazards random effects regression models for clustered survival data considered in Vaida and
Xu (2000). However, in the more complex cases, asymptotic theory has not yet been worked
out. Perhaps the most complex case worked out thus far is the correlated gamma frailty
model of Parner (1998).

While the precise choice of the distribution of {#;} in the weighted bootstrap has no effect
asymptotically, the rate of convergence may be affected. Newton and Raftery (1994) discuss
different choices in the context of parametric maximum likelihood. They demonstrate that
unit exponential weights, which are Dirichlet after standardizing, perform well. Our own
experience is that exponential weights also work well for semiparametric inference.

Our main theoretical result on the validity of the piggyback bootstrap for semiparametric
inference was confirmed in the simulation study in Section 4. We saw that for simulated
vaccine trial data from a biased sampling model, the piggyback bootstrap and the weighted
bootstrap performed close to the same in semiparametric inference, with the piggyback

bootstrap providing a dramatic improvement in computational efficiency.
APPENDIX A: PROOF OF MAIN THEOREM

In this appendix we prove the main theorem and the intermediate lemmas.

Proof of Theorem 1. This theorem follows from the expansion

V(A5 (8) = A3 (1) = —vn(bn — 0.) 024[00, Ao] [02[60, Ao] "} (I{u < 1})]
+Vn(AG, (1) — Agy (1)) + 0P (1)(2), (6)
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which we prove below. Let U, have the distribution of \/ﬁ(én — 6y) and let V,, have the
distribution of \/n(Ag,(t) — Ao(t)) and let U, and V,, be independent. Since the bootstrap
weights and the draws 6,, are independent given the data, (PB4) implies

— V(0 — 0,)' 021 [o55({u < 11)] + v/n( 45, (1) — Agy (1))
~ =ULos, [o5s(H{u < t})] + Vi
~r = Zgoa1 [ai%(l{u <t} + Zal(t),

. i . . _ -1 .
where Zj is mean zero Gaussian with covariance (01,1 - 01,202,;02,1) and Z,4 is mean zero
Gaussian with covariance o4, and Zp is independent of Z4. Thus
A oa N N
N (en — b, A3 — Aén) ~ 7,
where Z' = (Zp, Za — 05401275)" is mean zero Gaussian with covariance
-1 -1 -1 -1 1
01,1 — 02,109201,2 —\01,1 — 02,1099012 02,1099
1 ( _ -1 )*1 | ( _ -1 )*1 -1
02,201,2 (01,1 — 02,102201,2 09,2 T 09201,2 (01,1 — 02,1099012) 02,109
which is the inverse of the information operator.O]

In what sense the operators in the above proof are covariances deserves some explanation.

Let i,j =1,...,d, and t,5 € [0,7]. Then Cov(Zy,, Zy;) = €; (01,1 — 01,202_’%02,1)

' ej, where
ex, k =1,...,d denotes a vector whose kth component is one and all the others are zero;
Cov(Za(t), Za(s)) = [y Hu < troys(H{u < s})dAg(u);

Cov(Zy,, [ Za — 032012 (t)) = —€§/ (011 — 021053012) " 021075(I{u < t})dAo(u)
0
and
Cov([Za — 055012Z)(t), Zo,) = —/ Hu <t} [02_,%01,2 (011 — 021093012) e,} (u)dAo(u).
0

(That the last two covariances are equal is a consequence of the commutativity of repeated

differentiation.) Finally,
Cov([Z4 — aiéal,ng] (t),[Za — aiéal,ng](s))
= / I{U S t}[O'Q_,% + 0'2_7%0'1,2 (0'1,1 - 0'2710'2_7;0'172)71 0'2710'2_’;](1{11, S S})dA()(U,)
0

Before verifying expansion (6), we need the following preliminary lemmas in addition to
Lemmas 1 and 2 given in Section 5. (Note that the proofs of Lemmas 1 and 2 are given at

the end of this section.)
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LEMMA 3 Under conditions (PB2) and (PB3), if 8, —, 8y and A, —, Ay, then
P,,G,5(0n, A](h) — 02,400, A)(h) = 0*(1)(h), j =1,2.
This result also holds with PP, replacing Py, .
Proof. Fix ¢ > 0 and observe that for j =1, 2,
i P

