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Abstract

Linear programming is now included in algorithm undergraduate and postgraduate courses for com-
puter science majors. We show that it is possible to teach interior-point methods directly to students
with just minimal knowledge of linear algebra.

1 Introduction

Terlaky [7] and Lesaja [4] have suggested simple ways to teach interior-point methods. In this paper,
we suggest a still simpler way. Most material required to teach interior-point methods is available
in popular text books [5, 8]. However, these books assume knowledge of calculus, which is not
really required. If appropriate material is selected from these books, then it becomes feasible to teach
interior-point methods as the first or only method for linear programming.

The canonical linear programming problem is to

minimize cT x subject to Ax = b and x ≥ 0. (1)

Here, A is an n × m matrix, b and c are n-dimensional, and x is an m-dimensional vector. A feasible
solution is any vector x with Ax = b and x ≥ 0. The problem is feasible if there is a feasible solution,
and infeasible otherwise. The problem is unbounded if for every real z, there is a feasible x with
cT x ≤ z, and bounded otherwise. Infeasible problems are bounded.

Remark 1. Maximize cT x is equivalent to minimize −cT x.

Remark 2. Constraints of type α1x1 + . . . + αnxn ≤ β can be replaced by α1x1 + . . . + αnxn + γ = β

with a new (slack) variable γ ≥ 0. Similarly, constraints of type α1x1 + . . .+αnxn ≥ β can be replaced
by α1x1 + . . . + αnxn − γ = β with a (surplus) variable γ ≥ 0.

We first prepare the problem by deleting superfluous equations and making the rows of A linearly
independent. Assume first that A contains a row i in which all entries are equal to zero. If bi is also

∗E-mail: mehlhorn@mpi-inf.mpg.de
†E-mail: ssax@iitk.ac.in

1



zero, we simply delete the row. If bi is nonzero, the system of equations has no solution, and we
declare the problem infeasible and stop. Now, every row of A contains a nonzero entry, in particular,
the first row. We may assume that a11 is nonzero. Otherwise, we interchange two columns. We
multiply the ith equation by − a11

ai1
and subtract the first equation. In this way, the first entry of all

equations but the first becomes zero. If any row of A becomes equal to the all zero vector, we either
delete the equation or declare the problem infeasible. We now proceed in the same way with the
second equation. We first make sure that a22 is nonzero by interchanging columns if necessary. Then
we multiply the ith equation (for i > 2) by − a22

a21
and subtract the second equation. And so on. In the

end, all remaining equations will be linearly independent. Equivalently, the resulting matrix will have
full row-rank.

We now have n constraints in m variables with m ≥ n. If m = n, the system Ax = b has a unique
solution (recalling that A has full row-rank and is hence invertible). We check whether this solution
is nonnegative. If so, we have solved the problem. Otherwise, we declare the problem infeasible. So,
we may from now on assume m > n (more variables than constraints).

We consider another problem, the dual problem, which is

maximize bT y, subject to AT y + s = c, with slack variables s ≥ 0 and unconstrained variables y.
(2)

Remark 3. The vector y has m components and the vector s has n components. We will call the
original problem the primal problem.

Claim 1 (Weak Duality). If x is any solution of Ax = b with x ≥ 0 and (y, s) is a solution of AT y+s = c
with s ≥ 0, then
1. xT s = cT x − bT y, and
2. bT y ≤ cT x, with equality if and only if sixi = 0 for all is.

Proof. We multiply s = c − AT y with xT from the left and obtain

xT s = xT c − xT (AT y) = cT x − (xT AT )y = cT x − (Ax)T y = cT x − bT y.

As x, s ≥ 0, we have xT s ≥ 0, and hence, cT x ≥ bT y.
Equality will hold if xT s = 0, or equivalently,

∑
i sixi = 0. Since si, xi ≥ 0,

∑
i sixi = 0 if and only

if sixi = 0 for all i.

Remark 4. If x is a feasible solution of the primal and (y, s) is a feasible solution of the dual, the
difference cT x − bT y is called the objective value gap of the solution pair.

Remark 5. Thus, if the value of the primal and the dual problem are the same, then both are optimal.
Actually, from the Strong Duality Theorem, if both primal and dual solutions are optimal, then the
equality will hold. We will prove the Strong Duality Theorem in Section 5 (Corollary 2).

Remark 6. We will proceed under the assumption that the primal as well as the dual problem are both
bounded and feasible. We come back to this point in Section 4. If the primal is unbounded, the dual is
infeasible. If the dual is unbounded, the primal is infeasible. If the primal is feasible and bounded, the
dual is feasible and bounded. The primal is unbounded if it is feasible and the homogeneous problem
“minimize cT x subject to Ax = 0 and x ≥ 0” has a negative objective value. Equivalently, if the
problem “minimize 0 subject to cT x = −1, Ax = 0, and x ≥ 0” is feasible”.
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optimal solution

Figure 1: The interior of the polygon comprises all points (x, y, s) satisfying Ax = b and AT y + s = c,
x > 0, and s > 0. The blue (bold) line consists of all points in this polygon with xisi = µ for all i and
some µ > 0. The optimal solution is a vertex of the polygon corresponding to xisi = 0 for all i. The
red (dashed) line illustrates the steps of the algorithm. It follows the blue (bold) line in discrete steps.

