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 Abstract. We will from first principles examine what adding acceleration does, and will not do     as to 

the HUP previously derived. In doing so we will be examining a Friedmann equation for the evolution of 

the scale factor, using explicitly two cases, one case being when the acceleration of expansion of the scale 

factor is kept in, another when it is out, and the intermediate cases of when the acceleration factor, and the 

scale factor is important but not dominant. In doing so we will be tying it in our discussion with the earlier 

work done on the HUP. a
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have three dissimilar real valued roots. From the sake of physical analysis, the situation with a
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 not 

equal to zero yields more tractable result for a
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 which will have implications for the HUP inequality   

Introduction 

    We will be examining a Friedmann equation for the evolution of the scale factor, using explicitly two 

cases, one case being when the acceleration of expansion of the scale factor is kept in, another when it 

is out, and the intermediate cases of when the acceleration factor, and the scale factor is important but 

not dominant. In doing so we will be tying it in our discussion with the earlier work done on the HUP 

but from the context of how the acceleration term will affect the HUP, and making sense of [1]  
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Namely we will be working with [2]  
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I.e. the fluctuation 1ttg   dramatically boost initial entropy. Not what it would be if 1ttg  . The 

next question to ask would be how could one actually have [1, 2, 3] 
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                                                          (3) 

In short, we would require an enormous ‘inflaton’ style   valued scalar function, and 2 110( ) ~10a t 

How could   be initially quite large? Within Planck time the following for mass holds, as a lower 

bound[ 1]   
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Here, [1]   

                                                                          2 6. . ~ ( )~K E E V a                                                               (5) 

 Then [1]                                                                 

                                                                      3 3~ . .a t a H OT                                                       (6) 

The question to ask, now, is about the acceleration of the scale factor, due to time. Which will be the 
subject of our inquiry as to the next section of this document. 

2. How could anyone get the acceleration of the Universe factored into our scale factor?  
 

Begin looking at material from page 483-485 of [4]  
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Then, consider two cases of what to do with the ration of a
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 and solve the above as a cubic equation. 
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~ vanishingly small contribution. ( low acceleration )  
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Then, using the idea of a ‘repressed cubic’ we will have the following solution for a
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, namely [ 5]  
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                                  2a.1: Solutions for Eq. (8),  in reduced Cubic form for Eq.(8) 
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Then by [   ] page 9 
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The situation to watch is when the time, t, is extremely small. Then one is having to work with the 

situation where 0 ,1 ,2 ,3has st real nd imaginary rd imaginary      . I.e. the situation is then 

dominated with one real root and two imaginary roots. The value of what happens to a
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a
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is one which will be commented upon if there is one real root, and two imaginary. What would be a 
possible constraint upon would be if we had, for non-dimensionalized units 
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I.e. for the case that one uses non-dimensionalized units we would have, then 
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How likely is this to happen, in the Pre Planckian regime ? Not likely. Secondly what we get is 

                                        0 ,3has real roots                                                                                     (16) 



 

 

 

 

 

 

So if we neglect having the acceleration of the scale factor, by abandoning a

a

 
 
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 acceleration, we get a 

weird family of solutions for Eq.(8) 

                   2a.2: Solutions for Eq. (7), in Cubic form for Eq.(7) gained by NOT abandoning a

a

 
 
 

 

Following [ 4 ] look first at 
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Our approximation is, to set   a
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      as a constant, but not zero. If so then set  a
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      as a non 

dimensional but very large quantity. Then a solution exists as given as for a reduced cubic version of  
Eq.(7) which can be given by  
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And  
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And when  a
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  is set as a non dimensional constant quantity and possibly quite large, then  

                                                                          
1

1

1

2

a
Solution

a


 
   

 
                                                        (20) 

If so then 
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 is constant and very large, the results of the sign of Eq.(21) are as follows 
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Here, with very  large constant initial a
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 we have that the third outcome is by far most likely to 

happen, in contrast to what would happen in the situation with a
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 = 0 . This in doing so is a bridge to 

fully implementing Giovannini’s [3]  

3. Conclusion: Making sense of if   2
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The following will be asserted , i.e. in a regime of space-time delineated as Pre Planckian, that there is 

an interval of time,  t  which is less than Planck time ~ 10^-44 seconds for which the following will 

hold, if we use the case given by Eq.(17) to Eq.(22) then due to  a
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    being large and not negative                                 
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Thereby we will have [1] 
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Similarly, if Eq. (9) to Eq.(16) hold, then we will have, due to a
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 equal zero, an increased likely hood 

of  2

~ arg
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g a t
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    holding. Thereby falsifying the conditions for which Eq.(24) hold. This 

above will give additional meaning to the following, namely from [ 1 ] the below Eq.(25) goes to 
Eq.(24).This adopting not just from [1] but from [6,7] 

                                                           

(4)

(4)

2 2
tt tt

tt tt

V t A r

r
g T t A

g T
V



 



  

    

  

                                                                    (25) 

 



 

 

 

 

 

 

     

 

 

 

                    

 As well as give a starting point for the speed of a graviton, in early space-time conditions as written as 

, with 
gravitonv the speed of a graviton, and gravitonm the rest mass of a graviton, and gravitonE in the inertial 

rest frame given as: [8,9] 

2 2 4

2
1

graviton graviton
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c E
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         (26) 

Verification of this formula, Eq.(26) from relic conditions will be part of our future research endeavor. 
In addition we also hope to answer some of the issues Barbour raised in [10, 11] from our modified 
HUP stand point as written  above. As well as formulate officially more the derivations given in [12] 
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