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Abstract

A Chaos based compression technique offering high capacity and high security simultaneously is designed and imple-
mented. A chaotic image, obtained by reshaping the signal representing a frequency dependant driven chaotic system is
used as the data carrier in which data from the file to be compressed is embedded. Implementation of the algorithm is
carried out in MATLAB and Python platforms for various filetypes such as txt, png, pdf, mp3, 3gp and rar formats. A
comparative performance analysis reveals a high fidelity with a mean square errors of less than 0.0009 percent as well
as a relatively high compression ratio value of 5-6. A very high level of security leading to up to 60 percent of mean
square error values even for 1 percent misalignment in the decryption process is observed. The execution times for the
implementations are obtained reasonably at around 5 seconds. A new compression technique, termed ‘supercompression’
consisting of repeated application of the compression technique is proposed. A proof-of-concept implementation achieved
extremely high compression ratios of around 40000. The extreme simplicity of implementation coupled with the twin
advantages of high compression ratios and high security forms the highlight of the present work.
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1. Introduction

The rise and growth of the internet and networking in recent years has led to an information explosion [1, 2, 3].
Buzzwords such as Big Data, Cloud Computing and Internet of Things are used extensively in industry and academia
alike and the demands for higher data storage capacities are increasing by the day [4, 5, 6]. The urgent necessity of
innovative techniques promising large compression ratios with minimal loss cannot be over-stated [7, 8, 9, 10].

Fortunately, advances made in the fields of nonlinear signal processing, wavelet transforms, chaos and fractal theory
have enabled efficient techniques that achieve compression ratios of more than 100:1, where the compression ratio is
defined as the ratio of the uncompressed data size to the compressed data size. [10, 11, 12, 13].

Specifically, fractal image compression, proposed by Barnsley et al. have exploited the self-similar and fractal pattern
‘domains’ in text and images and by eliminating the redundant and repetitive structures, have achieved compression
ratios in the excess of 100:1 [14, 15, 16]. On the other hand, mainstream techniques such as JPEG and MPEG achieve
maximum compression ratios of 30:1 with an acceptable loss factor [17, 18].

However, in the present era of Big Data, high storage capacity is not the only pressing need. The recent surge in
cybercrimes such as hacking has highlighted a critical need for data security [19, 20]. While secure embedding techniques
such as steganography and watermarking exist, they compromise heavily on the embedding capacity [21, 22].

The present work purports to the design and implementation of a chaos-based embedding process for textual data
using images as the storage medium. Specifically, a frequency dependant chaotic system is proposed where the control
parameter, the frequency ratio of the input signals forms a secure embedding ‘key’. This chaotic system is used to
generate a chaotic image. The textual data is embedded onto the image. This process thus forms a one-step process
covering both compression and encryption, enabling the twin advantages of capacity and security simultaneously. The
compression ratios obtained are greater than 150 and show a nonlinear dependence on the text size. The decryption of
the text is observed to yield very low bit error rates of the order of 0.0009 percent. The simplicity of implementation
of the present work coupled with extremely high compression ratios and secure encryption form the highlights of the
present work.

The remainder of the work is structured as follows. ‘Methodology’, described in Sec. II elaborates on the two principal
steps used in the embedding process - The Generation of a Chaotic ‘Carrier’ image, and the Embedding Process where
the text to be compressed is converted into a pixel pattern, normalized and additively embedded in the image. The
corresponding decryption process is also outlined. The ‘Performance Assessment’, described in Sec. III characterizes the



performance of the embedding process pertaining to three principal aspects - Capacity, Fidelity and Security. Standard
parameters such as Compression Ratio and Mean Square Error are used for ascertaining the performance of the proposed
embedding process. In the ‘Inferences and Discussion’ Sec. 1V, the variation of such parameters with the nature of chaos
generated, as described by the bifurcation diagram, as well as with the variations in the text size are discussed. Finally,
based on the discussed results and inferences, a new variant of chaotic compression promising compression ratios in
excess of 30000, termed ‘Supercompression’ is formulated and studied.