Claim 1 implies, that if we are able to find a solution to the following system of equations and
inequalities

Ax = b, AT y + s = c, xisi = 0 for all i, x ≥ 0, s ≥ 0,

we will get optimal solutions of both the original and the dual problem. Notice that the constraints
xisi = 0 are nonlinear and hence it is not clear whether we have made a step towards the solution of
our problem. The idea is now to relax the conditions xisi = 0 to the conditions xisi ≈ µ (with the exact
form of this equation derived in the next section), where µ ≥ 0 is a parameter. We obtain

(Pµ) Ax = b, AT y + s = c, xisi ≈ µ for all i, x > 0, s > 0.

We will show:
1. (initial solution) For a suitable, µ, it is easy to find a solution to the problem Pµ. This will be the

subject of Section 4.
2. (iterative improvement) Given a solution (x, y, µ) to Pµ, one can find a solution (x′, y′, s′) to Pµ′ ,

where µ′ is substantially smaller than µ. This will be the subject of Section 2. Applying this step
repeatedly, we can make µ arbitrarily small.

3. (final rounding) Given a solution (x, y, µ) to Pµ for sufficiently small µ, one can extract the exact
solutions for the primal and the dual problem. This will be the subject of Section 5.

Remark 7. For the iterative improvement, it is important that x > 0 and s > 0. For this reason, we
replace the constraints x ≥ 0 and s ≥ 0 by x > 0 and s > 0 when defining problem Pµ (see Figure 1).

3



Remark 8. Note that xisi ≈ µ for all i implies bT y−cT x ≈ mµ by Claim 1. Thus, repeated application
of iterative improvement will make the gap between the primal and dual objective values arbitrarily
small.

2 Iterative Improvement: Use of the Newton-Raphson Method

This section and the next follow Roos et al [5] (see also Vishnoi [9]).
Let us assume that we have a solution (x, y, s) to

Ax = b and AT y + s = c and x > 0 and s > 0.

We will use the Newton-Raphson Method [5] to get a “better” solution. Let us choose the next values
as x′ = x + h, y′ = y + k, and s′ = s + f . You should think of the steps h, k, and f as small values.
Then we want, ignoring the positivity constraints for x′ and s′ for the moment:

1. Ax′ = A(x + h) = b, or equivalently, Ax + Ah = b. Since Ax = b, this is tantamount to Ah = 0.

2. AT y′ + s′ = AT (y + k) + (s + f ) = c. Since AT y + s = c, we get AT k + f = c − AT y − s = 0.

3. x′i s
′
i = (xi + hi)(si + fi) ≈ µ′, or equivalently, xisi + hisi + fixi + hi fi ≈ µ′. We drop the quadratic

term hi fi (if the steps hi and fi are small, the quadratic term hi fi will be very small) and turn the
approximate equality into an equality, i.e., we require xisi + hisi + fixi = µ′ for all i.

Thus, we have a system of linear equations for hi, ki, fi, namely,

Ah = 0

system (S) AT k + f = 0

hisi + fixi = µ′ − xisi for all i

We show in Theorem 1 that system (S) can be solved by “inverting” a matrix.

Remark 9. Note that there are m variables hi, n variables k j, and m variables fi for a total of 2m + n
unknowns. Also note that Ah = 0 constitutes n equations, AT k + f = 0 constitutes m equations, and
hisi + fixi = µ′ − xisi for all i comprises m equations. So we have 2m + n equations and the same
number of unknowns. Also note that the xi and si are not variables in this system, but fixed values.

Before we show that the system has a unique solution, we make some simple observations. From
the third group of equations, we conclude

Claim 2. (xi + hi)(si + fi) = µ′ + hi fi, and (x + h)T (s + f ) = mµ′ + hT f .

Proof. From the third group of equations, we obtain

(xi + hi)(si + fi) = xisi + hisi + fixi + hi fi = µ′ + hi fi.

Summation over i yields

(x + h)T (s + f ) =
∑

i

(xi + hi)(si + fi) =
∑

i

(
µ′ + hi fi

)
= mµ′ + hT f .

Claim 3. hT f = f T h =
∑

i hi fi = 0, i.e., the vectors h and f are orthogonal to each other.
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Proof. Multiplying AT k + f = 0 by hT from the left, we obtain hT AT k + hT f = 0. Since hT AT =

(Ah)T = 0, the equality hT f = 0 follows.

Claim 4. cT (x + h) − bT (y + k) = (x + h)T (s + f ) = mµ′.

Proof. From Claims 2 and 3, (x + h)T (s + f ) = mµ′ + hT f = mµ′. Also, applying Claim 1 to the
primal solution x′ = x + h and to the dual solution (y′, s′) = (y + k, s + f ) yields cT (x + h)−bT (y + k) =

(x + h)T (s + f ).

Remark 10. Thus, mµ′ is the objective value gap of the updated solution.

Theorem 1. The system (S) has a unique solution.

Proof. We will follow Vanderbei [8] and use capital letters (e.g. X) in this proof (only) to denote
a diagonal matrix with entries of the corresponding row vector (e.g. X has the diagonal entries
x1, x2, . . ., xm). We will also use e to denote a column vector of all ones (usually of length m).

Then, in the new notation, the last group of equations becomes

S h + X f = µ′e − XS e.

Let us look at this equation in more detail.

