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Abstract : In the weak-field approximation of the covariant theory of gravitation the 4/3 problem is 

formulated for internal and external gravitational fields of a body in the form of a uniform ball. The 

dependence of the energy and the mass of the moving body on the energy of the field accompanying the 

body, as well as the dependence on the characteristic size of the body are described. Additions in the energy 

and the momentum of the system, defined by the energy and momentum of the gravitational and 

electromagnetic fields, associated with the body, are explicitly calculated. The conclusion is made that the 

energy and the mass of the system can be described through the energy of ordinary and strong gravitation 

and through the energies of electromagnetic fields of particles that compose the body. 
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1. INTRODUCTION 

In relativistic mechanics, there are standard formulas for the dependence of energy and momentum of a 

particle with the mass m  on its velocity v :  

 

2E mc ,                            mp v ,                                                (1) 

 

where 
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If the energy E  and momentum p  in Eq. (1) are known the mass and the velocity of the particle can be 

calculated: 
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In Eqs. (1) and (2) the speed of light c  is included. For a particle in rest velocity and momentum are zero, 

and the energy of the particle equals the rest energy: 

 

2

0E mc .                                                                      (3) 

 

Equation (3) reflects the principle of proportionality of mass and energy. In elementary particle physics 

the energy and the momentum are usually measured parameters, and the mass and the velocity are found 

from Eq. (2) and are secondary parameters. 

Now, we shall suppose that the measured parameters are the energy and the velocity of the particle. In 

this case, from Eqs. (1) and (3) we can calculate the mass and momentum: 
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The case is also possible when the measured parameters are the momentum and the velocity of the 

particle and the calculated quantities are the mass and energy:  
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E
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 .                                                (5) 

 

If the particle velocity v  is given, then the mass can be found either through the energy according to Eq. 

(4), or through the momentum according to Eq. (5), in both cases, the mass should be the same. 

From the above formulas it is not clear whether they contain the energy and the momentum of fields, 

which are inherent in the particles and the test bodies. In particular, the test bodies always have their proper 

gravitational field and can also carry an electrical charge and the corresponding electromagnetic field. In 

general theory of relativity (GTR) it is considered that relativistic energy and mass of a body decrease due to 

the contribution of gravitational energy. Although in GTR there is no unique definition of the gravitational 

energy and its contribution to the integral energy [1], in the weak-field approximation the following is 

assumed [2]: 

 

GTRE E U  ,                                    
2

GTR
GTR

E
M

c
 .                                         (6) 

 

where GTRE  is the relativistic energy of system in the gravitational field, E  is the energy in the absence 

of the field, U  is the potential gravitational energy of the body. 

 

Since the energy U  is negative, then according to GTR the mass GTRM  as the mass of the system 

consisting of the body and its fields should decrease with increasing of the field. 
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The main purpose of this paper is to incorporate explicitly in the relativistic formulas for the energy and 

the momentum the additives, resulting from the energy and the momentum of fields associated with the test 

bodies. All subsequent calculations will be made in the framework of the covariant theory of gravitation 

(CTG) [3]. We will apply the weak-field approximation, when CTG is transformed into the Lorentz-invariant 

theory of gravitation (LITG), and it becomes possible to compare our results with the formulas of GTR in 

gravitomagnetic approximation. 

 

2. 4/3 PROBLEM FOR ENERGY – MOMENTUM OF THE INTERNAL AND EXTERNAL 

ELECTROMAGNETIC FIELD OF THE CHARGED HEAVISIDE ELLIPSOID  

 

When the spherical charge Q  with the radius R  is moving at the velocity v  in empty space, its shape 

becomes according to the special theory of relativity an oblate ellipsoid. In this case, one axis of the 

ellipsoid, which is directed along the velocity of motion becomes shorter and equals kR , where 

2 21 /k v c  . Such an ellipsoid is called the Heaviside ellipsoid. 

 

2.1. External Electromagnetic Field 

 

The scalar and vector potentials ( , ) A , the electric field strength and the magnetic induction ( , )E B  of a 

uniformly moving charge, the electromagnetic energy bW  and the momentum bP  of the field outside the 

charged ellipsoid, the electromagnetic energy iW  and the momentum iP  of the field inside a uniformly 

charged ellipsoid, other electromagnetic quantities in the case of the Heaviside ellipsoid are well studied. 

Relations of the special theory of relativity allow us to determine the relationship between the quantities for a 

resting spherical charge and the corresponding quantities for a moving charge. 

