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Abstract: When quantum mechanical qubits as elements of two dimensional complex Hilbert space are generalized to elements 

of even subalgebra of geometric algebra over three dimensional Euclidian space, geometrically formal complex plane becomes 

explicitly defined as an arbitrary, variable plane in 3D [1].  The result is that the quantum state definition and evolution receive 

more detailed description, including clear calculations of geometric phase, with important consequences for topological 

quantum computing. 

 
 
 
 
 

1. Introduction 

Qubits, unit value elements of the Hilbert space 
2C  of two dimensional complex vectors: 
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can be generalized to unit value elements  SI  of even subalgebra 

3G of geometric algebra 3G

over Euclidian space 3E , g-qubits [1]: 

  iiS bBBBBbBbBbI   ,332211332211
,  

ii b  ,  122   , 

12

3
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1  bbb ,   ib,,  scalars, iB  - unit value bivectors satisfying  

321 BBB  ,   231 BBB  ,   132 BBB  ,  12 iB  (1.1) 

Multiplication rules (1.1) assume the right screw space orientation that can be seen through the order of 

vectors, dual to the bivectors, used to create the space oriented unit volume 3I  (see Fig.1.1). 
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Fig.1.1. Right screw unit value oriented volume 

 

There always are two options to create oriented unit volume, depending on the order of vectors in the 

product. They correspond to the two types of the three dimensional space handedness – left and right 

screw handedness. One can also think about 3I  as a right (left) single thread screw helix of the height 

one (see the above picture). In this way 3I  is left (right) screw helix. 

Mappings between g-qubits and qubits are not one-to-one and are defined by: 
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that actually defines principal fiber bundle   ),(,, 21

iiB
zzSso i  where 

 1:),,( 3   gGgSso   is total space and }1;),({
22

21  zCzzz  is base space. I will denote 

them as 3|3 S
G

 and 3|2

S
C  respectively. The projection 33 ||: 2

3 SS
CG   depends on which particular 

iB  is taken from an arbitrarily selected triple  321 ,, BBB  in 3D satisfying (1.1). Bivector iB  defines 

complex plane for the complex vectors of 
2C , so we should write 33 ||: 2

3 S

B

S
CG i . For any 

3|2

22
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
  the fiber in 3|3 S

G
 consists of all elements 3122121 ByBxByxFz  , if 3B  is 

optionally chosen as complex plane. That particularly means that standard fiber is equivalent to the 

group of rotations of the triple  312212 ,, ByBxBy  as a whole. All such rotations in 


3G  are also 

identified by elements of 3|3 S
G

 since for any bivector B  the result of its rotation is 1  (see, for example 

                                                           
1 It is convenient to write elements  Sso ,,  as exponents:    SI

eSso ,, .  
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[2], [3]): ),,(),,( ~ SBsoSso  , where 332211

~),,( BBBSso   . So, standard fiber is 

identified as 3|3 S
G

 and the composition of rotations is: 

    
21212112

~
SSSSSSSS IIIIIIII

eBeeeeBeee 


 

Multiplications of 332211321 ),,,( BBBso    by basis bivectors iB  give basis 

bivectors of tangent spaces to original bivectors [4]: 

  322311133221113211 ),,,( BBBBBBBBsoT    

  312132233221123212 ),,,( BBBBBBBBsoT    

  321123333221133213 ),,,( BBBBBBBBsoT    

These 3|3 S
G

 elements are orthogonal to 332211 BBB    and to each other, and are the 

tangent space basis elements at points 332211 BBB   . 

Projections of iT  onto 3|2

S
C  are: 
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These elements of 3|2

S
C  are mutually orthogonal, in the sense of Euclidean scalar product in  2C : 
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2. Clifford translations 

Let’s take Clifford translation in 3|2

S
C ,   zezCl i

  , and lift it to 3|3 S
G

 using : 
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Translational velocity is  

  )(3)(
3

zClz

B

zCl FBFeF















 (2.1) 

and is orthogonal to )( zClF


: 

    0
~~

,
03

~

0
3)()(

0
)(3)(  BBFFFBF zClzClzClzCl 

 (index 0 means scalar part of element) 

Two other components of the tangent space, orthogonal to )( zClF


 and )(3 zClFB


 at any point of the 

orbit, are )(1 zClFB


 and )(2 zClFB


2. Their velocities, while moving along Clifford orbit are: 

    )(2)(311)(1
3

zClzClz

B

zCl FBFBBFeBFB





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
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  (2.2) 

(derivative of )(1 zClFB


 is orthogonal to )(1 zClFB


 and looking in the direction )(2 zClFB


) 

    )(1)(322)(2
3
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(derivative of )(2 zClFB


 is orthogonal to )(2 zClFB


 and looking in the direction )(1 zClFB


 ) 

These two equations explicitly show that the two tangents, orthogonal to Clifford translation velocity, 

rotate in moving plane  )(2)(1 , zClzCl FBFB


 with the same, by value, rotational velocity as translation 

velocity is (see Fig 2.1). 