~ 1 ~ 1
m m

m—00 N—r00

7

-~ o~ Ha
Pﬁﬂ%ﬁ&@—%ﬁwﬂ@ﬂj>a

o Ha ~ 1 - 1
Puli A2J08) = 02,000, 0] > €18, = oll < 1A~ < ) |
J m m

~ ~ ~ ~ Ha
< lim lim P*< ‘ ]Pna-Z,j[en; An](h) — 02 [ena An](h)‘
m—>00 N—0Q i
.~ Ha ~ 1 ~ 1
+ ‘ 02,,-[0n,An](h)—02,3-[00,A0](h)H. > € |0 — Oollr < —, [|An — Aolf2 < —)
7 m m
PO ~ o~ Ha
< lim lim P*(‘ Poda [0, An](h) — Uz,j[en,An](h)‘ > ¢
m—00 N—0Q i

~ 1 ~ 1
[16n — Ool[1 < —, [[An — Aol2 < —),
m m

for some € > 0 by condition (PB2). The last expression equals zero by condition (PB3)
and the fact that a Donsker class is also Glivenko-Cantelli. For the case of P, replac-
ing P,, make the same replacement in the proof, and note that condition (PB3) implies
{n62,410, Al(h), [|0—00|| < c,||A—A|| <c, h € Hy}is Donsker and hence Glivenko-Cantelli
for j =1,2.0

LEMMA 4

~ A

V(B = Po)Us(0n, Ag, ) (R) = V(6 — 0,)'02,1[60, Aol(h) +
Vit [ onalte, Al (W) @)d(A5, — A, ) + 03 (1) 1)

Proof. By definition of A and Ay, we have

~

0= (B, — Po)Us (b, Ay, ) (1) + B, (Ua(0n, A3, ) () — Uz(0, Az ) (h)).
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Using 2.4.8 of Abraham, Marsden, and Ratiu (1988) (hereafter abbreviated AMR) to expand

the rightmost term of the preceding equation, under condition (PB1), we obtain

(B;, — P)Ua (00, 4y, ) (h) = —P;, {%Uz (00 + 500 = 00), A5, + s(A5, — 45)] (0)

. L A o o o
_PZ{%UQ [0n+tn(h)(9n—9n)+s(en—en),AA +ta(h)(Ag, — A,) + s( Zn—Aén)] (7)

= B, { (00 = 0.) 021180 + () (60 — B0, Ay + ta(W) (A5, = 4 ))()}

n

+]P;)L {/ 6-2,2[én + tn(h)(en - é’n)’ Aé + tn(h) (A;n — Aén)](h) (u)d(ﬁ;n _ Aén)(u)} ,
0
for some t,(h) € [0,1]. Note that

02,300, Ao](h) = By (62,50 + tn(h) (O — 0n), Ay, + ta(h) (A5, — A3 )]()) + 0} (1) (R)

n

by Lemma 3 and conditions (PB2), (PB3) and (PB4). This, condition (PB4), and Lemmas
1 and 2 imply,

\/ﬁ(en - én)IUZ,l(h) =
VP { O = 00) 52,100 + 10 (1) (0 — B0), A, +ta(R) (A5, — Ag )](R) } + 0} (1) (h),

and

A

n

= [ B {onall+ 0160 = ), Ay, + W, = A3, )0} VA, ]

= Vi [l Aal(h) (A, ~ ) ) + o (1) ).

LEMMA 5

V(P —P,)Us(6,, Ay )(h) = (P, — Po)Us(6o, Ag)(h).
Proof. If we show that

~ A

\/7_7'(1?; - Pn)U2(0na Aén)(h) = \/E(P:z - ]Pn)U2(00: AO)(h) + 017){2(1)(}7’)’
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then the conclusion follows as a consequence of Theorem 2.9.6 of VW. To see this, note that

by Slutsky’s Theorem (Example 1.4.7 of VW) and condition (PB5),

N L e I

= V/nPunUs (00, Ao) (h) — V1P Uz (80, Ao) (h) + 05/2(1)(h)
= V1P, (1 —1)(Uz(6o, Ao) (h) — PoUs (80, Ao) (h)) + o) (1) ()

Vn(P, — Py)Usz (6o, Ag)(h).