From Heaviside’s works [4, 5] we know that if the center of a charged ellipsoid passes the origin of the 

Cartesian coordinate system at the time 0t  , moving at a constant velocity along the axis OX , the scalar 

and vector potentials of the field at the point with the radius vector ( , , )x y zr  outside of the ellipsoid will 

equal: 
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where 0  is the vacuum permittivity. 

 

The electric field strength E  and the magnetic induction B  of the Heaviside ellipsoid at the point with 

the radius vector ( , , )x y zr  are calculated as follows: 
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In Eq. (8) it is assumed that the velocity of the ellipsoid’s motion v  is directed along the axis OX  and 

has the components xv v , 0y zv v  . 

Based on the results obtained by Heaviside [4] and Searle [6], we will write the expression for the 

electromagnetic energy outside the charged Heaviside ellipsoid [6, page 340, eq. (24)]: 
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where 
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1

1 v c
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
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2

0

08
b

Q
W

R
  is the field energy around a stationary charged sphere; at 0v   

the Heaviside ellipsoid turns into this sphere. 

 

We will assume that Eq. (4), connecting the mass and the energy of the particle, is also valid for the 

electromagnetic field. In this case, the effective mass of the electromagnetic field associated with the external 

field energy will be: 
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The momentum of the electromagnetic field outside the charged Heaviside ellipsoid was calculated in [7]: 
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From Eq. (11) similarly to Eq. (5) we obtain the effective electromagnetic mass associated with the 

momentum of the external electromagnetic field: 
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Comparing Eqs. (10) and (12) we obtain: 
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2.2. Internal Electromagnetic Field 

 

It is well known that the electromagnetic energy within the charged Heaviside ellipsoid is equal to one-

fifth of the external energy [8]. Using Eq. (9), for the electromagnetic energy and the effective mass of the 

field inside the Heaviside ellipsoid we have the following: 
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where 

2

0

040
i

Q
W

R
  is the field energy inside the fixed uniformly charged ball. 

 

Similarly to Eq. (14) for energy, the momentum of the electromagnetic field inside the charged Heaviside 

ellipsoid is five times less than in Eq. (11): 
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From Eq. (16) we obtain the effective mass of the field associated with the momentum of the 

electromagnetic field inside the charged ellipsoid: 
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From Eqs. (15) and (17) we obtain the relation for the masses of the field inside the ellipsoid, similar to 

the relation for the masses of the field outside the ellipsoid in Eq. (13) 
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pi
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The difference between the masses eb  and pb  in Eq. (13), and the masses ei  and pi  in Eq. (18) is 

the essence of the so-called 4/3 problem, according to which the field masses pb  and pi , calculated 
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through the field momentum at low velocities are approximately 4/3 more than the corresponding field 

masses eb  and ei , found through the field energy. 

 

3. ENERGY – MOMENTUM OF THE EXTERNAL AND INTERNAL GRAVITATIONAL FIELD 

OF THE HEAVISIDE ELLIPSOID 

 

The characteristic feature of the fundamental fields, which include the gravitational and electromagnetic 

fields, is the similarity of their equations for the potentials and the field strengths. This follows from the 

equations of gravitomagnetism, which are the consequence of the general theory of relativity in consideration 

of phenomena in a weak field. In the Lorentz-invariant theory of gravitation [3, 9, 10] the similarity of 

equations for both fields is even more apparent. Accordingly, 4/3 problem also takes place for the 

gravitational field. We considered this issue previously with respect to the gravitational field of a moving 

ball [11-13]. We will present here the obtained results in order to compare them with the formulas for the 

effective masses of the electromagnetic field and then to include the masses of the gravitational and 

electromagnetic fields in the total mass of the system which consists of the body and its fields. 

According to the Lorentz-invariant theory of gravitation (LITG), when a ball with the radius R  is 

moving at the velocity v  in empty space, the surface of the ball must be replaced with the Heaviside 

ellipsoid. The ball becomes somewhat compressed along the velocity of motion, one axis becomes shorter 

and is assumed to be 
2 21 / gR v c . We will remind that in LITG in all the formulas the gravitation 

propagation speed gc  is used instead of the speed of light c . In LITG not only the theory of gravitation, but 

also the theory of relativity as part of LITG is constructed so that the speed of light everywhere is replaced 

by gc . Thus it is assumed that space-time measurements can be carried out by means of gravitational waves 

in the same way as it is done by means of electromagnetic waves. 