S h + X f = µ′e − XS e

h + S −1X f = S −1µ′e − S −1XS e pre-multiply by S −1

h + S −1X f = µ′S −1e − XS −1S e diagonal matrices commute

h + S −1X f = µ′S −1e − x as Xe = x

Ah + AS −1X f = µ′AS −1e − Ax pre-multiply by A

AS −1X f = µ′AS −1e − b since Ax = b and Ah = 0

−AS −1XAT k = µ′AS −1e − b using f = −AT k

b − µ′AS −1e = (AS −1XAT )k

As XS −1 is diagonal with positive items, the matrix W =
√

XS −1 is well-defined. Note that the
diagonal terms are

√
xi/si; since x > 0 and s > 0, we have xi/si > 0 for all i. Thus, AS −1XAT =

AW2AT = (AW)(AW)T . Since A has full rank, (AW)(AW)T , and hence AS −1XAT , is invertible (see
Appendix). Thus,

k = (AS −1XAT )−1
(
b − µ′AS −1e

)
.

Then, we can find f from f = −AT k. And to get h, we use the equation: h + S −1X f = µ′S −1e− x, i.e.,

h = −XS −1 f + µ′S −1e − x.

Thus, system (S ) has a unique solution.

Remark 11. What have we achieved at this point? Given feasible solutions (x, y, s) to the primal and
dual problem, we can compute a solution (x′, y′, s′) = (x + h, y + k, s + f ) to Ax′ = b and AT y′ + s′ = c
that also satisfies hT f = 0 and x′T s = mµ′ for any prescribed parameter µ′. Why do we not simply
choose µ′ = 0 and be done? It is because we have ignored that we want x′ > 0 and s′ > 0. We will
attend to these constraints in the next section.
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3 Invariants in each Iteration

Recall that we want to construct solutions (x, y, s) to Pµ for smaller and smaller values of µ. The
solution to Pµ will satisfy the following invariants. The first two invariants state that x is a positive
solution of the primal and (y, s) is a solution to the dual with positive s. The third invariant formalized
the condition xisi ≈ µ for all i.

1. (primal feasibility) AxT = b with x > 0 (strict inequality).

2. (dual feasibility) AT y + s = c with s > 0 (strict inequality).

3. σ2 :=
∑

i

(
xi si
µ − 1

)2
≤ 1

4 .

Remark 12. Even though the variance of xisi is 1
m

∑
i (xisi − µ)2, we still use the notation σ2.

We need to show

x′ > 0 and s′ > 0 and σ′2 :=
∑

i

(
x′i s
′
i

µ′
− 1

)2

≤
1
4
.

We will do so for µ′ = (1 − δ)µ and δ = Θ

(
1√
m

)
. Claim 2 gives us an alternative expression for σ′2,

namely,

σ′2 =
∑

i

(
(xi + hi)(si + fi)

µ′
− 1

)2

=
∑

i

(
hi fi
µ′

)2

(3)

We first show that the positivity invariants hold if σ′ is less than one.

Fact 1. If σ′ < 1, then x′ > 0, and s′ > 0.

Proof. We first observe that each product x′i s
′
i = (xi + hi)(si + fi) = µ′ + hi fi is positive. From σ′ < 1,

we get σ′2 < 1. Since σ′2 =
∑

i (hi fi/µ′)2, each term of the summation must be less than one, and
hence, −µ′ < hi fi < µ′. In particular, µ′ + hi fi > 0 for every i. Thus, each product (xi + h)(si + f ) is
positive.

Assume for the sake of a contradiction that both xi + hi < 0 and si + fi < 0. But as si > 0 and
xi > 0, this implies si(xi + hi) + xi(si + fi) < 0, or equivalently, µ′ + xisi < 0, which is impossible
because µ′, xi, si are all non-negative. This is a contradiction.

We next show σ′ ≤ 1/2. We first establish

Claim 5. µ
xi si
≤ 1

1−σ for all i and
∑

i

∣∣∣∣1 − xi si
µ

∣∣∣∣ ≤ √m · σ.

Proof. Asσ2 =
∑

i (1 − xisi/µ)2, each individual term in the sum is at mostσ2. Thus, |1 − xisi/µ| ≤ σ,
and hence, xisi/µ ≥ 1 − σ, and further, µ/xisi ≤ 1/(1 − σ).

For the second claim, we have to work harder. Consider any m reals z1 to zm. Then (
∑

i |zi |)2 ≤

m
∑

i z2
i ; this is the frequently used inequality between the one-norm and the two-norm of a vector.

Indeed,

m
∑

i

z2
i −

∑
i

zi

2

= m
∑

i

z2
i −

∑
i

z2
i − 2

∑
i< j

ziz j = (m − 1)
∑

i

z2
i − 2

∑
i< j

ziz j =
∑
i< j

(zi − z j)2 ≥ 0.

We apply the inequality with zi = 1 − xisi/µ and obtain the second claim.
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Let us define two new quantities

Hi = hi

√
si

xiµ′
and Fi = fi

√
xi

siµ′
.

