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Abstract. In this paper, space and timelike admissible Smarandache curves in the pseudo-
Galilean space Gil), are investigated. Also, Smarandache curves of the position vector of space
and timelike arbitrary curve and some of its special curves in Gzl,) are obtained. To confirm our

main results, some examples are given and illustrated.
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1 Introduction

In recent years, researchers have begun to investigate curves and surfaces in the Galilean space
and thereafter pseudo-Galilean space G3 and G%. In the study of the fundamental theory and
the characterizations of space curves, the corresponding relations between the curves are the
very interesting and important problem.

It is known that a Smarandache geometry is a geometry which has at least one Smarandache
denied axiom [I]. An axiom is said to be Smarandache denied, if it behaves in at least two
different ways within the same space. Smarandache geometries are connected with the theory
of relativity and the parallel universes. Smarandasche curves are the objects of Smarandache
geometry. By definition, if the position vector of a curve d is composed by Frenet frame’s vectors
of another curve (3, then the curve § is called a Smarandache curve [2]. Smarandache curves
have been investigated by some differential geometers (see for example, [2,[3]). M. Turgut and
S. Yilmaz defined a special case of such curves and call it Smarandache T'By curves in the space
E{ [2]. They studied special Smarandache curves which are defined by the tangent and second
binormal vector fields. In [3], the author introduced some special Smarandache curves in the
Fuclidean space. He studied Frenet-Serret invariants of a special case.

In the field of computer aided design and computer graphics, helices can be used for the tool

path description, the simulation of kinematic motion or the design of highways, etc. [4]. The
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main feature of general helix is that the tangent makes a constant angle with a fixed straight
line which is called the axis of the general helix. A classical result stated by Lancret in 1802
and first proved by de Saint Venant in 1845 says that: A necessary and sufficient condition that
a curve be a general helix is that the ratio (k/7) is constant along the curve, where x and 7
denote the curvature and the torsion, respectively. Also, the helix is also known as circular helix
or W-curve which is a special case of the general helix [5].

Salkowski (resp. Anti-Salkowski) curves in Euclidean space are generally known as family of
curves with constant curvature (resp. torsion) but nonconstant torsion (resp. curvature) with
an explicit parametrization. They were defined in an earlier paper [6].

In this paper, we obtain Smarandache curves for a position vector of an arbitrary curve in G% and
some of its special curves (helix, circular helix, Salkowski and Anti-Salkowski curves). In other
words, according to Frenet frame e, e2, e3 of the considered curves in the pseudo-Galilean space
Gé, the meant Smarandache curves ejey, eje3 and ejeses are obtained. To the best of author’s
knowledge, Smarandache curves have not been presented in the pseudo-Galilean geometry in

depth. Thus, the study is proposed to serve such a need.

2 Basic notions and properties

In this section, let us first recall basic notions from pseudo-Galilean geometry [7HII]. In the
inhomogeneous affine coordinates for points and vectors (point pairs) the similarity group Hg

of G2 has the following form

T=a-+b.rx,
y=c+dx+r.coshf.y+r.sinhf.z,
Z=e+ fax+r.sinhf.y+r.coshf.z, (2.1)

where a, b, ¢, d, e, f,r and 6 are real numbers. Particularly, for b = r = 1, the group (2.1) becomes
the group Bg C Hjy of isometries (proper motions) of the pseudo-Galilean space G3. The motion
group leaves invariant the absolute figure and defines the other invariants of this geometry. It

has the following form

r=a-+ux,
y=c+d.x+ coshf.y+ sinhf.z,
Z=e+ far+sinhf.y + coshf.z. (2.2)

According to the motion group in the pseudo-Galilean space, there are non-isotropic vectors
A(A1, Ay, Ag) (for which holds A; # 0) and four types of isotropic vectors: spacelike (A; = 0,
A3 — A2 > 0), timelike (4; =0, A2 — A% < 0) and two types of lightlike vectors (A1 = 0, Ay =



+A3). The scalar product of two vectors u = (u1, ug,us) and v = (v1,vq,v3) in G} is defined by

U1, if uy # 0 or vy # 0,
<’LL, U>G1 = .
3 UV — U3V3 if w3 =0and v; =0.
We introduce a pseudo-Galilean cross product in the following way
0 —j k
UXGlV=|u uz ug |,

v V2 U3

where j = (0,1,0) and k = (0,0,1) are unit spacelike and timelike vectors, respectively. Let us
recall basic facts about curves in G3, that were introduced in [7H9].

A curve y(s) = (z(s),y(s),2(s)) is called an admissible curve if it has no inflection points
(4% x 4 # 0) and no isotropic tangents (¢ # 0) or normals whose projections on the absolute
plane would be lightlike vectors (¢ # £%). An admissible curve in G} is an analogue of a regular
curve in Euclidean space [§].