In gravitomagnetism, which follows from the general theory of relativity, in the weak field limit it is 

assumed that the speed of gravitation is equal to the speed of light. This leads to the fact that for the 
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Heaviside ellipsoid one axis along the velocity of motion is 
2 21 /R v c , as in the case of the 

electromagnetic field, discussed in Section 2. 

 

3.1. External Gravitational Field 

 

We will assume that the ball with the gravitational mass M  is moving along the axis OX  of some 

reference frame. As in the case of the electromagnetic field, we can introduce for the gravitational field in 

LITG the scalar and vector potentials ( , ) D  at an arbitrary point in space ( , , )x y z , which for the ball are 

as follows: 

 

 
2 2 2 2 2(1 )( )g

GM

x vt v c y z
  
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,                                
2
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
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D ,                          (19) 

 

where G  – the gravitational constant. 

 

In Eq. (19) it is assumed that at 0t   the center of the ball (the center of the Heaviside ellipsoid) is 

located in the origin of the coordinate system. We can notice that the gravitational potentials in Eq. (19) are 

similar by their form to the potentials in Eq. (7) of the electromagnetic field. 

Further we will consider that gc c , then the subsequent results will have the same form both in LITG 

and in gravitomagnetism. With the help of field potentials in Eq. (19) it is easy to determine the gravitational 

field strength and the torsion field (gravitomagnetic field), which are the analogues of the electric field 

strength and the magnetic induction, respectively. The energy of the gravitational field outside the moving 

ball is written similarly to Eq. (9): 
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where 

2

0
2

b

GM
U

R
   is the field energy around the stationary ball. 

 

The effective mass of the field, associated with energy, is found similarly to Eq. (10): 
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The momentum of the gravitational field outside the Heaviside ellipsoid equals: 
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from this the effective mass of the field associated with the momentum is as follows: 
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Comparing Eqs. (21) and (23) gives: 
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The difference between the masses of the gravitational field in Eq. (24) is the same as for the masses of 

the electromagnetic field in Eq. (13). This means that the 4/3 problem takes place in case of the gravitational 

field. 

 

3.2. Internal Gravitational Field 
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The potentials of the gravitational field inside the uniform ball, which takes the form of the Heaviside 

ellipsoid due to the motion, were calculated in [12, 13] by adding the retarded potentials of all the point 

masses that made up the ball. As a result the gravitational energy inside this Heaviside ellipsoid equals: 
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where 
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0
10

i

GM
U

R
   is the field energy inside a stationary ball with radius R . 

 

The effective mass of the field associated with energy is obtained similarly Eq. (4): 
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For the momentum and the effective mass of the gravitational field inside the Heaviside ellipsoid we find: 
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From Eqs. (26) and (28) the relation follows for the effective masses of the field, which is similar to Eq. 

(24) and leads to the 4/3 problem: 
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4. THE CONTRIBUTION OF GRAVITATIONAL FIELD IN ENERGY AND MOMENTUM OF A 

MOVING BODY 

 

We shall try to include in equation (1) the relations found above for the energy and the momentum of the 

gravitational field of a moving body in the form of a ball. We shall suppose as a first approximation that in 

static case instead of Eq. (3) there is the following relation for the relativistic energy of system: 

 

2
2

0 0 0

3

5

GM
E E U M c

R
     ,                                                     (30) 

 

where 

2

0 0 0

3

5
b i

GM
U U U

R
     – the integral energy of static gravitational field inside and outside the 

ball with uniform density, 

M – the gravitational mass of the ball, 

2

0E M c   – the rest energy, found in such a way that it does not depend on the energy of the 

macroscopic gravitational field. To determine the energy 0E   the ball’s substance should be divided into 

pieces and spread to infinity while the total mass of all pieces of the body is M . 

 

The choice of the minus sign in front of 0U  in Eq. (30) will be substantiated in Section 5, where the 

relativistic energy of the system is reduced to the binding energy of the system, and all the energy 

components are included in the energy expression in Eq. (45) with negative signs. In Eq. (30) all terms must 

be associated with the relativistic energy either of the system, or of the body, or of the body field. We believe 

that the field energy 0U  is a component of the total, not the relativistic energy. Due to the relation between 

the total energy and the binding energy, which are equal in the absolute value but differ in signs, we take 0U  

with the minus sign. 

Similarly to Eqs. (1) and (4) we define the relativistic energy of the moving system: 
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0 0( )E E M c U     .                                                           (31) 

 

On the other hand, the gravitomagnetic energy as the integral energy of the gravitational field inside and 

outside the ball, taking into account Eqs. (20) and (25) is negative and equals: 
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For the relativistic energy of the system in the form of the moving ball and its field, we have as in Eq. 