2. Methodology

The embedding process comprises of two functional units. The first pertains to the generation of a one dimensional
chaotic signal, using a frequency-dependant iterative map and subsequently reshaping the signal into a two dimensional
pattern (image). The second unit converts the text to be compressed into a pixel pattern, and after appropriate
normalization, additively embeds it into the chaotic ‘carrier’ image generated in the first unit. This embedding process
forms a one-step encryption-compression process. The de-compression then comprises of the corresponding inverse
operations - subtractive decoding and denormalization. The compression-decompression process is illustrated as a
block diagram in Fig (1). The implementation of this block diagram is carried out using a numerical computation
software - MATLAB, and a system-interactive scripting language software - Python, and a comparative analysis of the
corresponding performances is carried out [23, 24].
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Figure 1: Block Diagram of the proposed Embedding Process
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2.1. Generation of Chaotic ‘Carrier’ Image

The use of a chaotic system to facilitate a secure high capacity embedding process is the backbone of the present
work.

The starting point in the definition of any chaotic system is the formulation of an iterative map, defining the evolution
of a system using a control parameter r [25]. Conventionally, iterative map nonlinearities are defined on amplitudes by
employing polynomial based functions [26]. However, the defining paradigm of the present work is the formulation
of a novel kind of chaos - frequency dependent chaos, more similar in tone to the phase-based chaotic iterative
functions used in standard circle maps [27]. This essentially consists of initially formulating an iterative map where the
chaotic variable is frequency. The emphasis on the usage of frequency is to achieve two primary goals. The first is that
frequency dependence encompasses a dependence on the driving signals, and this translates to easy tunability of the
system. Arising from this is the second goal, which is that the frequency ratio of the driving signals, acting here as a
control parameter, forms the ideal choice as a secure ‘key’, such that it is imperative to use the exact same key during
compression and de-compression procedures.

The presence of nonlinearity in the iterative map owing to some switching functions such as the differential (mod)
function ensures that for some control parameter values, the system displays chaotic behavior [25, 26]. It has been
well established in literature that circle maps are ideally suited to describing such systems based on switching and two
competing driving frequencies [28, 29, 30, 31, 32]. Hence, the iterative function proposed in the present work is inspired
from the standard circle map, whose iterative map is given as follows [28, 29]:

0(i +1) = mod(6(i) + Q + %sm(%e(i)), 1) (1)



with 6 being taken as modulo 1, and K and €2 being the control parameters. The standard circle map represents an area
preserving chaotic map physically seen in systems such as the kicked rotator.

By converting the phase terms from the above equation to frequency based terms, and with a remormalization to T,
the frequency iterative function, christened as the ‘frequency map’ is formed as follows:

‘ N, .
foi +1) = mod(f,(7) + o V(fo(i)), ) (2)

Here the f, terms denote the output frequencies, whereas fi and f2 denote the frequencies of the input signals. V(f,)
denotes the input signal waveform employed in the chaotic system. The salient features of the above mentioned iterated
function are as follows:

1. The nonlinearity, provided by the modulus function represents the switching operation, physically implemented
using differential amplifiers or XOR gates [33].

2. The control parameter r=f5/f1 is an additive parameter and determines when the system transits from order to
chaos and vice versa.

3. The V(f,) introduces a signal dependence, thus enabling the controlling of chaos by changing the waveform used
as input.

The bifurcation plot for a sinusoidal input V(f,(7))=sin(f,(7)) is given in Fig.(2).
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Figure 2: The Frequency Map Bifurcation Diagram of the chaotic system with sinusoidal inputs

From the diagram, it is seen that control values close to integers and half-integers give rise to order whereas non
integral ratios such as 3.22 or 3.71 give rise to chaos. To understand the nature of the system in such chaotic regimes, the
cobweb plot, a graphical visualization of the long term status of the system under repeated application of the proposed
iterative map, is plotted for the frequency ratios of 3.22 and 3.71 in Fig. (3) [25, 26].
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Figure 3: The Frequency Map Cobweb plots for frequency ratios of 3.22 and 3.71



It is noted that the iterative map elaborated above has three major components - first, a switching function based
nonlinearity (the modulus function); second, an additive frequency dependance; third, a dependance on the input signal
waveform (in this case, sinusoidal function). In order to form a chaotic signal from the defined frequency dependent
chaotic system, another mapping is required where the chaotic parameter is amplitude. The three elements of the
frequency map, namely modulus, ratio and signal dependence are stitched together to form an ‘amplitude map’,
without loss of principle and generality. This iterative map is given as follows:

v(i 4+ 1) = mod((v(i) + recos(ri) + cos(i)), 1) (3)