Observe that
∑

i HiFi =
∑ hi fi

µ′ = 0 (from Claim 3) and
∑

i(HiFi)2 =
∑

i

(
hi fi
µ′

)2
= σ′2. Also,

Hi + Fi =

√
1

xisiµ′
(hisi + fixi) =

√
1

xisiµ′
(
µ′ − µ + µ − xisi

)
=

√
µ

xisi

µ

µ′

(
µ′

µ
− 1 + 1 −

xisi

µ

)
=

√
µ

xisi(1 − δ)

(
−δ + 1 −

xisi

µ

)
. (4)

Finally,

σ′2 =
∑

i

(HiFi)2 =
1
4

∑
i

(H2
i + F2

i )2 −
∑

i

(H2
i − F2

i )2


≤

1
4

∑
i

(H2
i + F2

i )2 since
∑

i

(H2
i − F2

i )2 ≥ 0

≤
1
4

∑
i

(H2
i + F2

i )

2

more positive terms

=
1
4

∑
i

(Hi + Fi)2

2

since HT F = 0

=
1
4

∑
i

µ

xisi(1 − δ)

(
−δ + 1 −

xisi

µ

)22

by (4)

≤
1

4(1 − δ)2(1 − σ)2

∑
i

(
−δ + 1 −

xisi

µ

)22

since µ/(xisi) ≤ 1/(1 − σ)

≤
1

4(1 − δ)2(1 − σ)2

mδ2 − 2δ
∑

i

(
1 −

xisi

µ

)
+

∑
i

(
1 −

xisi

µ

)22

remove inner square

≤
1

4(1 − δ)2(1 − σ)2

mδ2 + 2δ
∑

i

∣∣∣∣∣1 − xisi

µ

∣∣∣∣∣ +
∑

i

(
1 −

xisi

µ

)22

≤
1

4(1 − δ)2(1 − σ)2

(
mδ2 + 2δ

√
m · σ + σ2

)2
by Claim 5

=
1

4(1 − δ)2(1 − σ)2

((√
mδ + σ

)2
)2
, forming inner square

and hence,

σ′ ≤

(√
mδ + σ

)2

2(1 − σ)(1 − δ)
≤

(√
mδ + 1/2

)2

2(1 − 1/2)(1 − δ)
!
≤

1
2
, (5)

where the second inequality holds since the bound for σ′ is increasing in σ, and σ ≤ 1/2. We need
to choose δ such that the last inequality holds. This is why we put an exclamation mark on top of the
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≤-sign. Setting δ = c/
√

m for some to be determined constant c yields the requirement

(c + 1/2)2

(1 − δ)
!
≤

1
2
, or equivalently, (2c + 1)2 !

≤ 2
(
1 −

c
√

m

)
.

This holds true for c = 1/8 and all m ≥ 1. Thus, δ = 1/(8
√

m).

Remark 13. Why do we require σ ≤ 1/2 in the invariant? Let us formulate the bound as σ ≤ σ0 for
some to be determined σ0. Then, the inequality (5) becomes(√

mδ + σ0
)2

2(1 − σ0)(1 − δ)
!
≤ σ0.

We want this to hold for δ = c√
m

and some c > 0. In order for the inequality to hold for c = 0, we
need σ0 ≤ 2(1−σ0), or equivalently, σ0 ≤ 2/3. Since we want it to hold for some positive c, we need
to choose a smaller σ0; 1/2 is a nice number smaller than 2/3.

4 Initial Solution

This section follows Bertsimas and Tsitsiklis [1, p430]; see also Karloff [3, p128-129]. We have to
deal with three problems: first, how to find an initial solution; second, how to make sure that we are
dealing with a bounded problem; third, how to guarantee the third condition of the invariant for the
initial solution. There are standard solutions for the first two problems.

Let us assume that we know a number W such that if (1) is bounded, there is an optimal solution
x∗ with x∗i < W for all i. Let e be the column vector of length m of all ones. We may then add
the constraint eT x < mW to our problem without changing the optimal objective value. If (1) is
unbounded, the additional constraint makes it bounded.

The standard solution for the second problem is the big M method. In the big M method, we
introduce a new variable z ≥ 0, change Ax = b into Ax + bz = b and the objective into “minimize
cT x + Mz”, where M is a big number. We also have the constraint eT x∗ < mW. Note that x = 0 and
z = 1 is a feasible solution to the modified problem. We solve the modified problem. If z∗ = 0 in
an optimal solution, we have also found the optimal solution to the original problem. If z∗ > 0 in an
optimal solution and M was chosen big enough, the original problem is infeasible.

We will see in Section 7 how to find the numbers W and M. We will now give the details and
also show how to fulfill the third condition of the invariant for the initial solution, namely, σ2 =∑

i(xisi/µ − 1)2 ≤ 1/4.
We add two new nonnegative variables xm+1 and xm+2 and the constraint “eT x + xm+1 + xm+2 =

(m + 2)W”. Here, xm+2 is used for the big M method, and xm+1 is the slack variable for the constraint
eT x + xm+2 ≤ (m + 2)W. The new constraint can be satisfied by setting all variables to W. We are
aiming for a particularly simple initial solution, namely xi = 1 for 1 ≤ i ≤ m + 2 and, therefore, scale
the variable xi by xi = Wx′i .

Then, eT x+xm+1+xm+2 = (m+2)W becomes eT Wx′+Wx′m+1+Wx′m+2 = (m+2)W, or equivalently,
eT x′ + x′m+1 + x′m+2 = m + 2.

Ax = b becomes WAx′ = b, or equivalently, Ax′ = 1
W · b.