(30):  
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From Eqs. (31) and (32) it follows: 
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Since the energy of the static field is negative: 

2

0

3

5

GM
U

R
  , then in Eq. (33) in the energy E  of the 

moving ball the negative additive from field energy will appear, and the energy 
2

0E M c   does not depend 

on 0U . 

We shall consider now the law of conservation of momentum. The momentum of the system consists of 

the momentum of the ball bP  and the momentum of the gravitational field, and taking into account Eq. (22) 

for the field momentum outside the ball, and Eq. (27) for the momentum of the field inside the ball, the total 

momentum of the field is:  
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Then for the momentum of the system we can write down: 
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where VM  is the mass of moving ball as a function of the velocity v . 

 

Momentum of the system can also be expressed as in Eq. (4), taking into account Eq. (30) we find: 
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From comparing Eqs. (34) and (35) it follows: 
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From Eq. (33) it follows that at 0v   the rest energy 0E   of the pieces of ball at infinity does not include 

the field energy, but with the addition of pieces in the ball and subsequent movement of the ball in the energy 

E  an additive appears, related with the energy 0U  of the field. The field energy 0U  also makes 

contribution to the mass VM  of the moving ball in Eq. (36). 

Comparing Eqs. (31) and (35) with Eq. (1) shows that taking into account the gravitational field the role 

of the total mass of the body and its field is played by the quantity 
2

0M M U c
  . If we know the 

energy E  in Eq. (31) and the momentum P  in Eq. (35), it follows from these relations that we can express 

the mass M   of the system and the velocity v  of the body. In case of a uniform ball with radius R  we can 

write down: 

 



 

15 

 

2
2 2 2

2 2

1 3

5

GM
M E P c M

c Rc


    ,                         

2c

E


P
v .                            (37) 

 

According to Eq. (37), the invariant system mass depends not only on the energy and momentum of the 

body, but also depends on the average body size due to the contribution of the gravitational field mass to the 

constant value of the mass M . 

We shall note also that the problem of 4/3 for the gravitational field (inequality of the mass of the field, 

found from the energy, and the mass of the field, calculated by the momentum of the field) was compensated 

by the dependence of the energy E  in Eq. (33) and the mass VM  in Eq. (36) of the moving ball on the field 

energy 0U . As a result, the field energy 0U  in Eqs. (31) and (35) is included symmetrically in both the 

relativistic energy and momentum of the system. In this case, our task was not to solve the 4/3 problem as 

such, but to take into account the energy and momentum components of the gravitational field associated 

with the system. 

 

5. ANALYSIS OF THE COMPONENTS OF MASS AND ENERGY OF THE SYSTEM 

 

5.1. Gravitational Field  

 

Until now we have not specified of which components the mass M   of the system consists, and whether 

other energies except the energy of gravitational field contribute to it. For example, what shall happen if the 

body is heated? From the standpoint of kinetic theory, an increase of temperature leads first to an increase of 

the average velocity of the particles that makeup the body. In this case, according to Eq. (1) the average 

energy of each particle of the body would increase, and due to the additivity of energy the energy 0E  of the 

system should change. For the case of the body at rest and its gravitational field 
2 2

0 0E M c U M c
   , 

and for Eqs. (31) and (35) for moving body we can write down the following: 
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Heating of the body from an external source leads to the change of 0E  in Eq. (38), and the heat as a form 

of energy is distributed between the kinetic energy of substance and the energy 0U  of the gravitational field. 

When heated, the mass density could decrease and the body radius could increase. 

Any interaction between particles of the body with each other or with the environment, which changes the 

energy of the particles, also changes the energy 
2

0E M c  of the system at rest. In accordance with Eq. 

(37) the mass M   of the system with the ball depends not only on M , but also on the radius of the ball R . 

 

5.2. Electromagnetic Field and Internal Kinetic Energy 

 

Suppose that some charge Q  is uniformly distributed within a stationary ball. In this case, taking into 

account Eqs. (9) and (14) the total energy of the electric field is: 

 

2
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Q
W

R
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The electromagnetic energy may include the energy of the magnetic field 0mW , if the ball is magnetized 

or if there are electric currents. The energies 0eW  and 0mW  together constitute the total energy 0W  of the 

electromagnetic field of the body, which should contribute to the energy of the system. 

We assume that other forms of energy (e.g. heat) can change the body mass, but can not change the 

charge of the body, because it is necessary to transfer the charged particles to the body (or from the body). 

