
A detailed explanation of each statement 

/machine translation/ 

 

Fermat's Last Theorem (main case: n is prime): 

For integers A, B, C and prime n>2 the equal A
n
+B

n
=C

n
 does not exist. 

From this it follows that equation a
dn

+b
dn

=с
dn

, or (a
d
)
n
+(b

d
)
n
=(с

d
)
n
, also does not exist. 

 

The essence of the contradiction: If A, B, C are integers and A
n
+B

n
=C

n
, then A+B-C=0 and 

A
n
+B

n
<C

n
. 

If A+B=C then A
n
+B

n
<(A+B)

n
. 

 

Notations are done in a number system with a prime base n: 

Prime base we have because in this case, there are important properties of the integers 

evidence: Fermat's Little Theorem, and others. 

 

A(t) – t-th digit from the end in the number A; for convenience: A(1)=A', A(2)=A'', A(3)=A'''; 

Use a dash to indicate the numbers greatly simplifies the writing of formulas, especially that 

only the last three digits are primarily used in the proof. 

 

A[t] – t-digits ending of the number A; A/t/, where A=pq…r, – the product of p[t]*q[t]*...*r[t]. 

The factors p, q, ... r can be as simple and composite numbers. 

For example, in the decimal system for p=321, q=1433: 

p(1)=p'=1, p(2)=p''=2, p(2)=p'''=3, и т.д.; q(1)=q'=3, q(2)=q''=3, q(3)= q'''=4, etc. 

p[2]=21; q[2]=33; (pq){2}=p[2]*q[2]=21*33, wherein (pq)[2]=93. 

 

From binomial theorem (for prime n) its follow two simple lemmas: 

0a°) if A[t+1]=xn
t
+1, where t>0 and A is the base of a degree A

n
, then the digit (A

n
)(t+2)=x; 

 

Proof. We write the last three terms of the expansion of the binomial: 

(xn
t
+1)

n
=...+0,5*n*(n-1)*(xn

t
)
2
+n*xn

t
+1=...+0,5(n-1)x

2
*n

2t+1
+xn

t+1
+1, where the second 

(from the end) member has t+1 zeros, and all subsequent (from the end) the members have 

at least t+2 zeros. Consequently, the digit with number t+2 is equal to x, i.e. (A
n
)(t+2)=x. 

 

0b°) if a[t+1]=xn
t
+1, where digit a(t+1)=x>0 and t>0, then the digit [(a[t+1])

n-1
](t+1) = «-x» = n-x. 

In this case (xn
t
+1)

n-1
=...+(n-1)*xn

t
+1=...+(-x)n

t
+1=Sn

t+1
+(-x)n

t
+1, where the second (from 

the end) member has t zeros, and the sum S has not less than t+1 zeros. At the same time 

the absolute value Sn
t+1

>|(-x)n
t
+1|. Therefore, to get a positive value of (-x)n

t
+1 [and (-x)n

t
], 

the number S must be reduced by n
t+1

 and by this number increase the amount of the last 

two terms (-x)n
t
+1 with the results obtained (n-x)n

t
+1, where the digit n-x is simple and 

positive number. 

 

So, let us assume that for a prime number n>2, relatively prime A, B, C, and A'[or B']≠0 

1°) A
n
=(C-B)P [=aP=C

n
-B

n
, where P=p

n
 and /for convenience/ a=C-B] where, as known, 

 



C
n
-B

n
=(C-B)P, where P=C

n-1
+BC

n-2
+...+B

n-2
C+C

n-1
, – formula of elementary algebra course. 

If the digit A'=0, instead of A we consider the number B.  

 

1a°) P'=p'=1 (a consequence of Fermat's little theorem), 

Indeed, since A'≠0, then, according to Fermat's little theorem, A
n-1

'=1. If B'=0, then B
n-1

'=0. 

As a result from (A'A
n-1

')=(C'C
n-1

'-B'B
n-1

') follows A'=(C'-B')', from here P'=1. Equality p'=1 

follows from the equality P=p
n
. The equality P=p

n
 follows from the fact that:  

1) the numbers (C-B) and P are relatively prime (if A'≠0 and the numbers A, B, C are 

mutually prime), and their product is the n-th degree. Therefore, the numbers (C-B) and P 

are the n-th powers. The numbers (C-B) and P are relatively prime, because the number P 

can be represented as: P=D(C-B)
2
+n(CB)

n-1
. 

