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Abstract:  A solitary wavelet, based on the hyperbolic secant function is proposed, characterized and applied to 

real-time data. Numerical analysis of the solitary wavelet reveals that it has a huge number of vanishing higher order 

moments, tending rapidly towards zero with a negative logarithmic slope. It is seen that the wavelet has a very low 

number of oscillatory sub-lobes, thus making it the ideal candidate to perform signal analysis of burst-type 

phenomena without undergoing multiple levels of filtering and approximation, and this concept is illustrated by 

effectively detecting the QRS complex of an ECG cycle without undergoing multiple filtering levels. The ability of 

the proposed wavelet to perform analysis of a diverse variety of real time data without multiple levels of 

decomposition and reconstruction forms the novelty of the present work. 

One Sentence Summary: A Solitary Wavelet with vanishing higher moments yielding effective detection of bursts 

with minimal filtering is proposed and investigated. 

Introduction:  

The efficient understanding of the rich dynamics of most real-time signals and waveforms, both natural and 

man-made, requires thorough analysis at multiple levels of temporal and spectral resolution [1,2]. It is 

along these lines of thought that the past couple of decades have witnessed extensive research and 

application of the wavelet transform – a comprehensive extension to the frequency-localized Fourier 

Transform by adding time localization as well [2,3,4].  

One of the most significant applications of the wavelet based analysis is in detecting, identifying, 

characterizing and predicting trends and features in real-time signals [2,3]. The key clues in such feature 

detections are discontinuities and bursts in the time series data, which usually tend to be extremely compact 

and localized in time [2,3]. It has been a constant challenge to formulate various mathematical functions as 

bases for wavelets, which are able to capture such bursts with the least possible level of decomposition, 

reconstruction and filtering [1,2,3,4]. The ability of a wavelet to capture such bursts effectively translates 

analytically to the wavelet function, also called the „Mother Wavelet‟ having the most possible number of 

zero higher order central moments [3,4,5]. In, literature, many wavelet families have been formulated such 

as the Daubechies, Biorthogonal, Reverse Biorthogonal and Coiflets, to try and achieve this criteria of 

maximum number of vanishing moments [4,5,6,7,8,9,10]. Of particular mention are the Daubechies 

wavelets, which exhibit the highest number A of vanishing moments for a given „support‟ N=2A [9]. Also 

of significant mention is the Discrete Meyer Wavelet which exhibits vanishing moments up to very large 

orders [10]. However, most of the wavelets mentioned above invariably exhibit increasing moments of 

higher orders, as a result of which, extensive wavelet based decomposition and reconstruction at multiple 

levels need to be performed for most real time data before effective burst detections can be carried out 

[1,5,8]. At a hardware level, this almost invariably and inevitably translates to higher amount of power 

dissipation. 

In the present work, a new kind of wavelet, termed the „Solitary Wavelet‟ is proposed based on the 

hyperbolic secant function, which is known to possess an extremely smooth and compact structure. It is 

seen that the higher order moments of this wavelet is closer to zero and vanishes at a rate logarithmically 

faster than existing wavelets mentioned above. The primary application targeted for this wavelet is the 

effective detection of bursts in signals [5]. In order to understand this, a case study pertaining to the 

automated detection of the QRS complex in Electrocardiogram Time Series without filtering/reconstruction 

is presented [11,12].  

The extreme compactness and smoothness of the hyperbolic secant based solitary wavelet function, as seen 

by the rapidly vanishing higher moments, yields in very effective detection of bursts and peaks with 

minimal amount of filtering, and this forms the significant novelty of the present work, as a consequence of 

which, the solitary wavelet finds extensive application in analyzing a diverse variety of real time data 

effectively. 



Formulation of the Solitary Wavelet:  

1. The Father and Mother Wavelets 

The primary inspiration for the concept of solitary wavelet arises from the hyperbolic secant (sech) 

function. This function is popular in the field of photonics as a solution to various nonlinear differential 

equations, and the waveform of the sech function is known to be compact and extremely smooth [13]. 