This is one of the differences between the electromagnetic and gravitational fields, in addition to the 

unipolarity of gravitational charges (which are the masses) and the bipolarity of electromagnetic charges. 

The mass M  in Eq. (30) is the total mass of all body parts, separated to infinity. As in [14] we can 

assume that in this case the substance is at zero degrees according to Kelvin temperature scale. When 

integrating all parts into a single body the substance temperature increases up to the value T  and a certain 

mass TM   appears, which presents the additional mass of the internal kinetic energy kE  of the body. This 

energy includes the kinetic energy of motion of atoms and molecules, the energy of turbulent motion of the 
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substance fluxes, as well as the energy of oscillations and rotations of atoms and molecules and the energy of 

their additional interaction as a result of substance heating. 

If TV  is the average velocity of particles in the body at temperature T , then the following approximate 

relations would hold:  

2

2

T
k

M V
E


 , 

2

2 22

k T
T

E M V
M

c c


   .  

Since we intend to include the electromagnetic energy 0W  of the ball and the kinetic energy kE  of the set 

of atoms and molecules of the ball’s substance to the total energy of the system, we introduce new notation: 

0E  will be replaced by 0E  , E  will be replaced by E ,  P   will be replaced by P . Similarly to Eq. (30) 

we can then write: 

 

2

0 0 0kE M c E U W
    .                                                        (40) 

 

As the energy of field, we include the energy kE  in Eq. (40) with the negative sign. 

For the body that is only under influence of its proper gravitational and electromagnetic field, the virial 

theorem is satisfied, according to which the absolute value of potential energy of the field on the average is 

twice as much than the kinetic energy of body particles: 

 

0 02 0kE U W   ,                            0 0
0 0

2
tot k k

U W
E E U W E


      ,                  (41) 

 

here totE  is the total energy excluding the rest energy of the particles of the body. 

 

Substituting Eq. (41) in Eq. (40) gives the approximate equality: 

 

2 2 0 0
0

2
tot

U W
E M c E M c


     .                                          (42) 

 

6. MASS OF THE BODY AT 0
0
 KELVIN 
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We shall now consider the essence of the mass M   related to the total mass of body particles excluding 

the contribution from the mass of the internal kinetic (thermal) energy and the energy of macroscopic fields. 

The contributions in mass M   are made by the masses of various types of energy associated with atoms and 

molecules at the temperature near absolute zero: strong interaction, binding the substance of the elementary 

particles and retaining the nucleons in atomic nuclei; electromagnetic interaction of particles; the energy of 

motion of electrons in atoms; rotational energy of atoms and molecules; vibrational energy of atoms in 

molecules, energy of atoms in molecules, etc. 

 

6.1. Strong Interaction 

 

In Standard Model it is assumed that the strong interaction arises due to the action of the gluon field 

between the quarks located in the hadrons (mesons and baryons), and the strong interaction between leptons 

is absent. 

There is also a hypothesis that the strong interaction is a manifestation of strong gravitation at the level of 

elementary particles and atoms [15]. According to the Lorentz-invariant theory of gravitation, there are two 

components, in the form of gravitational field strength and the torsion field, and the stability of nucleons in 

nuclei can be described as the balance of forces from the attraction of the nucleons to each other due to 

strong gravitation, and the repulsion of nucleons due to the torsion field [3]. The same idea is applied to 

describe the structure and the stability of a number of hadrons, considered as the composition of nucleons 

and mesons [12]. Strong gravitation differs from the ordinary gravitation by replacing of the gravitational 

constant G  by the constant of strong gravitation Γ , and acts between all particles, including leptons. The 

estimation of the quantity Γ  can be obtained from the balance of four forces acting on the electron in the 

hydrogen atom: 1. The force of electric attraction between the electron and the atomic nucleus. 2. The force 

of electric repulsion of the charged matter of the electron from itself (the electron is represented as a cloud 

around the nucleus). 3. The centripetal force from the rotation of the electron around the nucleus. 4. The 

attraction of the electron to the nucleus under the influence of strong gravitation. These forces are 

approximately equal to each other, so the relations for the forces of attraction from strong gravitation and the 

electric force are satisfied [9]: 
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2

2 2
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p e

e e

ΓM M e

R R
   ,            

2
29

0

1.514 10
4 p e

e
Γ

M M
    m3∙kg –1∙c –2 ,              (43) 

 

where pM  and eM  – the mass of proton and electron, respectively, 

eR  – the radius of rotation of the electron cloud, 

e  – the elementary electric charge as the proton charge equal to the absolute value of the negative charge 

of electron, 

0  – the vacuum permittivity. 