 

1b°) [U=] A+B-C=un
k
, where k [>0] – the number of zeroes after the digit u' (i.e. U[k+1]≠0). 

Equality U'=0 follows from the equation A'=C'-B'. Since U>0, then it has a significant digits, 

the first of which from the end has the number k+1. 

 

1c°) g – any integer solution [which exists!] of the equation (Ag)[k+2]=1. 

This follows from the lemma for the number system with the prime base n: in the 

multiplication table Ag(i) (i=1, 2... n-1), where A'≠0 and g(i) – digits in a number system with 

the prime base n, all the latest digits [Ag
(i)

]'  (i=0, 1, 2, … n-1) are different (the lemma is 

easily proved by contradiction). Consequently, for any digit A' not equal to zero, there is a 

one-digit number G[1]=g, that (A'g)'=1. 

Further, if the number x>0, then we take the number A with ending A[2]=xn+1.  

It is easy to find such number G[2]=yn+1, that [(xn+1)(yn+1)][2]=1, from here (x+y)n+1=1, 

from here y=n-x. Etc. Thus, by multiplying of the number A by corresponding numbers G[i], 

or as a result by the number g=G[1]*G[2]*... G[t], we can get the number Ag with the end 

(Ag)[t]=1, where t is arbitrarily large. 

An example of the last digits in multiplication table for n=7 and g=2: 

0 х 2 = ...0, 1 х 2 = ...2, 2 х 2 = ...4, 3 х 2 = ...6, 4 х 2 = ...1, 5 х 2 = ...3, 6 х 2 = ...5, with a set 

of the latest digits 0, 2, 4, 6, 1, 3, 5, where no figure is not repeated! 

 

An elementary proof of the Fermat’s Last Theorem 

 

Let's multiply the equation 1° by the number g
n
 from 1c° received the new equality 1°: 

1°) A
n
=(C-B)P, where P=Pg

n-1
, A=Ag, A

n
=A

n
g

n
 and A[k+2]=A

n
[k+2]=1; k and n are const.  

Let us show that the ending  (C-B)[k+2], or a[k+2], is also equal to 1.  

To do this, the number P will be represented in the following form: P=q
n-1

+Qn
k+2

  

[this is the KEY to the demonstration], where q and Q are integers. 

Now, leaving in the numbers A, C-B [or a] and P only (k+2)-digit ending, we obtain the 

equation: A
n
[k+2]=(a[k+2]*q

n-1
[k+2])[k+2]. And then, based on the digits a'', a''' etc. up to (k+2)-th 

digit of a, we will consistently calculate the second, third, etc. digit of numbers q'', (q
n-1

)'', a''', 

then a''', q''', (q
n-1

) ''', a'''', etc. (All of them are equl to zero. Hence P=1+Qn
k+2

=1
n-1

+Qn
k+2

.) 

 

2°) a'= q'=1, which is deduced from 1°b. 



Because (aP)'=1, where P'=1. 

 

3°) From the identity A
n

(2)=[(a''n+1)(q''n+1)
n-1

](2)=(cf. 0b°)=[(a''n+1)(-q''n+1)](2) [=0] we find: 

a''=q'' and the degree of endings A
n

{2}=(a''n+1)[2]
n
, from here (cf. 0a°) we find the digit A

n
(3):  

This main logic double-thread operation: from the ending A
n

(2) [=1] we find a parity digits a'' 

and q'', hence, and the equality of endings a[2] and q[2]. But the latter form (make) product of 

the endings in the form of degree A
n

{2}=(a''n+1)[2]
n
.  

And it is important that this work is the degree A
n
, in which the meaning of the digit A

n
(3) is 

uniquely determined by the degree of ending A
n
/t/! 

 

4°) A
n

(3) (=0 – cf. 1°) = a'' and therefore a''=q''=0 (otherwise A
n

(3) ≠0). 

That is, from (A
n
)'''=A'', where A''=a'' and (A

n
)'''=0, we find3: a''=q''=0. 

 

And then, we makes calculations 3°-4° with all subsequent digits [until the (k+1)-th] of the 

numbers A, P and a, with the result equality A[k+1]=P[k+1]=a[k+1]=(C-B)[k+1]=1 and 

 

5°) [A-(C-B)][k+1]=[A+B-C][k+1]=U[k+1]=0, which contradicts to 1b°. Thus FLT proved. 
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