Based on these properties, the solitary wavelet is formulated according to the following procedure: 

1. The first step is to define the Scaling Function, also called the „Father Wavelet‟ ϕ in continuous 

time, based on the hyperbolic secant as follows [14]: 

 ( )       ( ) (1) 

2. The Solitary Father Wavelet ϕ thus defined is used as the basis to form the Solitary „Mother 

Wavelet‟ ψ, such that the following criteria are satisfied [1,2,5,9,10]: 

a. ψ(t) belongs to a subspace of the space   ( )   ( ), the space of absolutely and square 

integrable measurable functions. 

b. ϕ(t) and ψ(t) are orthogonal to each other. 

c. ψ(t) has zero mean, i.e. the following holds: 
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d. ψ(t) has unity square norm, as per the following equation: 
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e. It is preferable, but not a mandatory criterion to ensure that ψ(t) possesses a higher number M 

vanishing moments. In other words, for all m<M, 
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3. The Solitary Mother Wavelet ψ is used to define the solitary daughter wavelets  (   )( ) in the 

following fashion with a > 0 denoting the „scale‟ and b ϵ   denoting the „shift‟ : 
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4. The Father, Mother and Daughter Solitary Wavelets are expressed as discrete signals ϕ(n), ψ(n) and 

 (   )( ) centered around zero. 

Based on the above procedure, the solitary father and mother wavelets have been formed using the MATLAB 

Wavelet Toolbox [10]. The Father and Mother Wavelet Signals are plotted in Fig. 1.  

 

 
Figure 1 The Father and Mother Wavelet Signals 

 

2. Analysis of Higher Moments 

One of the preferable but not mandatory criteria mentioned above in the mother wavelet formulation is the presence 

of vanishing higher moments, where the „m‟th moment of the mother wavelet ψ is given by Eq. 4. Physically, the 

existence of vanishing higher moments signifies that the wavelet has a compact, continuous, smooth structure, and 

that the analysis of bursts in signals with such wavelets can be carried out with minimal filtering [1,2,5,9].  

In order to investigate and characterize the performance of the solitary wavelet, the moments upto the tenth order of 

the solitary mother wavelet (SOL) are computed and compared with the corresponding moments of six established 



wavelets, namely Daubechies 4 (DB4), Biorthogonal 4.4 (BIOR4.4), Reverse Biorthogonal 4.4 (RBIO4.4), Symlet 4 

(SYM4), Coiflet 4 (COIF4) and the Discrete Meyer Wavelet (DMEY) [10]. The moments are tabulated in Table 1. 

Table 1 Moments of Various Wavelets upto the Tenth Order 

Moments DB4 BIOR4.4 RBIO4.4 SYM4 COIF4 DMEY SOL 

First 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Second 1.33E-01 1.09E-01 1.16E-01 1.33E-01 4.26E-02 9.90E-03 1.00E-02 

Third 2.05E-02 5.41E-02 8.01E-02 6.96E-02 1.96E-02 3.30E-03 1.50E-03 

Fourth 1.13E-01 9.95E-02 1.27E-01 1.30E-01 3.74E-02 7.60E-03 2.80E-03 

Fifth 3.25E-02 8.78E-02 1.37E-01 1.14E-01 3.19E-02 5.40E-03 9.00E-04 

Sixth 1.05E-01 1.12E-01 1.73E-01 1.52E-01 4.10E-02 7.30E-03 9.38E-04 

Seventh 4.19E-02 1.16E-01 2.05E-01 1.58E-01 4.19E-02 6.60E-03 4.67E-04 

Eighth 9.95E-02 3.45E-01 2.49E-01 1.90E-01 4.85E-02 7.60E-03 3.50E-04 

Ninth 4.96E-02 1.47E-01 2.99E-01 2.08E-01 5.24E-02 7.60E-03 2.00E-04 

Tenth 9.56E-02 1.66E-01 3.62E-01 2.42E-01 5.87E-02 8.30E-03 1.36E-04 

 