As with the frequency map, the nature of the amplitude map can be ascertained by plotting the bifurcation diagram,
as shown in Fig. (4). The cobweb plots for the frequency ratio values of 3.22 and 3.71 are shown in Fig. (5). From
the bifurcation diagram, it is seen that the amplitude map depicts a purely chaotic system, with no non-chaotic regions
seen for any value of control parameter r. Significant amount of research exists in literature on the formulation and
applications of purely chaotic systems [34, 35, 36]. However, the basis of frequency giving rise to the purely chaotic
amplitude map is the novelty of the present work.
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Figure 4: The Amplitude Map Bifurcation Diagram of the chaotic system with sinusoidal inputs

T W0 o0 ouow 81N
) 0

r=f2/f1=3.2 } r=f2/f1=37
Figure 5: The Amplitude Map Cobweb plots for frequency ratios of 3.22 and 3.71

From the amplitude map, a signal is defined as follows, representing ipso facto the chaotic system of Fig. (2) and
Fig. (4).

A(t) = mod(sin(2w f1t) + sin(2w fat), 1) (4)

where ¢ is the discrete sample index and runs from 1 to N for a signal of IV samples.

The waveform and 1D FFT spectrum corresponding to this equation are illustrated in Fig. (6) and Fig. (7)
respectively.
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Figure 6: The waveform of the chaotic signal A(¢). Inset: The first ten samples of the signal
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Figure 7: The 1D FFT Spectrum of the chaotic signal A(t)

The chaotic nature of the signal A(t) is assertively established by calculating the largest Lyapunov Exponent, a
measure of a system’s sensitive dependence on initial conditions [37]. Rosenstein’s algorithm is used to compute the
Lyapunov Exponents \;, where the sensitive dependence is characterized by the divergence samples d; (i) between nearest
trajectories represented by j given as follows, C; being a normalization constant:

d;(i) = CjeM ) (5)

The Largest Lyapunov exponent thus obtained for the chaotic signal A(t) is 2.29 [38].

The next step in the embedding process is to map the values of the generated chaotic signal into a pixel pattern
(image). In order to achieve this, the 1D signal, represented as a row vector, is reshaped into an array of the dimensions
M x M x 3, where M is an integer, and this reshaping is shown conceptually in Fig. (8). The resultant is that the N
samples of the vector A(t) is reshaped into a 3D array of the form A(m,m,?), m and i representing spatial and color
coordinates respectively [39]. The order of reshaping is essentially raster, going from left to right, then top to bottom
for each color space, and this order is taken care of by the in built ‘reshape’ commands of MATLAB and Python [39].
Appropriate zero padding is done to ensure that M is an integer, such that the relation N=M x M x 3 holds. The
base frequency fi is set as 0.01 and the frequency ratio r is set to the irrational number, 7. The generated image for
a M value of 440 is shown in Fig.(9). An M value of 440 implies that the image is capable of ‘storing’ 440 x 440 x 3
characters/bytes. In Joint Photographic Experts Group (JPEG) format, this image takes up 31.2 kB storage space.
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Figure 8: The mapping and reshaping of chaotic signal A(t) into the RGB ’carrier’ image A(z,y)

The chaotic/fractal nature of this image is understood by computing the fractal dimension, using the Minkowski
Bouligand Box Counting Method [40]. In this method, various square ‘boxes’ of different sizes e are formed and for each



Figure 9: The chaotic ‘carrier’ image (440x440 png)

size e, the number of boxes N (e) required to cover the entire set is computed. The fractal dimension D is then given by

D = tim [29V() (6)

e—0 log(e)
For the generated image shown in Fig.(9), the fractal dimension is obtained as 1.807, indicating the presence of
self-similarity in the generated image.

2.2. The Embedding Process

The next step is the embedding process, which essentially involves reshaping a binary based file of any format
(txt, png, mp3, 3gp, jpg, rar etc) into a character based pixel array and additively embedding into the image. As an
illustration, a text based file is read and the text is converted into numeric signal using Unicode [23, 41]. A significant
feature of the present work is that the embedding process proposed builds upon the compression techniques inherently
present in the JPEG image format. [7, 8, 9].