Q

The last line follows by the aforementioned theorem from VW. Thus all that remains is to
prove the first display of the proof.
To establish the first display of the proof, note that 2.4.8 of AMR reveals

Vi@, = Po)Ue(0r, Ay ) (h) = /(B — Po)Ua (0o, Ao) (h) =
~V/(P = Po) { (B = 00) 621000 + () (B — 00), Ao + ta(h)(Ag, — A))(B) } +

—vn(P;, - Py) {/OT 62,2(00 + tn (h) (B — 00), Ao + tn(h)(A5, — Ao)I(h)(u)d(4;, — Ao)(U)} )

~ A

for some t,,(h) € [0, 1]. Note that (B) —P,)52 (00 +t,(h)(0n —00), Ao +1n(h)(Ay — Ag)](h) =
07t2(1)(h) for j = 1,2 by by conditions (PB2), (PB3) and (PB4), and Lemma 3. This, Lemma
1, and condition (PB4) completes the proof of the first display, and hence, the lemma.O

LEMMA 6

V(Pn — Po)Us(6o, Ag)(h) = \/ﬁ/ 02,200, Ao] (h) (u)d(Ag, — Ao) (u) + 0f* (1) (h)
0

Proof. By condition (PB5), the definition of Ag,, and 2.4.8 of AMR,

V(Py = Po)Us(6o, Ag) (h) = v/nP,,(Us(6o, Ag)(h) — Uz (8o, Ag, ) (h))
= /nP, { /0 G2.9[00, Ao + tn(h)(Ag, — Ao)](R)(u)d(Ag, — Ao)(u)} + 0 (1)(h),

for some t,(h) € [0,1]. Note that
P,.G,2[00, Ao + tn(R)(Agy, — Ao)](h) = 2[00, Ao](h) + 01> (1) ()

by conditions (PB2), (PB3) and (PB4), and Lemma 3. This, Lemma 1, and condition (PB4)
completes the proof. O
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Proof of (6). Note that by condition (PB4),

NG /OTUQ,Q[HO,AO](m(u)d( — Ag)w) ~ v / 02,2100, Aol () (w)d(Ag, — Ao)(w).

This and the conclusions of Lemmas 4, 5, and 6 give
Vi [ asalfo, Al(h) )5, = Ag) ) =
V(0 — 0,) 02,100, Ao](h) + \f/ 02,2[00, Ao (h) (w)d(A5, — A; )(u) + 02 (1)(h).

Since H» includes all functions of the form h(u) = 092[0, Ao] " (I{u < t}), for all ¢ € [0, 7],
we have established (6), and the proof is complete.O

Proof of Lemma 1. We employ arguments from the proof of Lemma A.3 of Bilias et.
al (1997). Define g to be the weak limit of \/ng, and G, = \/ng, — g. Note that since
the f,(h)(u) has total variation bounded by M < oo, we can write f,(h)(u) = fF(h)(u) +
f7(h)(u), where f7(h)(u) is an increasing function of u, and f, (h)(u) is a decreasing function
of u. Further, each of these functions can be written as the sum of a cadlag and a caglad
function: f(h)(u) = f¢(h)(u) + f7¢(h)(u) and f (h)(u) = f7¢(h)(u) + f7¢(h)(u). And
since fn(h) = 0}2(1)(h), the latter four functions are 0}**(1)(h) as well. Let f(h)(u) denote

one of these four functions. Observe that
NG / F2(h) (w)dga(u) = £2(h) () v/ga(r) — F2(h)(0)v/nga(0)
+fz Aguw)AFE()w) = Vi [ gulu)dfe (k) ) (")

where f%"(h)(u) denotes the right continuous version of f?(h)(u). The first three terms on
the right hand side of (7) are 0}2(1)(h) by Slutsky’s Theorem (Example 1.4.7 of VW). The
last term is 0}?(1)(h) by the following argument.