 

Another way to estimate Γ  is based on the theory of similarity of matter levels and the use of 

coefficients of similarity. These coefficients are defined as follows: 
571.62 10Φ    – coefficient of 

similarity by mass (the ratio of the mass of neutron star to the proton mass); 
191.4 10P    – the coefficient 

of similarity by size (the ratio of the radius of neutron star to the proton radius); 0.23S   – the coefficient 

of similarity by speed (the ratio of the characteristic speed of the particles of neutron star to the speed of light 

as the typical speed of the proton matter). For strong gravitational constant a formula is obtained: 

2

Φ
Γ =G

PS
, where exponents of similarity coefficients correspond to the dimension of gravitational 

constant G  according to the dimensional analysis. 

If we understand the strong interaction as the result of strong gravitation, the main contribution to the 

proton rest energy should be made by the positive kinetic energy of its matter and the negative energy of the 

strong gravitation (the electrical energy of the proton can be neglected due to its smallness). The sum of 

these energies gives the total energy of the proton, and due to the virial theorem in Eq. (41) this sum of 

energies is approximately equal to half of the energy of strong gravitation. Since the energy of the strong 

gravitation is negative, then the total energy of the proton is negative too. The total energy of the proton up 

to the sign can be regarded as the binding energy of its matter; the binding energy equals to the work that 

should be done to spread the matter to infinity so that there total energy of the matter (potential and kinetic) 



 

20 

 

should be equal to zero. According to its meaning, the positive proton rest energy must be equal to the 

binding energy or the absolute value of the total energy of the proton. This gives the equality between the 

rest energy and the absolute value of half of the energy of strong gravitation: 

 

2

2

2

p

p

p

ΓM
M c

R


 ,                                                            (44) 

 

where 0.6   for the case if the proton was uniform density ball with the radius pR . 

 

If we substitute Eq. (43) in Eq. (44), we obtain another equation, which allows estimating the radius of 

the proton: 

 

2
2

08
e

p

e
M c

R




 ,                

2

0

2

08 2
p

e

re
R

M c




  , 

 

where 0r  is the classical electron radius. 

 

In self-consistent model of the proton [16] we find that in Eq. (44) the radius of the proton is 

168.73 10pR    m, and the coefficient 0.62   due to a small increase in the density in the center of the 

proton. At the same time, in the assumption that positive charge is distributed over the volume of proton 

similar to the mass distribution and the maximum angular frequency of the proton rotation is limited by the 

condition of its integrity in the field of strong gravitation, we can find the magnetic moment of the proton as 

a result of rotation of its charged matter: 

 

m p pP e ΓM R , 

 

where 
261.41 10mP    J/T is the magnetic moment of the proton, 

0.1875   (in the case of the uniform density and the charge of proton it should be 0.2  ).  
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The fact that the rest energy of the proton is associated with strong gravitation, also follows from the 

modernized Fatio-Le Sage theory of gravitation [17]. In this theory, based on the absorption of the fluxes of 

gravitons in the matter of bodies with transfer of the momentum of gravitons to the matter, the exact formula 

for Newton's gravitational force (the law of inverse squares) is derived; the energy density of the flux of 

gravitons (
344 10  J/m3), the cross section of their interaction with the substance (

507 10  m2) and other 

parameters are deduced. 

In the theory of infinite hierarchical nesting of matter [3], [9] it is shown that at each main level of matter 

the corresponding type of gravitation appears: there is a strong gravitation at the level of elementary 

particles, but at the level of stars it is the ordinary gravitation. The gravitation reaches a maximum in the 

densest objects – in nucleons and in neutron stars. In the substance of the earth's density the range of strong 

gravitation is less than a meter, and at such sizes of bodies strong gravitation is replaced by the ordinary 

gravitation. This corresponds to the fact that the masses and the sizes of objects at different levels of matter 

increase exponentially, and the point of replacing of the strong gravitation by the ordinary gravitation lies 

near the middle of the range of masses from nucleons to the stars on the axis of the masses on the logarithmic 

scale.  

In the above picture the rest energy of proton in Eq. (44) is approximately equal to the absolute value of 

the total energy of the proton in its proper field of strong gravitation (for increased accuracy we should also 

take into account the electromagnetic energy of the proton), and the energy 
2M c  in Eq. (42) consists of the 

rest energy of nucleons and electrons of the matter of the body, with the addition of the energy of their 

gravitational and electromagnetic interactions and the mechanical motion in atoms and molecules. 