 

Fig.2.1. Tangents rotate in their plane with the same, by value, speed as translational velocity 

 

                                                           
2 Clearly, the three )(zCliFB


 are identical to earlier considered tangents iT  
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If a fiber, g-qubit, makes full circle in Clifford translation: z

B

zClz FeFF




3

)(  ,  20  , both 

)(1 zClFB


 and )(2 zClFB


 also make full rotation in their common plane by 2 . This is special case of the 

g-qubit geometric phase, incrementing in the 
3S  sphere big circle closed curve quantum state path. 

The demonstrated rotation of tangents in the plane orthogonal to the orbit of g-qubit Clifford 

translation – that is what actually is not intuitively obvious and is more important than all widely 

accepted “mysteries” of quantum mechanics. This rotation phenomena has nothing to do with the size 

of physical system. This is topological property of the space of dimension 4, not 3, our imagination 

cannot easily deal with. 

At the same time, we should remember that g-qubits, states, are operators acting on observables. 

Though observables are elements of the same space as states (see next section), action of a state on 

observable is      SS

C

S

G
ICIIGG  



:33
3 , and the result of this action 

changes differently compared to the state modification subjected to Clifford translation. 

 

3. Measurement of observables in basis states 

Let’s consider the case when, for an arbitrary g-qubit  SI , the plane SI  is taken as playing the role 

of complex plane. Then, due to (1.2), the 3|2

S
C  element, given by projection   ),(,, 21 zzSso S , 

is Si
i








 
,

0


.  

Let’s recall the definitions of states, observables and measurements, appropriate for the case of the 


3G  

formalism of the two state systems [1]. 

States and observables are elements of 

3G : 

Definition 3.1 (state, unit value element of 

3G , defines operation acting on observable in a 

measurement ):   
 

    SISso ,,   332211 BbBbBb  
332211 BBB   ,  

ii b  ,  

122   ,  12

3

2

2

2

1  bbb  

 

Definition 3.2 (observable, element of 

3G ):    

 

3322110 BCBCBCCC   
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Definition 3.3 (measurement):    Measurement of observable C , measured in state  SI , is 

generalized Hopf fibration generated by the observable: 

    SS

C

S

G
ICIIGG  



:33
3  

Explicit formulas can be found in [1]. 

Due to definition (3.1) the state  SI  corresponds to the “stable state” (see [5]), 0 in familiar 

terms of quantum mechanical notations 10 21 zz  , if SI  is selected as complex plane. The 

state  SI  is “stable” in the sense that the measurement of any observable with the bivector part 

parallel to SI  does not change the observable (I omit scalar part which does not change in rotations): 

      

  SS

SSSSSSS

II

IIIIIII









22

22

    (3.1)  

The g-qubit state corresponding to 1  is 1, 2

3

2

232 32
  SS II , where 

2SI  is any unit bivector 

orthogonal to SI  and SSS III
23

  (if we keep right screw space orientation with multiplication rules 

(1.1).) Measurement of any observable with the bivector part parallel to SI  in this state gives:  

      
  SSSS

SSSSSSSSS

IIII

IIIIIIIII









2

3

2

2

2

33232

2

2

32323232 32233232      (3.2) 

The last formula means that measurement of any observable with the bivector part parallel to SI , in the 

state corresponding to 1 , flips bivector part of the observable.  

Formulas (3.1), (3.2) retrieve the actual sense of the two basis states.  

Consider the results of measurements in states  SI  and 
32 32 SS II    of an arbitrary observable 

32 3210 SSS ICICICCC  : 

     
32 23

22

32

22

10 2)(2)()()( SSSSS ICCICCICCICI   

   
32

2cos2sin2sin2cos 323210 SSS ICCICCICC       (3.3)  

(through parameterization  cos ,  sin ) 

 

          
323232

2

3

2

23322323

2

3

2

22103232 22 SSSSSSS ICCICCICCIICII 

32
)2cos2sin()2sin2cos( 323210 SSS ICCICCICC       (3.4) 
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(through parameterization  cos2  ,  sin3  ). 

Formulas (3.3), (3.4) mean the following: 

Measurement of observable 
32 3210 SSS ICICICCC  in pure qubit state  SI  has bivector 

part with the SI  component equal to unchanged value 1C . The 
2SI  and 

3SI  measurement components 

are equal to 
2SI  and 

3SI  components of C  rotated by angle 2  defined by  cos  and  sin1  , 

where plane of rotation is SI . 