Abbreviate fo(h)(u) = for(h)(u). Observe that G,(u) = o0l (1)(u) and so, since
f8(h)(u) has variation bounded by M < oo,

/0 "G (w)df? () () = 072 (1) (). (8)

Let fg, gn and g be almost sure representations of f°, g, and g, respectively such that g(u) is
cadlag and tight, and f°(h)(u) has variation bounded by M over all n and has the same mono-
tonicity (increasing or decreasing) as f°(h)(u) (see Theorem 1.10.4 and Addendum 1.10.5 of
VW). Let (Q, B, P) be the probability space corresponding to fn, gn and §. Use o2 _(1)(h)
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to denote a term F,,(h) such that supjcq, ||[Fn(h)|| converges outer almost surely to 0 as
n — oo. Since f2(h) = o2, (1)(h) there are measurable A,, such that sup,c,,, || f2(h)|| < A,

a.8.%

and A, = 072 _(1)(h). Since §(u) is cadlag, for arbitrary e > 0 there is a set B, € B that has

a.8.x

P-probability 1 with the following property. For each fixed w € B, we can find a partition

0=1wup <wuy <---<ug and constants g; such that the simple function

k
g U’) = Zgilue(ui_l,ui]
i=1

satisfies sup,epo.119¢(v) — g(u)| < e. Thus for the fixed w € B,

/OT (w)dfp(h) /[9 — Ge(u)]df}(R) ‘/ Ge(w)dfh(h)(u)

<6M+2Z|gz\ Sl[lp | F(h) (u)] §€M+2Z\gi|||ffi )(w)]|
=1

=1

k
< eM+2) [Gi]AL = eM + Qule,w).

i=1
Since g and A, are measurable as functions of w, so is @,(€). Thus, since for each fixed

W € Be, SUPpeqy, @nle,w) — 0 as n — oo, it follows that @y (e) = 0}2(1). And so for § > eM,

lim P* (sup

n—o0 heHo

/0 " Gw)df () (u)

> 5) < lim P* (sup Q(e)| > (5—6M> = 0.
n—oo

heHs

Since € > 0 was arbitrary, this gives [; §( (w)dfe(h)(u) = #2(1)(h). And hence

[
for some 0 < C' < oo. By property (ii) of Theorem 1.10.4 of VW this gives that the last

term of (7) is 02*(1)(h) O.

Proof of Lemma 2.

ANC ~ 0

A similar argument to the proof of Lemma 1 above works with f°(h)(u) taken to be fo7(h)(u)
if f"(h)(u) is increasing or — f»"(h)(u) if f*"(h)(u) is decreasing, and y/ng, replaced by its
Op(1) + 022(1 4 /n||6, — Bo[|1)(h) bound gb. And so, since in these cases

‘/fgn )dfy (h)

W) < [ IVam@)ldm) < [ o

it follows that (7) is 0}*(1)(h). O

29



APPENDIX B: VERIFYING THE REGULARITY
CONDITIONS FOR EXAMPLES

In this appendix we verify that the regularity conditions hold for the odds-rate and biased
sampling models, adding some technical restrictions for each model as necessary. See Dixon
(2003) for a verification of the regularity conditions and the additional technical restrictions
for the other example models. We start with a general outline that the arguments follow in
all of the examples, and which should serve as a guide to verifying the regularity conditions
in other applications.

As our approach is an alternative to the weighted bootstrap, we note that the validity
of the weighted bootstrap for the Cox proportional hazards model, the proportional odds
model, and the odds-rate model follows from Kosorok, Lee and Fine (2004). For the shared
and correlated gamma frailty models, the validity of the weighted bootstrap which assigns
weight to clusters (as described in Section 3) follows by similar arguments. And Gilbert
(1996) establishes the validity of the weighted bootstrap for the biased sampling example.
General Outline

Verification of the regularity conditions follows the same outline in each of our examples.
The same outline should be applicable to other semiparametric models.

Conditions (PB1) and (PB2) can be readily verified by inspection of the score and in-
formation operators, which we give for the odds-rate and biased sampling models below.
Condition (PB6) can be verified in our examples using the Z-Estimator Master Theorem
(Theorem 3.3.1 of VW) and Convolution Theorems (Theorems 5.1-5.3 of Bickel et al. 1993).
The fact that the information operator is continuously invertible and onto is established
using a standard result from functional analysis (see Theorem 3.4 and Corollary 3.8 of Kress
1989).

Verification of Conditions (PB3) and (PB5) is routine in our examples using Donsker
theorems from VW. As an example, consider the piece H, (f) = fot f(s)e?%2)dA(s) which

appears in many of our survival analysis examples. We have the following Lemma.