Consequently, the energy 
2M c  of the body, taking into account the virial theorem in Eq. (41) can be 

reduced to the half of the absolute value of the sum of the energy of strong gravitation 0 gU  and 

electromagnetic energy 0 gW  of the nucleons, electrons, atoms and molecules involved in formation of the 

binding energy. As a result, the relativistic energy of the stationary body and its fields instead of Eq. (42) can 

be written down as follows: 
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0 0 0 0
0

2 2

g gU W U W
E 

 
   .                                                  (45) 

 

To understand the meaning of energy 0E   better, we shall consider the energy balance in the process of 

merging of matter, with formation of elementary particles at the beginning, passing then to confluence of the 

elementary particles into atoms and finally in the formation of a body of many atoms. Initially, the matter is 

motionless at infinity and its parts do not interact with each other, so that total energy of the system is zero 

(we do not consider here the rest energy of matter in its condition when it is fragmented and was not yet 

included into the composition of the elementary particles). If the matter particles will draw together under the 

influence of strong then ordinary gravitation, the negative energy U  of gravitational field and the positive 

kinetic energy kE  of motion of particles will appear, and due to the energy conservation law the integral 

energy should not change, remaining equal to zero. In the energy balance it is necessary to take into account 

the electromagnetic energy W  and the energy rE  leaving the system due to the emission of field quanta 

such as photons and neutrinos: 

 

0r kE E U W    ,                ( )
2

r k Tot

U W
E E U W E


        .              (46) 

 

In Eq. (46) the virial theorem in the form of Eq. (41) is used for the components of the total energy TotE  

of the system. According to Eq. (46), the energy rE  of the emission that left the system equal up to a sign to 

the total energy TotE , i.e. the energy of emission rE  equals the binding energy of the system. By comparing 

Eqs. (46) and (45) we now see that the relativistic energy 0E   of body and its field is the same as the energy 

extracted from the body by different emission during the formation of the body.  

As a rule in the energy 0E   only those components are taken into account that are associated with 

formation of elementary particles, atoms and macroscopic molecular substance; and the binding energies of 

the particles of which the matter of elementary particles is built are not taken into account and are assumed to 

be constant. Heating the body due to gravitation according to Eqs. (46) and (45) leads to an increase of body 
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energy 0E  . This conclusion is based on the fact that although the internal kinetic energy of the body kE  is 

part of Eq. (40) with the negative sign, but the change of the potential energy U W  by the virial theorem 

compensates the contribution of the energy kE . An example is the star, which is heated and accelerates its 

rotation during compression by gravitation, and the absolute value of the gravitational energy of the star 

increases. 

According to Eq. (45), the relativistic energy 0E   of the system consists mainly of the energies of two 

fundamental fields – gravitational and electromagnetic, responsible for the integrity of the particles of the 

body and for the composition of the body of the individual particles. In this case, the strong interaction 

between the particles is taken into account by the energy of strong gravitation 0 gU  and the electromagnetic 

energy 0 gW . 

 

6.2. Weak Interaction 

 

As for the weak interaction it is assumed to be the result of transformation of matter, which was for a long 

time under the influence of the fundamental fields. An example is the long-term evolution of a star massive 

enough to form a neutron star in a supernova outburst, when the neutrino burst is emitted with the energy of 

about the binding energy of the star (the gravitational energy of the matter compression into a small-sized 

neutron star is converted into the energy of neutrinos, the energy of photon emission, the kinetic energy and 

the heating of the expelled shell). At the level of elementary particles, this corresponds to the process of 

formation of a neutron with the emission of neutrino. 

If in the weak interaction the body at rest emits (the body absorbs) neutrinos, photons and other particles, 

it leads to a change of the relativistic energy 0E   of the system. In general, the energy 0E   is the function of 

time and speed with which the separate particles or units of matter are emitted from the body or absorbed by 

it. Due to the laws of conservation of energy and momentum, if some particles bring into the system the 

energy and momentum, then after some time they are distributed in the system and according to virial 

theorem they can be taken into account through the energy and the momentum of the fundamental fields. 
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Therefore, we can state that according to Eq. (45), the source of the energy of the system, and of its mass 

M   as the measure of inertia are the gravitational and electromagnetic fields associated with the masses and 

charges, as well as electric currents and mass flows. In Fatio-Le Sage theory of gravitation it is supposed that 

the fields are the consequence of the interaction of the masses and the charges with the fluxes of gravitons 

and tiny charged particles that penetrate the space.  