The converted numeric signal is normalized to 128 and reshaped and is shown as a 440 x 440 x 3 image in Fig.(10).
The normalization to 128 ensures that an additive embedding will not result in an overflow. Each character of the text is
mapped to a pixel in the image file created earlier, using a simple raster embedding pattern [42]. Thus, three characters
are embedded into the Red, Green and Blue values of a single pixel.

In the present work, the text-only version of the entire story of Gullivers travels, obtained from the Gutenberg
Archiving Project is used as the text to be embedded. The size of the txt file is 566kB. The text file is read, converted
into numeric using ASCII, and appropriate zero padding is done to ensure size match. The data is then additively
embedded into a 440x440 image, and the embedded image is shown in Fig.(11).

Figure 10: The text of Gulliver’s Travels shown as an image

The image contains the text version of Gullivers Travels embedded onto the image shown in Fig. (11). The total size
of this image in JPG format is 57.68 kB.

The decryption is performed by just subtracting the ‘carrier’ image shown in Fig. (9) from the embedded image of
Fig.(11), followed by denormalizing and converting the signal obtained back to ASCII/Unicode text.

In the present work, the decryption performed yielded back the text only version of Gullivers travels with a size of
566kB.



Figure 11: The chaotic image containing the text of Gulliver’s Travels (440x440 png)

3. Performance Assessment

8.1. Definition of Performance Assessment Parameters

In order to assess and characterize the performance of the embedding process elaborated above, the performance is
characterized with respect to three parameters, namely capacity, fidelity and security, where the performance analysis
parameters are defined as follows.

3.1.1. Capacity
The Compression Ratio CR is typically defined as follows [14, 15, 16]:

Total Size of Uncompressed Data (SU) )
Total Size of Compressed Data (SC)

In the present work, the total size of uncompressed data SU is the size of the file to be compressed. The total size
of compressed data SC' is the size of the compressed image as shown in Fig.(11). The original ’carrier’ image shown in
Fig.(9) is considered part of the embedding process and its size is not taken into consideration for calculating C'R.

CR =

8.1.2. Fidelity

The fidelity of the embedding process is characterized by the Mean Square Error between the numeric values of the
original and decrypted data, normalized as a percentage of the maximum value (256 for one byte). Thus, if the original
file converted to a Numeric Signal is IV, and the decrypted Numeric Signal is N,, the MSE is given as follows.

(N —N,)?

128 (8)
Though the algorithm proposed in the present work is by itself error-free, thanks to the perfectly invertible operations
during encryption (addition) and decryption (subtraction), errors and fidelity errors may arise in the manner in which
the platform of implementation (MATLAB/Python) handles the image and file input/output. Such errors are essentially

errors due to rounding-off of data/signal values prior to normalization. In fact, this is the motivation behind a comparative
study of MATLAB/Python implementations in the present work.

MSE(Percentage) =

8.1.3. Security

In order to characterize the security, a decryption of the compressed image of the original data file is attempted, but
with the frequency ratios not aligned to the ones used during encryption.

Specifically, the frequency ratio r is misaligned by a factor of 1 percent yielding the nre frequency ratio as follows:

rnew = r(1 +0.01) (9)
The factors leading to high security are enumerated as follows.

1. In the context of the proposed frequency dependent chaos, it is seen that the use of a 1 percent mismatched ratio
creates a drastic difference between the original and mismatched signals, as plotted in Fig. (12).

2. This results in a drastic change in the pixel patterns of the chaotic images generated. The pixel differences between
images generated using r and rnew are plotted as an image in Fig. (13).

3. The MSE value obtained for a mismatched ratio (rnew) is noted as the percent of Mismatched MSE (MMSE).
These values are compared to the MSE value obtained during correct decryption using the ratio 7.

7
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Figure 12: Difference between chaotic signals generated using ratios r (blue) and rnew (red)

Figure 13: Difference between carrier images generated using ratios r and rnew



8.2. Performance Analysis for different filetypes

In order to analyse the performance of the embedding process in terms of capacity, fidelity and security, files of
different types are implemented using the above mentioned embedding scheme.

3.2.1. Text and Image based Files

For text and image based filetypes, three file formats namely txt, png and pdf are evaluated. For text formats, ten
different text files varying in file size and number of characters are taken, and the compression ratio and error rate are
tabulated in Table 1 for MATLAB and Python implementations. Similarly, for image based files, nine PNG files of
varying sizes are used and the performance is tabulated in Table 2. Mixed content of text and images are also evaluated
using the PDF format and the performance is shown in Table 3.