LEMMA 7 For each fized p < oo and each fized 1 € ©, x BV, with q,r < 00, the class
{H}(f) : f € BV,} is Py-Donsker. Here ©, = {0: [|0]| < g}

Proof

Classes of cells and uniformly bounded classes of functions of bounded variation are standard
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examples of Donsker classes. Thus Y (-)(= {X > -}), 8'Z(-), and f(-) are uniformly bounded
Donsker classes on [0, 7]. The exponential function is Lipschitz on compact sets, therefore the
Lipschitz Transformation Donsker Permanence Theorem (Theorem 2.10.6 of VW) gives that
exp(B'Z(-)) is Donsker on [0, 7]. Since the product of two Lipschitz functions is Lipschitz on
compact sets, another application of this theorem gives that f(-)e? ()Y (-) is Donsker. Thus
the claim follows from the continuous mapping theorem. O

Condition (PB4.ii) can be verified in our examples by the following argument, which is
similar to the proof of the validity of the weighted bootstrap for proportional hazards frailty

regression models given in Kosorok, Lee, and Fine (2004).
LEMMA 8 Condition (PB4.ii) holds in our examples.

Sketch of Proof. Define 7,/)9 (0, AS 9) and Vo = (0, Ag). Applying the Z-Estimator Master
Theorem of VW gives that \/ﬁ(wgo — tpp) = /nPyU (v0)(07(+)) + 0,(1) unconditionally,
and /n(thg, — o) = VAP U™ () (07 (-)) + 0p(1), where 0,(1) denotes a quantity — 0
uniformly in outer probability. Thus \/ﬁ(z/}go — tg,) = V(B — B)U (1) (0 1(+)) + 0p(1)
unconditionally. Finally, note that

BT (o) (h) = YT W) i 1) (h)

P,
= VnP, UUTZ% (h) = VR, U" (3ho) (h) + 0] (1) (h)
= VnPu(n—1)(U" (sho) — BU" (¢0))(h) + 0 (1) (h)
V(P = Po)U" (%) (h),
where the last relation follows by the Multiplier Central Limit Theorem (Theorem 2.9.6 of
VW).O

Condition (PB4.iii) can be verified in our examples by a similar argument to one used in

)
(

Q

the proof of Theorem 3.4 of Lee (2000), which we give in the proof of the following lemma:
LEMMA 9 Condition (PB4.iii) holds in our examples.

Sketch of Proof. Define
2 O TTT en 0 [ 00 0
b =re (%) (7). paam=ror (%) (1),

Do(A)(h) = PUT (?j{) (2) .
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Note that D, (fl;n) = 0 and Dy(Ag) = 0. We can use Lemma 3.3.5 of VW to obtain
V(Dy, = Do)(A5,) = v/n(Dy — Do)(Ao) = 0} (1 + v/nl |5, — ol [s) (h),

and

Vn(Dy — Dy)(Ag) = vn(Dy — Do) (Ao) — V/r(Dy — Dy)(Ao)
= 0} (1 + v/n|6n — bo|11) (R),

from which we have

Vn(Do(4;,) — Do(Ao)) = v/n(Do(43,) — Du(45,))
= —/n(Dy, = Do)(Ao) + 0} (1 + V/nl[¢)% — tolls) (h)
= —/n(Dy, — Dy)(Ao) + 0} (1 + /nl [ — tolls) (h)
= 0p(1) + 0} (1 + v/n| |05 — o I3) (R).

The last equality in the preceding display follows from the Z-Estimator master theorem of

VW. Since o is continuously invertible, we have for some ¢ > 0 that
[1Do(A) = Do(Ao)|| = cl[A — Ao|2 + o(|[A — Ao|l2).

Thus, /7| |A§n — Agll2(c+ 03 (1)(h) < 0,(1) + 07 (14/n||0, — 6o][1)(h). Multiplying each
side by (c+ 0}**(1)(h))~" and applying Slutsky’s Theorem (Example 1.4.7 of VW), we have
the desired result. O

Draws 6, satisfying Condition (PB4.i) can be generated in our examples by applying
results from Murphy and van der Vaart (2000).

LEMMA 10 The hypotheses of Corollary 8 of Murphy and van der Vaart (2000) hold,

and so we can obtain draws for the parametric component of the model satisfying (PB4.i).