Finally, cT x becomes cT Wx′ = WcT x′. As W is a constant, the problem is equivalent to minimiz-
ing cT x′. After replacing primed variables with unprimed variables, the problem is

minimize cT x, subject to Ax = d, eT x + xm+1 + xm+2 = m + 2 and x ≥ 0 with d =
1
W
· b.
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We now come to the big M part. Let ρ = d − Ae. Then, Ax + ρxm+2 = d holds for xi = 1,
1 ≤ i ≤ m + 2, and xm+1 = xm+2 = 1. We want a solution in which xm+2 = 0. Thus, we minimize
cxT + Mxm+2 for a large M. We thus consider the artificial primal problem

minimize cxT + Mxm+2, subject to Ax + ρxm+2 = d
eT x + xm+1 + xm+2 = m + 2
x ≥ 0 xm+1 ≥ 0 xm+2 ≥ 0 .

(6)

Remark 14. W = 2(nU)n suffices if all entries of A and b are integral and U ≥ maxi j
∣∣∣ai j

∣∣∣ and
U ≥ maxi |bi | as we will see in Section 7. Assume we also know a number L > 0 such that in
every optimal solution x∗ to (6), either x∗m+2 = 0 or x∗m+2 > L. Then M = 4mU/L suffices, if also
U ≥ maxi |ci |. Indeed, if our original problem is feasible, then there is a feasible solution to (6)
with xm+2 = 0. The objective value of this solution is less than or equal to (m + 2)U ≤ 2mU since
eT x+ xm+1 + xm+2 = m+2 and m ≥ 2. On the other hand, if x∗m+2 > 0 in an optimal solution to (6), then
x∗m+2 > L, and hence the optimal objective value is larger than ML − 2mU = 2mU. Thus, our original
problem is feasible if and only if x∗m+2 in every optimal solution to (6). We will see in Section 7 how
to determine L.

Remark 15. Assume x∗m+2 = 0 in an optimal solution to (6). Then our original problem is feasible
by the preceding remark. For x∗m+1 we distinguish two cases. If x∗m+1 > 0, then our original problem
is bounded. If x∗m+1 = 0, the problem may be bounded or unbounded. Remark 6 explains how to
distinguish these cases.

The dual problem (with new dual variables yn+1, sm+1 and sm+2) is

maximize dT y + (m + 2)yn+1, subject to AT y + eyn+1 + s = c, (7)

ρT y + yn+1 + sm+2 = M

yn+1 + sm+1 = 0

with slack variables s ≥ 0, sm+1 ≥ 0, sm+2 ≥ 0 and unconstrained variables y.

Which initial solution should we choose? Recall that we also need to satisfy the third part of the
invariant for some choice of µ, i.e.,

∑
1≤i≤m+2(xisi/µ − 1)2 ≤ 1/4. Also, recall that we set xi to 1 for

all i. As xm+1 = 1, we choose sm+1 = µ/xm+1 = µ. Then, from the last equation, yn+1 = −sm+1 = −µ.
The simplest choice for the other ys is y = 0. Then, from the first equation, s = c + eµ, and from the
second equation sm+2 = M − yn+1 = M + µ. Observe that all slack variables are positive (provided µ
is large enough). For this choice,

xisi

µ
− 1 =

ci

µ
for i ≤ m

xm+1sm+1

µ
− 1 = 0

xm+2sm+2

µ
− 1 =

M
µ
.

Thus, σ2 =
(
M2 +

∑
c2

i

)
/µ2. We can make σ2 ≤ 1/4 by choosing µ2 = 4

(
M2 +

∑
c2

i

)
.
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Summary: Let us summarize what we have achieved.
– For the artificial primal problem and its dual, we have constructed solutions (x(0), y(0), s(0)) that

satisfy the invariants for µ(0) = 2
(
M2 +

∑
c2

i

)1/2
.

– From the initial solution, we can construct a sequence of solutions (x(i), y(i), s(i)) and correspond-
ing µ(i) such that
– x(i) is a solution to the artificial primal,
– (y(i), s(i)) is a solution to its dual,
– µ(i) = (1 − δ) · µ(i−1) = (1 − δ)i · µ(0), and

∑
j

(
x(i)

j s(i)
j /µ

(i) − 1
)2
≤ 1/4.

For i ≥ 1, the difference between the primal and the dual objective value is exactly (m + 2)µ(i)

(Claim 4). The gap decreases by a factor 1 − δ = 1 − 1/(8
√

m + 2) in each iteration, and hence,
can be made arbitrarily small.

In the next section, we will exploit this fact and show how to extract the optimal solution. Before
doing so, we show the existence of an optimal solution.

Remark 16. Existence of an Optimal Solution: This paragraph requires some knowledge of calculus,
namely continuity and accumulation point. Our sequence (x(i), y(i), s(i)) has an accumulation point
(this is clear for the sequence of xi since the x-variables all lie between 0 and m + 2 and we ask the
reader to accept it for the others). Then there is a converging subsequence. Let (x∗, y∗, s∗) be its limit
point. Then x∗ and (y∗, s∗) are feasible solutions of the artificial primal and its dual respectively, and
xisi = 0 for all i by continuity.

5 Finding the Optimal Solution

This section is similar to [10, Theorem 5.3] and to the approach in [5, Section 3.3]. Let us assume
that we know a positive number L such that any nonzero coordinate of an optimal solution to either
primal or dual is at least L. We will see later (Section 7) how to find such a number in case all entries
of A and b are integers.