Table 1: Performance Assessment for TXT files
Image File CR CR MSE MSE MMSE MMSE
Dimension |  Size (Py) | (MATLAB) | (Py) | (MATLAB) | (Py) | (MATLAB)
(Pixels) (Bytes)
120 43186 6.9520 5.0345 0 0.0006 59 61
197 116282 9.3007 6.6831 0 0.0007 64 60
294 257681 7.9705 4.9337 0 0.0009 62 63
440 580329 9.8240 5.2041 0 0.0004 58 65
550 905730 8.4801 5.1820 0 0.0010 65 67
801 1923723 | 8.7776 7.1864 0 0.0008 60 63
830 2066355 | 11.5520 6.3223 0 0.0009 61 66
1422 6063802 | 8.1486 4.8243 0 0.0011 62 69
1724 8915249 | 13.9119 7.1820 0 0.0005 67 63
2245 15118416 | 8.6951 5.3461 0 0.0004 65 62
Table 2: Performance Assessment for PNG files
Image File CR CR MSE MSE MMSE MMSE
Dimension Size (Py) | (MATLAB) | (Py) | (MATLAB) | (Py) | (MATLAB)
(Pixels) (Bytes)
129 49781 5.4127 5.0719 0 0.0008 58 60
249 184587 | 5.8941 5.7339 0 0.0005 64 61
411 505232 | 5.9536 5.7107 0 0.0004 63 66
548 899696 | 6.4139 5.7397 0 0.0006 59 65
758 1723221 | 6.5258 4.8606 0 0.0010 62 67
896 2407513 | 6.5192 4.9133 0 0.0003 60 63
1436 6181252 | 6.5014 4.8229 0 0.0010 61 64
1852 10286142 | 6.5085 4.8689 0 0.0002 62 65
2100 13228375 | 6.5010 4.8973 0 0.0007 67 63

From Tables 1, 2 and 3, one clearly observes a fairly consistent compression ratio of around 6 for Python implemen-
tation whereas MATLAB shows a lesser compression ratio of around 5. Also Python invariably shows an absolute zero
error whereas MATLAB shows an error of 0.0005 percent. The proposed algorithm in the above section is by itself error-
free since the encryption operation (addition) and decryption operation (subtraction) are perfectly reversible. However,
the error in MATLAB is attributed to the manner in which MATLAB handles file input/output, where rounding off of
values prior to normalization may result in quantization based errors.

3.2.2. Multimedia files

In order to evaluate the performance of the embedding process for multimedia files, two classes of files namely audio
(MP3) and video (3GP) files are considered. The performance in terms of compression ratio and error rate for MATLAB
and Python implementations are shown in Tables 4 and 5.

As with the text/image case, here too one observes a consistent compression ratio of around 6 for Python and 5 for
MATLARB, with the corresponding error rates 0 and 0.0007 percent.



Table 3: Performance Assessment for PDF files
Image File CR CR MSE MSE MMSE MMSE
Dimension Size (Py) | (MATLAB) | (Py) | (MATLAB) | (Py) | (MATLAB)
(Pixels) (Bytes)
198 117219 6.5020 6.7405 0 0.0008 58 69
298 264967 | 6.4520 6.0507 0 0.0004 67 62
1747 9151604 | 6.1214 4.8386 0 0.0009 66 58
825 2038564 | 6.2170 5.0354 0 0.0004 64 62
440 580322 6.4567 5.0048 0 0.0002 62 58
150 66671 6.2578 5.7193 0 0.0003 61 63
1322 5235367 | 6.5902 4.8079 0 0.0009 63 59
2148 13833605 | 6.5447 4.8958 0 0.0010 65 67
913 2498348 | 6.2873 4.8870 0 0.0007 62 68
554 918160 | 7.1646 4.9214 0 0.0005 59 66
Table 4: Performance Assessment for MP3 files
Image File CR CR MSE MSE MMSE MMSE
Dimension Size (Py) | (MATLAB) | (Py) | (MATLAB) | (Py) | (MATLAB)
(Pixels) (Bytes)
1680 8461525 | 6.5759 4.8249 0 0.0003 69 58
806 1947692 | 6.6271 5.2112 0 0.0005 62 67
429 549703 | 6.2328 4.9888 0 0.0009 58 66
929 2588173 | 6.3504 4.9320 0 0.0004 62 64
547 897612 | 6.0966 5.5981 0 0.0010 65 68
1902 10849836 | 6.7460 4.6564 0 0.0008 63 61
135 54158 5.4821 6.0081 0 0.0009 59 63
412 506808 | 6.4200 6.2856 0 0.0002 67 65
1254 4714496 | 6.5650 4.9070 0 0.0007 68 62
248 184353 | 6.3521 6.4993 0 0.0004 66 59
Table 5: Performance Assessment for 3GP files
Image File CR CR MSE MSE MMSE MMSE
Dimension Size (Py) (MATLAB) | (Py) | (MATLAB) | (Py) | (MATLAB)
(Pixels) (Bytes)
176 92647 6.2739 6.8343 0 0.0004 58 69
340 346487 6.4098 4.7551 0 0.0006 67 62
427 544734 6.0073 5.0451 0 0.0007 66 58
805 1939487 | 6.2092 4.7698 0 0.0005 63 67
851 2167902 | 15.6890 5.3318 0 0.0008 68 65
1405 5915191 6.2630 4.7890 0 0.0010 57 63
1660 8260076 8.9756 4.8993 0 0.0003 63 59
1874 10525678 | 8.2235 4.8760 0 0.0009 65 67
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3.2.3. Mixed Files