Sketch of Proof. Based on the discussion in Chapter 25 of van der Vaart (2000) an

approximately least favorable submodel for estimating # in the presence of A is

dA;(0,A) = (14 (0 —t)"1p) dA, 9)
where v : R — R? is the least favorable direction at (6, Ag) defined by
h,TVQ = 0'2_,%0'1,2}7/, h € Rd.
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Let 6,, — 6, almost surely under P,. It follows from the definition of A, that Ln(én, flgn) >
L, (0n, A@n). Therefore, noting that (6, flgn) is consistent for (6y, Ag), the method for proving
consistency of the MLE in Theorem 3.2 of Lee (2000) (see also Theorem 1 of Parner, 1998
or Theorem 3 of Kosorok, Lee and Fine, 2004) can be adapted in a straightforward manner
to show that flén — A almost surely under Py. Upon substituting § =t and A = A;(60, A)
into the log-likelihood function, it is seen that the path is smooth in ¢ and is continuously
differentiable. Arguments from the proof of Lemma 7 give that the Glivenko-Cantelli and
Donsker conditions in Murphy and van der Vaart (2000) are satisfied. All that remains to
be established is that their equation (11) holds. Murphy and van der Vaart note that this

equation holds whenever
145, = Aol = Op (116 = Boll) +0p(n~"72).
This is certainly implied by

Vil 45, — Aol < Op(1) + 0p(L + Vnllfr — o),

which can be proven in a similar manner to Lemma 9. O

B.1 Odds-Rate Regression

The assumptions we make are somewhat standard and are closely related to the assump-
tions made in Parner (1998). We assume for the true parameter 1y = (7o, 5o, Ao) that
Yo € [0, My), where My < oo, that By # 0 is in a compact subset of R?, and that Ay is con-
tinuous on [0, 7| with derivative aq satisfying 0 < ao(t) < 7 for all ¢ € [0, 7]. We also assume
that censoring is independent of 7" given Z and uninformative of ¢ = (v, 8, A); that the anal-
ysis is restricted to the interval [0, 7] with 7 < oo such that P[C > 7|Z] =P[C =7|Z] > 0
almost surely; that the total variation of Z(-) on [0,7] is < M; < oo; and that var [Z(0+)]
is positive definite.

Using empirical process techniques, Lee (2000) and Kosorok, Lee and Fine (2004) estab-
lish that i, is uniformly consistent for 1, outer almost surely, that \/7(¥, — 1) converges
weakly to a tight Gaussian process (in the uniform metric), and that 1271 is regular and
fully efficient. Thus condition (PB6) is established. Condition (PB4.ii) is established using
the arguments from the proof of Lemma 8, and similar arguments establish the validity of
the weighted bootstrap. Arguments from the proof of Lemma 9 establish that (PB4.iii)
holds. For h = (hy, hy), with hy = (h11, h12)T € R x RP and hy € BV ([0, 7]), the score and
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information operators have the following form:

U0, Al(hy) = {log(1+yﬂf(1))— (1+57)7H$(1)}@

1+ fyHé((l) 7
o (1+ 67)Hy (Z'h12)
+/O th(u)dN(u)_{ 1+~H (1) }’
T d ) ha
wlo. Al) = [ hZ(“)dN(u)_{ar*Z%é) )}

A _ 6’11,11[0,14](}7,11) + 6’11,12[0,A](h12)
01,1[9’ A](hl) - [ 612,11[9, A](h11) + &12,12[0; A](h12) :|
. 02,11 [0, A](h2)
02,10, A(he) = [ G9.12(0, Al (ho) ] ’
where
:  Lorop(t ey BFONEEW) (4 50y I
ounld, Al(hu) = {21 g(1+7Hy; (1)) 1+HJ(1) [1+ ’YH{f(l)}Q } 7

(0 — HX(I))HTf(Z’hu)

611,120, Al(h12) = 1+ H 1)]

X
G1a11[0, Al(h1y) = v

612.12[0, A](h1g) = (1 +151)H£§(Z(1Z)'h12) B (1+ 57)7H1f(i)H$2(Zlhu)
e [+ B ()

(5 = HJ ()H (1)

6'211 H,A h2 = 2
nl0,Alte) = ST

ool Al(hs) = (1 —;jyj/ﬁggf)hg) A+ (5’}/)’}/H$E(Z)H§((h2)
( [1 + ’Yqu (1)]

and also

0 — Hf(l))hn

[1+yHEX (1)

(146927 (u)hiy (14 67)H (Z'h1s) } and

&1,2[0,A](h1)(u) = Y(u)eﬂ'Z(u){(

1+ vHX (1) [1+vHX ()]
Y (w)e?®hau)
[1+yHX (1)
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02,200, A](h2)(u) =




Conditions (PB1) and (PB2) are readily verified by inspecting the information operators
given above. Arguments from the proof of Lemma 7 verify that conditions (PB3) and (PB5)
hold (the mean zero condition is proved in Kosorok, Lee and Fine’s Proposition 3).