Consider our sequence of iterates. We show: (1) if some xi becomes sufficiently small, then x∗i = 0
in all optimal solutions, and if some si becomes sufficiently small, then s∗i = 0 in all optimal solutions.
(2) If µ is sufficiently small, then either xi or si will be sufficiently small.

Lemma 1. Let (x, y, s) and µ satisfy the invariants. Let x∗ be any optimal solution of the primal and
(y∗, s∗) be any optimal solution of the dual. Assume that the smallest nonzero value of x∗i and s∗i is at
least L.

1. If xi <
L

4m , then x∗i = 0 in every optimal solution.

2. If si <
L

4m , then s∗i = 0 in every optimal solution.

Proof. By the third part of our invariant, we have σ2 =
∑

i(
xi si
µ − 1)2 ≤ 1

4 . Thus, ( xi si
µ − 1)2 ≤ 1

4 , and
hence, µ/2 ≤ xisi ≤ 3µ/2 ≤ 2µ for all i. Further, xT s =

∑
i xisi ≤ 2mµ. By the first two parts of the

invariant, x is a feasible solution of the primal and (y, s) a feasible solution to the dual.
Since x∗ is an optimal solution, cT x ≥ cT x∗. We apply Claim 1 first to the solution pair x and (y, s)

and then to the pair x∗ and (y, s) to obtain

xT s = cT x − bT y ≥ cT x∗ − bT y = (x∗)T s.

10



Assume xi < L/(4m). Since xisi ≥ µ/2, we have si ≥ µ/(2xi) > 2mµ/L ≥ 1/L · xT s. If x∗i > 0, then
x∗i ≥ L, and hence,

(x∗)T s ≥ x∗i si > L · 1/L · xT s = xT s ≥ (x∗)T s,

a contradiction. Thus, xi < L/(4m) implies x∗i = 0 in every optimal solution.
Since (y∗, s∗) is an optimal solution, bT y∗ ≥ bT y. We apply Claim 1 first to the solution pair x and

(y, s) and then to the pair x and (y∗, s∗) to obtain

xT s = cT x − bT y ≥ cT x − bT y∗ = xT s∗.

Assume si < L/(4m). Since xisi ≥ µ/2, we have xi ≥ µ/(2si) > 2mµ/L ≥ 1/L · xT s. If s∗i > 0, then
s∗i ≥ L, and hence,

xT s∗ ≥ xis∗i > 1/L · xT s · L = xT s ≥ xT s∗,

a contradiction. Thus, si < L/(4m) implies s∗i = 0 in every optimal solution.

We now define two set of indices

B = {i | si = 0 in all optimal solutions, 1 ≤ i ≤ m}, and

N = {i | xi = 0 in all optimal solutions, 1 ≤ i ≤ m}.

Clearly, B ∪ N ⊆ {1, 2, . . .,m}.

Theorem 2 (Strong Duality). For each i, either x∗i = 0 in every optimal solution or s∗i = 0 in every
optimal solution. Thus, cT x∗ − bT y∗ = (x∗)T s∗ = 0, and B ∪ N = {1, 2, . . .,m}.

Proof. As xisi < 2µ, if µ ≤ L2

32m2 , then xisi < 2µ ≤ 2 L2

32m2 = L2

16m . Then, either xi <

√
L2

16m = L
4m or

si <

√
L2

16m = L
4m , and hence, either i ∈ B or i ∈ N by the Lemma above .

Remark 17. By the Strict Complementarity Theorem (see e.g. [6, pp 77-78] or [10, pp 20-21]), there
are optimal solutions x∗ and (y∗, s∗) in which x∗i > 0 or s∗i > 0; thus, both these conditions can not
hold simultaneously. Thus, B ∩ N = ∅. Further, from Theorem 2, the above partition is unique (see
also [2]).

Remark 18. In the integer case (Section 7), if x∗i > 0 or s∗i > 0, then x∗i ≥
1
W and s∗i ≥

1
W . Or, the

lower bound L = 1
W .

Let (x∗, y∗, s∗) be any optimal solution. As soon as µ < L2

32m2 , we can determine the optimal
partition (B,N), i.e., x∗i = 0 for i ∈ N, s∗i = 0 for i ∈ B and B ∪ N = {1, . . . ,m}. We split the variables
x into xB and xN , the variables s into sB and sN , the vector c into cB and cN , and our matrix A into AB

and AN . Then our system (ignoring the nonnegativity constraints) becomes

ABxB + AN xN = b and AT
By + sB = cB and AT

Ny + sN = cN .

Since we know that x∗N = 0 and s∗B = 0 in every optimal solution, the system simplifies to

ABxB = b and AT
By = cB and AT

Ny + sN = cN . (8)

This is a system of n + |B| + |N | = n + m equations in |B| + m + |N | = n + m unknowns that is satisfied
by every optimal solution.
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Let us concentrate on the equation ABxB = b. If this equation has a unique solution, call it x∗B,
then (x∗B, x

∗
N) with x∗N = 0 must be the optimal solution, as there is an optimal solution, every optimal

solution satisfies ABxB + AN xN = b and xN = 0 in every optimal solution. In particular, x∗B ≥ 0. Note
that if ABxB = b has a unique solution, we can find it by Gaussian elimination.