Finally, to assess the performance of embedding on mixed content combining text, images and multimedia, the RAR
compressed format is chosen. As in the previous cases, the performance in MATLAB and Python is tabulated in Table
6 and the corresponding compression ratios are obtained at around 5 and 6 respectively, with the error rates 0.0007
percent and 0.

Table 6: Performance Assessment for RAR files

Image File CR CR MSE MSE MMSE MMSE
Dimension |  Size (Py) | (MATLAB) | (Py) | (MATLAB) | (Py) | (MATLAB)

(Pixels) (Bytes)
119 41824 | 5.2266 4.7478 0 0.0007 61 59
244 178302 | 6.2110 6.8220 0 0.0006 60 64
294 259234 | 6.3506 5.0456 0 0.0004 63 62
445 592515 | 6.1093 5.3576 0 0.0009 65 58
521 812246 | 6.1229 5.3857 0 0.0008 67 65
677 1373307 | 6.1462 5.0127 0 0.0010 63 60
958 2750180 | 6.5497 4.8910 0 0.0012 66 61
1657 8233656 | 6.2213 4.9141 0 0.0009 69 62
2059 12717494 | 6.0916 4.8824 0 0.0004 63 67

4. Inferences and Discussion

The performance assessment of the proposed embedding process for different filetypes elaborated in Table 1 - 6 and
the consistent performance obtained therein in terms of compression ratio and error rates testify to the fact that the
proposed algorithm is independent of filetype, language, size etc. The only implementation related differences arising
in the performance occur due to the differences in the file handling capabilities of MATLAB and Python as mentioned
earlier. However, it is also evident that of the two implementations, the Python implementation stands out as more
efficient, in terms of both higher compression ratio and lower error rate.

4.1. Compression Ratio

To ascertain the efficiency of the embedding process in terms of the compression ratio, the typical values of compres-
sion ratios achieved and reported in literature for standard compression and encoding schemes are compared platform
agnostically [9, 2, 18, 22, 23].The state-of-art compression/encoding schemes are broadly classified under three headings:

1.

2.

Lossless Compression Techniques which provide very high fidelity with low to moderate amount of security. Among
such techniques portable network graphics (png) and the Netapp Snapmirror report compression ratios of 3.5.
Lossy Compression where with moderate amount of loss and security, high compression ratios are achieved. The
Joint Photographic Experts Group (JPEG) report compression ratios of around 3.2 with a tolerable MSE of 5 to
10 percent whereas Moving Picture Experts Group (MPEG) report compression ratios of around 10 to 20 for the
same MSE tolerance.

Encryption where security is of paramount importance, and very rarely good compression ratios are achieved. The
most popular encryption format, namely Cyclic Redundancy Check (CRC32) reports no compression owing to
redundancies created due to extra parity bits.

As can be seen, the compression ratio of around 6 obtained for the proposed algorithm is in par, if not higher than
most state-of-the-art compression techniques combining the best features of encryption, lossless and lossy compression
techniques. The relatively high compression ratio can be attributed to the following factors.