Arguments from the proof of Lemma 10 show that Corollary 3 of Murphy and van
der Vaart (2000) can be used to generate random draws for the parametric component
of the model satisfying condition (PB4.i). Alternatively, an MCMC scheme developed by
Lee (2000) which builds on the results of Murphy and van der Vaart (2000) can be used
to generate the required parametric draws. See Dixon (2003) for an implementation of
the piggyback bootstrap using Lee’s MCMC scheme for an odds-rate regression on a Non-
Hodgkin’s Lymphoma data set.

B.2 A Biased Sampling Model

Observe that for the biased sampling models

B wi(y,0) [ (e, 0)dA(z)
6 Al(h) = M (w,(y,@) B Jwi(z,0 dA(z)) ’

a0, Al(hy) = holy) — 4 hjngu:; ;AczA)( ),
51400, A)(h) = —hy (wi(y,0)wéii,(z)0—))(2wi(y,e))

I

[ in(z,0)dA(2) [ wi(z,0)dA(2) (wazOdA()))
([ wi(z, 0)dA(z ))

w;(v,0) [ w;(z,0) dA(z) — w;(v,0) [z, 0)dA(z)>

61200, Al(h)(v) = My ( 5
(f w;(z,0 z))

Jwi(z,0)dA(2) [ wi(z,0)dA(z)

(
(
(f wi(z, HdA z))2
(
)

5.10, A(hy) = J ha(z

[ ha(2)wi(z, 0)dA(2) [ (2, 0)dA(2)

2 b

([ wi(z,0)dA(2)
and
he(v)w;(v,0) [ w;(z,0)dA(z) — w;(v, ) th(z)wi(z,G)dA(z)'
(J wilz, 0)dA(2)’

For the biased sampling model examined in the numerical studies, we used w;(z,0) = e

6’272[9, A](hQ)(U) =

20

and ws(z,0) = 1, and we assume 6 lies in a known compact subset of R. Then Conditions
(PB1) and (PB2) are readily verified. Conditions (PB3) and (PB5) hold by arguments
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similar to the proof of Lemma 7 and the proof of Theorem 5.8 of Gilbert (1996). The mean
zero assertion of Condition (PB5) follows upon taking expectations in the above expression
for U,. Conditions (PB4.i), (PB4.ii) and (PB4.iii) hold by the arguments of Lemmas 10, 8
and 9. Here the necessary identifiability for using arguments from the proof of Theorem 3.2
of Lee (2000), as described in the sketch of the proof of Lemma 10, follows from Theorem
4.4 of Gilbert (1996). Theorem 5.11 of Gilbert (1996) proves the validity of the bootstrap
for bootstrap weights that satisfy our aforementioned conditions. Finally, Condition (PB6)
follows from Theorem 5.8 and the discussion on pages 106-107 of Gilbert (1996). Note that
Gilbert takes Hs to be the set of functions of bounded supremum norm. Since this contains
the set of functions of bounded total variation norm, the proofs in Gilbert immediately imply
that our regularity conditions hold, except one must establish that the information operator
is continuously invertible and onto for this smaller space of functions. This holds by the

same arguments Gilbert uses for the larger class of functions.
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Table 1: Coverage of 95% confidence bands generated with the piggyback bootstrap (pb)
and weighted bootstrap (wb) approaches for three different interpolation schemes.

pb wb pb wb
Interpolation | placebo | placebo | vaccine | vaccine
none 92.5% | 93.5% 93% | 92.5%
leftpoint 91% 92% 91.5% | 90.5%
midpoint 92% 93% 93% 92.5%
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Figure 1: MLE cdf for placebo group with 95% confidence intervals and confidence bands,
for a simulated biased sampling data set.
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Figure 2: MLE cdf for vaccine group with 95% confidence intervals and confidence bands,
for the same simulated biased sampling data set used in Figure 1.
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