Measurement of observable 
32 3210 SSS ICICICCC  in pure qubit state 

32 32 SS II    has 

bivector part with the SI  component equal to flipped value 1C  (flipping in SI  plane). The 
2SI  and 

3SI  

measurement components are equal to 
2SI  and 

3SI  components of C  rotated by angle 2  defined by 

 cos2  ,   sin3  , where plane of rotation is SI . The absolute value of angle of rotation is the 

same as for 23  SI but the rotation direction is opposite to the case of 23  SI . 

The above two results are geometrically pretty clear. The two states 23  SI  and 

 
332 2332 SSSS IIII    only differ by additional factor 

3SI  in  
323 SS II   . That means that 

measurements of an observable C , if it is pure bivector, in states 23  SI  and 
32 32 SS II    are 

equivalent up to additional “wrapper” 
3SI : 

        
3333 23

~

2323

~

23

~
SSSSSSSS IICIIIICII    

That simply means that the measurement in state corresponding to 1   is received from the 

   23

~

23  SS ICI   measurement, measurement in state corresponding to 0 , just by mirroring 

the result relative to the plane 
3SI (see Fig.3.1). 

                                                             

Fig.3.1. Results of measurement of C in the two stable states. C0, any measurement in a state corresponding to 0 , and C1, 

other measurement in a state corresponding to 1 , can be made mirrored of each other by rotating in a plane parallel to IS. 

The IS components are the same, in absolute value, for all the three C, C0 and C1.  
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4. Sequence of infinitesimal Clifford translations 

Since any bivector in 


3G  can be generally taken as playing the role of “complex” plane, let’s take some 

arbitrary unit bivector 
3SI 3 and make infinitesimal Clifford translation of an arbitrary g-qubit, state: 

        SsodIClSsoeSso S

dIS ,,,,,,,
3

3 


  

Instant translational velocity tangent of it is:     SsodIClI SS ,,,
33

 . We also need two bivectors 

(planes) to create rotational tangent components. The first one, 
1SI , is any unit bivector orthogonal to 

3SI , so defined up to arbitrary angle of rotation around normal to 
3SI . The bivector for the second 

tangent can be taken, in the case of the right screw space orientation, as
312 SSS III  . 

The translational velocity tangent will rotate by the value d in the direction opposite to 

    SsodICl S ,,,
3

  because from (2.1): 

)()()( 333 zClzClSSzClS FFIIFI






 

The rotational velocity tangents will rotate by the same d  value in their plane orthogonal to 

translational velocity tangent as normal (see Fig. 2.1, replacing iB  to
iSI ). All that means that while 

moving in a sequence of infinitesimal Clifford translations the two rotational tangents rotate in each 

infinitesimal step by the same angle in their plane as translational velocity tangent rotates in plane 
3SI

moving along orbit lying on 3S . 

We saw above that it does not matter do we look at the angle accumulated by translational velocity in 

the varying plane spanned by this velocity together with instant state g-qubit, or accumulated angle of 

rotation of any of the two tangents of rotational speed  - they are equal! 

Let we move along some arbitrary path on 3S . The sphere is center symmetrical surface, so at any 

instant value of state on 3S  infinitesimal incrementing of translational velocity angle does not depend 

in what direction the displacement happens. If the path is approximated with infinitesimal pieces of 

geodesics then the accumulated angle between translational velocity and instant geodesic is obviously 

equal to the total length of the path (see Fig.4.2).  

                                                           
3 Index “3” here is taken to stress that this bivector will play the same role as the previously used 3B in Sec. 3. 

Hopefully, reader remembers that 3S  is a plane in 3D bearing index “3”, and 
3S  is unit 3-dimensional sphere in 4-

dimensional space.  
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Fig.4.2. Accumulating of angle while moving along path. Also equals by value to rotation angle  
of two vectors in plane remaining orthogonal to translational velocity 

 

This is purely geometrical phase, separated from g-qubit exponent phase modifications caused by 

external factors defining the g-qubit (state) path on the 3S . Infinite composition of infinitesimal Clifford 

translations along any 3S  path L  with varying 
3SI  gives the final state g-qubit. 

Take a sequence of infinitesimal Clifford transformations: 

 Ssoeee
lIlIlI lSlSNNlS ,,... 1)1(32)2(3)(3 


 

By taking the logarithm, approaching N  and getting back to exponent we receive the final 

state: 

 Ssoe
L

dlI lS ,,)(3   (4.1) 

 

 

5. Conclusions 

Evolution of a quantum state described in terms of 


3G  gives more detailed information about two state 

system compared to the 
2C  Hilbert space model. It confirms the idea that distinctions between 

“quantum” and “classical” states become less deep if a more appropriate mathematical formalism is 

used. The paradigm spreads from trivial phenomena like tossed coin experiment [6] to recent results on 

entanglement and Bell theorem [7] where the former was demonstrated as not exclusively quantum 

property. 
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