1.

2.

The JPEG (jpg) format, has been shown to achieve an inherent compression ratio of around 3 for most typical
datal9].

The chaotic ‘carrier’ image generated in Fig.(9) effectively exploits the enormous storage offered by the color space.
Since each of the Red, Green and Blue components of a pixel can store a 8 bit value (maximum capacity of 255
each), the total combination of colors possible is 16.5 million. In order to validate this statement, the embedding
process elaborated earlier has been carried out by replacing the ’carrier’ image in Fig. (9) by a pure black image,
with absolutely no color distribution. It is found that the compression ratio is this case is 3.2 which is close to the
inherent compression ratio of the jpg format itself.
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3. The frequency ratio of 7 selected for embedding plays a major role in boosting the compression ratio. The concept
can be intuitively understood as follows. In a purely amplitude dependant system consisting of two signals V3
and V3, there are two variables V7 and V5 for storage of data. However, in a frequency dependant chaotic system
consisting of V4 and V5, the storage variables are the frequencies fi; and fo as well as the mixing products 2f1,
2fa, 3f1, 3f2, 2f1 — fo, 2fa — f1, 2f1 + f2, 2f2 + f1 and so on, thus offering a steep improvement in storage space
compared to the amplitude case [43].

A typical data file, when represented as a numerical signal has multiple frequency components, as suggested by
successful application of frequency dependant distributions such as Zipf’s Law [44], and it is easy to visualize how
certain frequency components of the text easily match with the corresponding counterparts in the image, such matches
creating redundancies which will be compressed greatly due the Lempel-Ziv LZ77 coding used in the jpg format [9)].
Thus, the more chaotic the frequency ratio fa/f1, the more the harmonics produced by A(t), the more the matches and
redundancies, and the more the compression ratio CR.

In order to assess the dependance of compression ratio on the nature of chaos generated by the frequency ratio, a
graph is plotted in Fig.(14) showing the variation of compression ratio C R with frequency ratios R between the integer
values 3 and 4, all results obtained from the Python implementation. It is noted that the compression ratios are in
agreement with the chaotic regimes at 0.2 and 0.7 mantissa values, as predicted earlier by the bifurcation and cobweb
plots.
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Figure 14: Variation of the compression ratio with the frequency ratio

An intuitive implication is then that the compression ratio might have a direct dependance on the Lyapunov Exponent
of the generated ‘carrier’ signal A(t), since the Lyapunov exponent numerically characterizes the ‘richness’ of chaos. A
plot confirming this hypothesis is shown in Fig.(15). The implication is then that the rich frequency components in
A(t) generated by certain frequency ratio values increase the number of redundancies and thus provide an extremely
conducive environment for the Lempel Ziv Coding inherent in JPEG to reduce the wordlength required to code the
resultant image, and hence the compressed file size.
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4.2. Security and Mismatched Mean Square Error

With regards to security, the consistently high error rates (around 60 percent) obtained for all filetypes and sizes
in both Python and MATLAB implementations for 1 percent mismatch of the decompression frequency ratio R clearly
highlights the extremely sensitive dependence on this control parameter, which guarantees a very high level of security
regardless of the implementation platform. The key factors responsible for such a high value of MMSE are twofold:
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1. The drastic mismatches in the chaotic signal and image generated using a correct ratio value r and a 1 percent
misaligned ratio value rnew as seen in Fig. (12) and Fig. (13) ensure that the decompression of the files using the
mismatched ratios will certainly result in high MMSE values.

2. The frequencies generated using different ratios such as r and rnew result in differences in the frequencies in the
generated image according to the bifurcation analysis shown in Fig. (2) leading to differences in the redundant
components created and eventually differences in the compressed image.

The above discussion, coupled with the almost consistent value of 60-62 percent mismatched MSE assertively establish
the high degree of security offered by the proposed compression process.

4.3. Execution Time

Finally, in addition to the high capacity, security and fidelity as discussed above, another crucial factor determines
the usefulness of the proposed code in real-time data handling applications - execution time. All the implementations
mentioned in this work are carried out in a Core 2 Quad HP Workstation with an 8GB RAM. Among all the filetypes and
sizes the maximum time for execution are seen for file sizes of 13-15 MB. In Python, this maximum execution time is 6
seconds for compression and 6 seconds for decompression, whereas in MATLAB, the corresponding maximum execution
times are 8 seconds for compression and 7 seconds for decompression. The low execution times is a testimony to the
simplicity of the algorithm developed, involving basic addition and subtraction operations. It is opined that in systems
with more powerful data handling capabilities, the execution will be even more faster.