From Table 1, it is seen that the higher moments of the solitary wavelet tend toward zero. From this trend, it is seen 

that even the Meyer wavelet moments increase after a certain order (sixth). In order to better capture the trends of 

the higher moments, the moments of the various wavelets from the third order onwards are plotted on a logarithmic 

scale in Fig. 2. It is clearly seen that while all the other wavelet moments including those of the Daubechies and 

Meyer show an increasing trend, the solitary wavelet moments show a decreasing trend with a negative logarithmic 

slope. This indicates that the moments of the solitary wavelet rapidly decay and vanish toward zero. This gives the 

solitary wavelet the exclusive advantages of smoothness, compactness and effective detection of bursts as explained 

earlier. 

 
Figure 2 Higher order Moments of various wavelets plotted with logarithmic scale. 

Applications of the Solitary Wavelet 

One of the most popular applications of wavelet based signal analysis is in the detection of various features 

in the electrocardiogram (ECG) signal [11]. One cycle of a healthy ECG signal typically consists of three bursts, 

named the P-wave, the QRS-complex and the T-wave [11]. These are caused due to the contraction of the atria, 

contraction of the ventricles and the repolarization of the atria respectively. It can be seen that the three bursts have 

different scales (pulse widths) [11,12]. The detection of the onsets and widths of the three waves prove to be of 

immense value in diagnosing various ailments such as hypertrophy, arrhythmia, blocks, infarctions and ischemia 

[11,12,15].  

Conventionally, to perform ECG analysis, the Daubechies Wavelet is chosen, since for a given support N, 

the Daubechies wavelet DbA yields A=N/2 vanishing moments. Typically, Db4 or Db6 wavelets are used [16]. The 

typical procedure is that the raw ECG signal are decomposed upto a certain level X and then shifted by the 

approximation of X-1 to get a baseline drift free signal. Following this, the signal is again decomposed to a different 

level and the higher order details are used to construct the signal. Finally, by performing wavelet analysis at the 

desired scale, the peaks are identified [17-24]. 

The primary objective of the solitary wavelet introduced in the present work is to avoid the tedious multiple 

filtering process. Since the solitary wavelet has a high number of vanishing moments, it is able to approximate 

bursts effectively.  



The solitary wavelet analysis of a function f(t) is formally defined as follows [9]: 
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Here, a and b denote the scales and shifts respectively. In order to effectively identify the peaks 

corresponding to an ECG waveform, it is important to know the typical scales at which the P, QRS and T waves 

occur. The ECG typically has a period of 1s, resulting in a frequency of 1Hz [15]. In the present work, a healthy 

ECG sample is obtained from the “Common Standard for Electrocardiography” library‟s ECG databank [25]. The 

samples obtained are of a sampling frequency of 900Hz, and each ECG cycle typically consists of 800-1000 samples 

[15,25]. The Shift-Scale contour plotted for six cycles of this ECG data are shown in Fig. 3.  

 
Figure 3 Analysis of ECG Data using Solitary (top) and Daubechies Db4 Wavelet (bottom) 

As can be observed from Fig. 3, in the case of Solitary wavelet, in the scale range of 1-150, six well defined peaks 

are present, and these peaks directly coincide with the QRS complex of each cycle. On the other hand, the same 

scale range of 1-150 in the Daubechies 4 analysis shows multiple peaks corresponding to each QRS complex. These 

multiple peaks give the appearance of a „dog‟s paw‟, and for each QRS complex, all other peaks except for the 

longest are spurious peaks. The same conclusion can be derived for the T waveforms of each cycle (scale value 150-

300) and the P waveforms of each cycle (scale value 300-450). The presence of spurious peaks in the Daubechies 

analysis is due to the oscillatory nature of the wavelet [9]. It is to avoid these spurious peaks that multiple levels of 

filtering are required in the Daubechies wavelet case, whereas such filtering is unnecessary for the Solitary wavelet 

[1,5].  

