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Abstract

In this note, we present a proof of Smarandache’s cevian trian-
gle hyperbolic theorem in the Einstein relativistic velocity model

of hyperbolic geometry.
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1. Introduction

Hyperbolic geometry appeared in the first half of the 19" century
as an attempt to understand Fuclid’s axiomatic basis for geometry. It is
also known as a type of non-Euclidean geometry, being in many respects
similar to Euclidean geometry. Hyperbolic geometry includes such con-
cepts as: distance, angle and both of them have many theorems in com-
mon.There are known many main models for hyperbolic geometry, such
as: Poincaré disc model, Poincaré half-plane, Klein model, Einstein rela-
tivistic velocity model, etc. The hyperbolic geometry is a non-Euclidian
geometry. Here, in this study, we present a proof of Smarandache’s cevian
triangle hyperbolic theorem in the Einstein relativistic velocity model of
hyperbolic geometry. Smarandache’s cevian triangle theorem states that

if A1B;CY is the cevian triangle of point P with respect to the triangle

PA PB PC _ AB-BC-CA
ABC, then PA;,  PB; PO, ABBiC-ChA [1].

Let D denote the complex unit disc in complex z - plane, i.e.
D={zeC:|z| <1}

The most general M6bius transformation of D is
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which induces the Mobius addition & in D, allowing the Mobius trans-
formation of the disc to be viewed as a Mobius left gyrotranslation
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followed by a rotation. Here # € R is a real number, z, 2y € D, and Zj is

the complex conjugate of zy. Let Aut(D, @) be the automorphism group
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of the grupoid (D, ®). If we define

a®b 1+ab

gyr: D x D — Aut(D, ®), gyr|a,b] = T oo 1rab

then is true gyrocommutative law
a® b= gyr[a,b)(bd a).

A gyrovector space (G, ®, ®) is a gyrocommutative gyrogroup (G, @)
that obeys the following axioms:

(1) gyr[u,v]a: gyrfu,vlb =a-b for all points a,b,u,v €G.

(2) G admits a scalar multiplication, ®, possessing the following prop-
erties. For all real numbers 7, 71,79 € R and all points a €G:

(Gl) l®a=a

(G2) (m+m)@a=radro,Qa

(G3) (rr) @a=r ® (rs ®a)

(G4) 16y = 1o

(G5) gyrju,v](r ® a) =r ® gyr[u,v]a

(G6) gyriri @ v,r; ® v| =1

(3) Real vector space structure (|G|, ®,®) for the set |G|| of oned-

imensional ”vectors”
|Gl ={*all:a€ G} CR

with vector addition @ and scalar multiplication ®, such that for all
r€Rand a,b € G,

(G7) |lr@al = [r|@|al

(G8) [la@ bl < |lal| @ |[b]



Theorem 1 (The Hyperbolic Theorem of Ceva in Einstein Gy-
rovector Space) Lel a;,a, and ag be three non-gyrocollinear points
in an Finstein gyrovector space (Vi, @, ®). Furthermore, let ajs3 be a
point in their gyroplane, which is off the gyrolines a;as, asas, and aza;.
If ajajo3 meets asas at ags, etc., then

Yo ar 1981 @ A12]| Yoaysans 022 D a23|| Yoaymays |03 © ass|| _
Yeoas®ars H6a2 D a12H Yoasdass ||633 S a23“ Yoai@ais ||@al © a13||

(here v, =

is the gamma factor).

(see [2, pp 461])

Theorem 2 (The Hyperbolic Theorem of Menelaus in Einstein
Gyrovector Space) Let ay,as, and a3 be three non-gyrocollinear points
in an Finstein gyrovector space (Vi, @, ®). If a gyroline meets the sides
of gyrotriangle ajasas at points aja, ais, ass, then

Yoamar 1021 @ A2l Yoa,mas 1022 © a2l Yoa,ea,, 1023 © ais]| _
Yeoas®ars H6a2 D a12H Yoasdass ||633 S a23|| Yoai@ais H@al ©® a13“

(see [2, pp 463])
For further details we refer to the recent book of A.Ungar [2].

2. Main result
In this section, we present a proof of Smarandache’s cevian triangle

hyperbolic theorem in the Einstein relativistic velocity model of hyper-

bolic geometry.



Theorem 3 If A, B,C) is the cevian gyrotriangle of gyropoint P with
respect to the gyrotriangle ABC, then

Y\ palPA] ) Y\ p5||PBI ‘ Y\ po)IPC| . VapAB| "V po|IBC| T Y icallCA|

VipaylPALl T ippIPBil 7V pey | PC VapABil " Vipey 1BC1 " Y (oa, |C A
Proof. If we use a theorem 2 in the gyrotriangle ABC (see Figure), we
have
(1) Vacy 1AC "V pay 1BAL "V op, 1CB1 = Viap, |AB1 "V poy |1BC1| " Y ca,|C A
If we use a theorem 1 in the gyrotriangle AA; B, cut by the gyroline C'CY,
we get
(2) Vacy1AC1 " Ve |BC ™ Va, pl APl = Vap||AP] "V 4 0lA1CL " Y (pey 1BCA|
If we use a theorem 1 in the gyrotriangle BB, C, cut by the gyroline AA;,
we get
(3) fy\BAl\‘BAl‘ “VicallCAl "V g, p|B1P| = Y \gp|IBP| " V\BIAHBlA\ '7\0A1\|CA1|’
If we use a theorem 1 in the gyrotriangle C'C} A, cut by the gyroline BBy,
we get
(4) Vienn|OBil "V aplAB| " Ve, plCr Pl = Vicp|lCPl " Vo pIC1B] T T 4By |ABL |

We divide each relation (2), (3), and (4) by relation (1), and we obtain

(5) 7 palPA| _ V5o 1BC| .fy\BlAHBlA‘

Y\ pay | |PAL fy\BAl\‘BAﬂ 7\B10\|B10|

Y\ pp||PB o VcallcAl ‘7\013\\013|

)
,y\PBl\‘PBl‘ 7\031\|031\ V\ClAHClA‘
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o Y \pc||PC] _ 7\ an||AB| 'V\Alc\\f‘lc\

7\P01\|Pcl‘ 7\A01\|A01| 7\A13\|AIB‘

Multiplying (5) by (6) and by (7), we have

Y\ palPA| ) 7\ pp||PB ) 7\ pey|PCI

V\PAIHPAH %PBl\lPBll V\Pcl\‘PCﬂ

VaplABl "V 5o 1BC| V0 allCA] ViyalBiAl " Vo pC1Bl T 4, 01| ALC

(8)

ViayslABl Vi olBiCl " Vo a)C1Al T a ) A1Bl T Y o)1 BiCl T Y oy a)lC1A4]
From the relation (1) we have

TV igalBiAl " VioypIC1Bl " V4 ol aC]

(9)

1,
Vay5l1A1Bl " Vg, o |B1C] " V0, 4)|C1 A

SO

Y\ palPA] ) Y\ p5||PBI _ TipalPCl Vap|AB| " Ve IBC| " T ca)CA]

VipaylPAl VippIPBil VipeyIPCLl Viap, |ABi " Ve |BC1 T T ey |C AL
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