What can we do if ABxB = b has an entire solution set? We describe a simple method, which,
however, is not the most efficient. There are more efficient methods, see, for example, [5, Section
3.3.5] or [10, Section 5.2.2], which do not increase the asymptotic running time. If |B| < n, the
problem

max cT
B xB, subject to ABxB = b, x ≥ 0

has fewer variables than the original primal, and we simply use the interior point method recursively
on the smaller problem.

Fortunately, we can force the situation |B| < n by using a technique called perturbation. Note that
|B| = n, implies N = ∅. Thus s∗i = 0 for all i in every optimal solution and hence the system AT y = c
must have a solution. Thus we are guaranteed N , ∅ if AT y = c does not have a solution. Assume, it
does. Note that AT has n columns, c is an m-vector, and m > n. Instead of working with the objective
direction c, we solve the problem for the direction c′ = c + c′′, where c′′ = (ε, ε2, . . . , εm), and ε

is positive, but very close to zero. Geometrically, we perturb the optimal direction slightly so as to
guarantee that the optimal solution is in a vertex of the feasible region and hence unique, see Figure 2.
Moreover, if ε is small enough, the optimal solution for cost vector c′ is also an optimal solution for
cost vector c. Using the techniques from Section 7, one can compute an explicit value for ε. We will
refrain from doing so. The perturbation also guarantees that AT y = c′ does not have a solution for any
positive sufficiently small ε.1 Thus N , ∅ and hence |B| < n.

We are thus guaranteed that we eliminate at least one primal variable. We now use recursion to
solve the smaller problem. As the number of variables decreases after every call, there can be at most
O(m) such calls or the running time will go up by a multiplicative factor of m.

6 Complexity

Let us assume that the initial value of µ is µ0 and that we want to decrease µ to µ f . Since every
iteration decreases µ by the factor (1 − δ), we have µ = (1 − δ)rµ0 after r iterations. The smallest r
such that (1 − δ)r ≤ µ f is given by

ln
µ0

µ f
≈ −r ln(1 − δ) ≈ −r(−δ),

or equivalently,

r = O
(
1
δ

log
µ0

µ f

)
= O

(
√

m log
µ0

µ f

)
.

If W is an upper bound on the coordinates of the optimal solution to our primal problem and L is
a lower bound on a nonzero x∗m+2 in an optimal solution to (6), then from Section 4,

µ2
0 = 4

(
M2 +

∑
c2

i

)
≤ 4

(
16m2U2

L2 + mU2
)
≤ 68

m2U2

L2 .

1Assume AT y = c′′ has a solution. Since A has more columns than rows, there is a nonzero x such that Ax = 0.
Multiplying AT y = c′′ by xT from the left yields xT c′′ = xT AT y = (Ax)T y = 0T y = 0. Next note that xT c′′ =

∑
1≤i≤m xiε

i,
i.e., ε is a zero of the m-th degree polynomial with coefficients xm to x1 and constant coefficient zero. Since a polynomial of
degree m has at most m real zeros, we have xT c′′ , 0 for all sufficiently small positive ε, a contradiction.
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direction c

direction c’

Figure 2: The cost vector c is orthogonal to the red (dashed) facet of the feasible region and hence
all points on the red (dashed) facet are optimal. The cost vector c′ is a small perturbation of c. With
respect to cost vector c′, the optimal solution is unique and also an optimal solution for cost vector c.

From Section 5, µ f ≥
L2

32m2 . Thus, the number of iterations will be

r = O
(
√

m log
µ0

µ f

)
= O

(
√

m log
mU/L
L2/m2

)
= O

(
√

m(log m + log U + log
1
L

)
)
.

For the integer case, as log L = O(n(log n + log U)), the number of iterations will be

O
(√

m(log m + n
(
log n + log U

))
.

7 The Bounds

In the previous sections, we used upper bounds on the components of an optimal solution and lower
bounds on the nonzero components of an optimal solution. In this section, we derive these bounds.
It assumes more knowledge of linear algebra, namely, determinants and Cramer’s rule, and some
knowledge of geometry. Unless stated otherwise, we assume that all entries of A and b are integers
bounded by U in absolute value.

The determinant of a n × n matrix A is a sum of products, namely,

det A =
∑
π

(−1)πa1π(1)a2π(2). . .anπ(n).

The summation is over all permutations π (with the appropriate sign) of n elements and the product
corresponding to a permutation π selects the π(i)-th element in row i for each i. Each product is at
most Un. As there are n! summands, we have |det A| ≤ n!Un < 2(nU)n; the 2 is only needed for n = 1,
see [1, pp 373-374], [3, p75] or [6, pp 43-44].

Cramer’s rule states that the solution of the equation Ax = b (for a n × n non-singular matrix A) is
xi = (det Ai)/ det A, where Ai is obtained by replacing the ith column of A with b.

Assume that the primal is bounded. As all constraints are linear, the solution space will be a
convex polytope, and (by convexity) there will be an optimal solution that is a vertex. For each vertex,
there is a submatrix A′ of A obtained by keeping only n columns of A such that the corresponding
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coordinates of the vertex are xi = (det A′i)/ det A′. The remaining m − n coordinates are zero. If we
assume that each |bi| ≤ U, the maximum value of

∣∣∣det A′i
∣∣∣ is no more than n!Un. Also, |det A′ | ≥ 1

since a nonzero integer is at least one in absolute value. Thus, x∗i < W = 2(nU)n for the coordinates
of vertex solutions of the original primal.