As an example illustrating this concept, the QRS complex of the ECG signal are detected using solitary and db4 

wavelets and are then compared. It can be seen that the QRS peaks in each cycle of ECG are about 25 samples wide 

and thus a scale value a of 25 is chosen as he basis. The solitary wavelet analysis of the ECG signal given by Eq. 6 is 

thus carried out for a scale of 25 and the analysis is overlaid on the original ECG data in Fig. 4. A similar analysis 

using the Db4 wavelet at the same scale value of 25 is also plotted. As can be seen, while the solitary wavelet 



analysis shows clear unambiguous peaks corresponding to the QRS complexes of each cycle, the Daubechies 

wavelet oscillates heavily and leads to ambiguity in detection of QRS complexes, necessitating the need for multiple 

levels of filtering and reconstruction in the latter. 

 

 
Figure 4 Solitary (top) and Db4 (bottom) Analysis (Red) of ECG Signal (Blue) for a typical QRS scale of 25 

As an extension of this inference, a practical application of the solitary wavelet is in detecting specific cycles in a 

given ECG data where the heartbeat is slower or faster than the normal, thus pertaining to cases of tachycardia or 

bradycardia [11,12,15]. In order to demonstrate this, data from an ECG simulator operating at 200 samples/second is 

taken at two different rates, 75 beats per second (bps) and 140 beats per second. The scale for QRS detection is set 

to 40, corresponding to the slower rate (75bps). The analysis is plotted in Fig. 5. 

 
Figure 5 Solitary analysis of ECG signal with two different beat rates 

It can be seen from the analysis in Fig. 5 that since the analysis scale is set to 40 which corresponds to 75bps, the 

peaks of ECG cycles not corresponding to this heart rate (140bps; at times 1500 onwards) exhibit significant 

attenuation as opposed to the first four cycles corresponding to a 75bps rate. In practical scenarios, such variations in 

analyzed amplitude corresponding to variations in heart rates can be used as a calibration tool for the solitary 

analysis, and a sensitivity factor can be established. 

An interesting observation holds in data pertaining to catch of American Plaice Fish in Iceland from 1992 to 2012, 

as shown in Fig. 6 [26]. Here, the data is seasonal, and slowly declining over the years. Though this is evident in the 

long term time series data, if a person had done the wavelet analysis in the middle instant of the data (around 150), 

the big red patch at 70 and the big blue patch at 140 in the scale of 50, would have clearly heralded the befall, where 

the next dataset at around 210 shows the complete absence of any patch at 50 scale. In other words, the decline of 

fish catch could easily be predicted and appropriate precautions taken with the help of Solitary wavelet. 



 
Figure 6 Solitary Wavelet analysis of Fish Catch data in Iceland 

Conclusion 

Taking inspiration from the hyperbolic secant function, the father and mother wavelets corresponding to the solitary 

wavelet have been formulated, investigated and various applications have been explored.  

One significant property observed in the solitary mother wavelet is that the higher order moments tend towards zero, 

vanishing with a negative logarithmic slope, a feature not exhibited by most other wavelet functions. A direct 

physical consequence of this property is that the mother wavelet is compact, smooth, has a symmetrical structure 

and yields to effective burst type signal detection with minimal filtering. In order to ascertain this inference, a real-

time ECG data is taken and a direct scale based analysis is performed using both solitary and Daubechies wavelets. 

The results clearly indicate the increased effectiveness to which the solitary wavelet is able to detect the QRS 

complex of the ECG signal. Other pattern and trend detection applications such as fisheries have also been explored. 

The simple structure of the solitary wavelet with minimal oscillation, resulting in a high number of vanishing 

moments and yielding effective detection of bursts and peaks in real time data pertaining to diverse variety of fields 

form the key highlights of the present work on the solitary wavelet.  
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