If we define the total mass of the system in the form 0

2

E
M

c


  , then Eq. (38) for energy and 

momentum of a moving body is as follows: 

 

2E M c  ,                              M P v .                                         (47) 

 

7. CONCLUSIONS 

 

Equations (47) look exactly the same as Eq. (1) for a small test particle. However, the mass M   of 

system in Eq. (47) takes fully into account the field energies, whereas for the mass m  of a small particle in 

Eq. (1) it is only expected. The appearance in the mass M   of the contribution from the energy of fields has 

occurred because we have used the energy of mutual interaction of many small particles in a massive body. 

Hence, by induction, we should suppose that not only the mass of body, but the mass of any isolated small 

particle should be determined taking into account the contribution from the energy of proper fundamental 

fields of the particle. The described concept of mass in the covariant theory of gravitation (CTG) is 

confirmed by the analysis of the Hamiltonian [18] and of the Lagrangian in the principle of least action [19]. 

We should note the difference between the results of CTG and general theory of relativity (GTR) with 

respect to mass and energy. In CTG the mass of system with the uniform spherical body at rest with the 

radius R  including effective mass of its fields is expressed with the help of Eqs. (39) and (45): 
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       ,                                 (48) 
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where the mass M  sets the total mass of body parts at zero absolute temperature, excluding the potential 

energy of the fields, the mass M  is obtained through the density and the volume and represents the 

gravitational mass, the expression for the energy 0U  is given after Eq. (30). 

 

As a result the relativistic mass M   of the system by combining the body parts into a whole increases 

due to the energy of the gravitation field 0U , and decreases due to the electric energy 0W . 

In general theory of relativity in order to determine the mass of a stationary system we can integrate the 

timelike component of the stress-energy tensor of the system 
00T  over the volume and divide the result by 

the squared speed of light. According to [20] for the gravitational field contribution and [21] with respect to 

the electromagnetic field, the mass of the system M   in the first approximation is: 

 

2 2
2 2

02 2 2 2
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1 1 6 3 1
( )
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q

GM Q
M c E dV M dV

c Rc Rc c
      


            , 

                   (49) 

 

where M dV   is the body mass,   and q  are the density of mass and charge, respectively,   

and   define the scalar potentials of the gravitational and electric field, respectively, 0  is the vacuum 

permittivity, E  is the electric field intensity,   is the elastic energy per unit mass. In this case the mass 

density   is associated with the scalar potential by the Poisson equation 4 G     and satisfies the 

continuity relation of the special theory of relativity. 

 

Since the potential   is negative and the potential   is positive, in Eq. (49) the substance energy in the 

gravitational field reduces the mass M  , while the energy of the charges in the electric field and the elastic 

energy  increase the system mass M  . 

In GTR the gravitational field potentials are described by the metric tensor components, and the field and 

metric always exist in the presence of masses, therefore instead of   the invariant mass density  
 is used. 

The invariant density is part of the continuity relation in the curved spacetime: ( ) 0g u

    , here g  

is the determinant of the metric tensor, u
 is the 4-velocity. In a weak field for a fixed body we can 

approximately write the following: 
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If based on this we express   and substitute it in (49), we will obtain for the mass-energy of the system 

an expression similar to those presented in [22] and [23] (in contrast to [20], in [23]   is the invariant 

density and  
  denotes the mass density in special theory of relativity). 

In Eq. (49) not the mass M  but the mass M  is used, which is expressed through the mass density and 

volume and included in the formula for the gravitational energy. As it was shown in [18], for three masses 

associated with the system, the following relation holds: M M M
   , which also follows from Eqs. (48) 

and (49). In our opinion, the reason of difference between Eqs. (48) and (49) is associated with different 

positions of the two theories: in CTG there is explicit stress-energy tensor of gravitational field, included in 

the Lagrangian and contributing to the spacetime metric and the energy-momentum of the considered 

system. This allows us to define all the three masses , ,M M M
  and to find their meaning, and the mass 

M  is associated with the cosmological constant in the equation for the metric of the system. In GTR the 

principle of equivalence is used instead of this, the gravitational field is reduced to the metric field, and 

correspondingly, the energy and the momentum do not form tensor and can be found only indirectly, through 

the spacetime metric. 

Eqs. (48) and (49) imply consistency of positions CTG and GTR, as these theories determine the mass 

and energy from different standpoints. 
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