5. Super-Compression

From the inferences in the above section, it is understood that chaos based compression schemes achieve relatively
high compression ratios with negligible error and high security taking very less times to execute. Also, the compression
technique proposed converts a given data file to an image file, which can technically act as the input file for another com-
pression iteration. It is intuitively suggested that the low execution time can be exploited to achieve higher compression
ratios by repeatedly applying the compression algorithm to the compressed image. In order to validate this hypothesis,
a 28.8MB video file in 3gp format is taken and is compressed. The resultant is a 3102 x 3102 x 3 JPEG image of around
4MB. This image is then taken as the input for the next iteration of compression, and results in a compressed image of
around 650kB, which then acts as the input file for the next iteration. This process is repeated for 10 iterations. It is
noteworthy that the size of the final compressed 16 x 16 x 3 JPEG image is a mere 691 bytes, yielding a compression ratio
of 28.8 MegaBytes /691 bytes which is a staggering 41750 in the Python implementation. Such a repeated application
of the 1D chaotic compression to a text file yielding extremely high compression ratios of the order of 40000 is termed
as ‘Super Compression’. The overall error rate between the original video file and final decompressed video file after 10
iterations of compression and 10 iterations of decompression is obtained as 0 in Python and 0.0006 percent in MATLAB.

A natural doubt arising over the supercompression algorithm mentioned above is the execution time it takes to run
multiple iterations of compression. It is observed that for the 8GB RAM HP workstation system specifications mentioned
earlier, the compression of the 28.8MB video over 10 iterations takes 45 seconds of execution time in Python and 87
seconds in MATLAB. The corresponding decompression execution times are 43 seconds in Python and 88 seconds in
MATLAB.

The variation of compression ratio over multiple iterations in supercompression is plotted as a graph in Fig. (16). It
is evident that in subsequent iterations the compression ratio decreases gradually. This is due to the fact that at every
iteration the resultant image size is reduced, leading to a lesser number of pixels for the next iteration. Lesser number of
pixels implies lesser number of spatial frequencies and hence a lesser amount of storage space in the frequency domain.
Finally, at the ninth and tenth iteration it is seen that the file size attains a minimum saturation point of 691 bytes,
beyond which it cannot be compressed any more.

6. Conclusion

A frequency dependant chaotic system is proposed and characterized and a chaotic image generated from such a
system is used as a storage ‘carrier’ to securely embed textual data. The performance assessment of the embedding
process revealed the following vital points:

1. High fidelity characterized by MSE of around 0.0009 percent for MATLAB and absolute zero for Python imple-
mentations are obtained regardless of data size or file type.

2. The Compression ratio is obtained consistently at around 6 for Python and around 5 for MATLAB regardless of
filetype or size. Also, repeated application of the compression algorithm yields extremely high compression ratios
of the order of 40000.
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3. The execution times for the compression and decompression are obtained reasonably at around 6-7s for filesizes of
around 15MB and around 50s for supercompression for a file size of 28.8MB in an 8 GB workstation. These times
depend on the platform of implementation, with the algorithm itself taking minimal time to execute, thanks to
the simplicity of the proposed embedding technique.

4. Extreme sensitivity to frequency ratios is seen, with a 1 percent misalignment in the frequency ratio causing an
MSE as high as 63 percent, and this assertively establishes the security offered by the proposed technique.

Though a detailed and thorough investigation of the mechanism of chaos generation and the embedding process awaits,
the results discussed in the present work establish the fact that this embedding process serves as a one-step compression
plus encryption process, guaranteeing the twin advantages of high capacity and high security. These advantages, coupled
with the extreme simplicity of implementation form the crux of the present work. The embedding process used in the
present work thus opens the doors for a golden new era, the era of ‘Affordable Big Data’.The hallmarks of such an
era would be the usage of extremely simple yet effective techniques for securely compressing and supercompressing Big
Data such as DNA Genome Sequences, Automated Sensor Data, Financial Records and other Multimedia based Signals.
Another immediate application of the supercompression is to circumvent the maximum file size limit posed in email
attachments and other cloud computing services.
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