In the rest of this section, we mainly discuss bounds for the artificial problem. Let us next ask
how small a nonzero coordinate of a vertex solution of the artificial primal problem (6) can be? The
constraint system is

Ax + ( 1
W b − Ae)xm+2 = 1

W b
eT x + xm+1 + xm+2 = (m + 2).

Any vertex solution is determined by some (n + 1) × (n + 1) nonsingular submatrix B of the left-hand
side. In the column corresponding to xm+2, the entries are bounded by (m + 1)U, and all other entries
are bounded by U. Since any product in the determinant formula for B can contain only one value of
the column for xm+2, we have |det B| ≤ (n + 1)!(m + 1)Un+1. Consider next det Bi where Bi is obtained
from B by replacing one of the columns with the right-hand side. We need to lower bound |det Bi |.
The matrix Bi may contain two columns with fractional values. If we multiply these columns with
W, we obtain an integer matrix. Thus, |det Bi | ≥ 1/W2 if nonzero. Thus, any nonzero coordinate of a
vertex solution of (6) is greater than L, where

L =
1

W2 ·
1

2m ((n + 1)U)n+1 ≥
1

8m ((n + 1)U)3(n+1) .

The constraint system of the dual (7) is

AT y + eyn+1 + s = c,
( 1

W b − Ae)T y + yn+1 + sm+2 = M
yn+1 + sm+1 = 0.

The constraint matrix has m + 2 rows and n + 1 + m + 2 columns. The last m + 2 columns contain an
identity matrix, all entries in the column for yn+1 are one, and in the first n columns most entries are
bounded by U. In the row with right-hand side M, the entries are bounded by (m + 1)U. Any vertex
solution is determined by some (m + 2) × (m + 2) nonsingular submatrix B of the left-hand side. At
most n + 1 columns of B belong to the first n + 1 columns of the left-hand side. The other columns
of B contain the identity matrix. Thus, det B is equal to the determinant of a square submatrix of the
first n + 1 columns of the left-hand side. We conclude that |det B| ≤ (n + 1)!(m + 1)Un+1. Consider
next det Bi where Bi is obtained from B by replacing one of the columns with the right-hand side. The
matrix Bi may contain one column with fractional values. If we multiply this column with W, we
obtain an integer matrix. Thus, |det Bi | ≥ 1/W, if nonzero. Thus, any nonzero coordinate of a vertex
solution of (7) is also greater than L.

Claim 6. If all entries of A and b are integral and bounded by U in absolute value, then the coordi-
nates of each vertex solution of the primal problem (1) are less than W. Any nonzero coordinate of a
vertex solution of the artificial primal and its dual is at least L.

Remark 19. If the entries of A and b are rational numbers, we write the entries in each column (or
row) with a common denominator. Pulling them out brings us back to the integral case. For example,∣∣∣∣∣∣ 2/3 4/5

1/3 6/5

∣∣∣∣∣∣ =
1

15

∣∣∣∣∣∣ 2 4
1 6

∣∣∣∣∣∣ .
Thus, if the determinant is nonzero, it is at least 1/15.
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Remark 20. If the entries are reals, we approximate each ai j by a rational number ri j with 1 − 1/n ≤
ai j/ri j ≤ 1 + 1/n. Then, any product of n ai js is upper bounded by (1 + 1/n)n times the product of the
corresponding ri js and lower bounded by (1− 1/n)n times the product. Since (1 + 1/n)n ≤ e ≈ 2.71 (e
here being Euler’s number) and (1 − 1/n)n ≥ 1/e, we can use the bounds for the rational case to get
bounds for the real case.
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Appendix: Result from Algebra

Assume that A is n × m matrix and the rank of A is n, with n < m. Then, all n rows of A are linearly
independent. Or, α1A1 + α2A2 + . . . + αnAn = 0 (0 here being a row vector of size m) has only one
solution αi = 0. Thus, if x is any n×1 matrix (a column vector of size n), then xT A = 0 implies x = 0.
Note that (xT A)T = AT x. Thus, AT x = 0 implies x = 0.

As A is n × m matrix, AT will be m × n matrix. The product AAT will be an n × n square matrix.
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Consider the equation (AAT )x = 0. Pre-multiplying by xT we get xT AAT x = 0 or (AT x)T (AT x) =

0. Now, (AT x)T (AT x) is the squared length of the vector AT x. If a vector has length zero, all its
coordinates must be zero. Thus, AT x = 0, and hence, x = 0 by the preceding paragraph.

Thus, the matrix AAT has rank n and is invertible.
Also observe that if X is a diagonal matrix (with all diagonal entries non-zero) and if A has full

row-rank, then AX will also have full row-rank. Basically, if the entries of X are x1, x2, . . ., xn then the
matrix AX will have rows as x1A1, x2A2, . . ., xnAn (i.e., ith row of A gets scaled by xi). If rows of AX
are not independent, then there are βs (not all zero) such that β1x1A1 + β2x2A2 + . . . + βnxnAn = 0, or
there are αs (not all zero) such that α1A1 + α2A2 + . . . + αnAn = 0 with αi = βixi.
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