For an admissible curve v : I C R — G}, the curvature x(s) and torsion 7(s) are defined by

[§i(s)* — %(5)*|

o) = T, o = T2 Z P (2.3

@) R2(s)

expressed in components. Hence, for an admissible curve v: I CR — Gé parameterized by the

arc length s with differential form ds = dz, given by

V(@) = (2, y(2), 2(2)), (2:4)

the formulas (2.3) have the following form

wlo) =l @ =7 (o) = L2 020 @)

The associated trihedron is given by

= — e 0
€3 K,(IE)’V (:E) K/(!E)( Y (:E)’Z (:E))v
1 1" 14
€3 = %(07 €z (:E)’ €y (l‘)), (26)
where € = +1 or e = —1, chosen by criterion Det(eq, €2, e3) = 1, that means

" 1" " "

y (@) =z (2)°| = ey (2)* — 2 (2)?).

The curve v given by (2.4) is timelike (resp. spacelike) if es(s) is a spacelike (resp. timelike)

vector. The principal normal vector or simply normal is spacelike if ¢ = +1 and timelike if



e = —1. For derivatives of the tangent e, normal e; and binormal ez vector fields, the following

Frenet formulas in G% hold:

() = 7(z)ez(x). (2.7)

From (2.5) and (2.6), we have the following important relation that is true in Galilean and

pseudo-Galilean spaces [ITHI3]
1" (s) = K'(s)N(s) + K(s)7(s)B(5).
In [2] authors introduced:

Definition 2.1 A regular curve in Minkowski space-time, whose position vector is composed by

Frenet frame vectors on another reqular curve, is called a Smarandache curve.

In the light of the above definition, we adapt it to admissible curves in the pseudo-Galilean space

as follows:

Definition 2.2 let 7 = n(s) be an admissible curve in Gi and {e1, ez, e3} be its moving Frenet

frame. Smarandache ejes, e1e3 and ejeqses curves are respectively, defined by

. e + €9
e T e e
. e; +e3
ores ler +es]|’
e; +ezt+eg
Neiezes (2'8)

lex + ez +es|’

3 Smarandache curves of an arbitrary curve in G}

In the light of which introduced in the Galilean 3-space G3 by [3], we introduce the position
vectors of spacelike and timelike arbitrary curves with curvature k(s) and torsion 7(s) in the
pseudo-Galilean space Gé and then calculate their Smarandache curves.

Let us start with an arbitrary curve r(s) in G%, so we get

Case 3.1 7(s) is spacelike:

1= (o [ (o ([ rt16) wt16) [ ([ ([ rt05) o) )

(3.1)



The derivatives of this curve are respectively, given by

Y(s) = <1, - / sinh < / (s) ds> k() ds. / cosh ( / (s) ds> (s) ds> ,
¥ (s) = <0, _sinh < / () ds) (s), cosh ( / (s) ds> ﬁ(s)> ,

W (s) = ( 0, —x’sinh ([ 7(s) d;s) —.C osh ([ 7(s)ds) ( )7(8), ) ‘ (3.2)
cosh (f 7(s)ds) &’ + sinh ([ 7(s) ds) K(s)7(s)
The frame vector fields of r as follows

(e5)r = (0— h(/ s)ds ) (3.3)
By Definition (2.2), the ejes, e1e3 and ej eses Smarandache respectively, written
) _<1 [ sinhy (f 7(s) ds) w(s) ds — sinh ([ 7(s) ds) )
osh (f 7(s) ds) + [ cosh ([ 7(s)ds) n(s)ds )
:<1— osh ([ 7(s)ds) — [ sinh (f 7 >d)<>d>
J co h(f()d) d+nh(f<d> ’
s)ds,

Case 3.2 7(s) is timelike:

r(s) = <s, / < / cosh ( / (s) ds> (s) ds> ds, / < / sinh ( / (s) ds> (s) ds> ds>. (3.5)

So, the derivatives of r(s) are

Y(s) = <1, / cosh < / (s) ds> w(s) ds, / sinh < / (s) ds> (s) ds> ,
Y (s) = (0, cosh ( / (s) ds> k(s) , sinh ( / (s) ds> H(s)> ,

) — 0,cosh ([ 7(s)ds) &' + sinh ([ 7(s) ds) k(s)7(s), > 26
(=) < sinh ([ 7(s)ds) + cosh ([ 7(s) ds) x(s)7(s) ' (36)
And the frame vector fields as follows

(e1) = <1, / cosh < / () ds) w(s) ds, / sinh < / () ds) (s) ds> ,
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(e3)y = <0,cosh ( / (s) ds> sinh < / () ds>> ,
(e3) = <0,sinh < / () ds> cosh < / () d8>> .

Hence, the Smarandache curves are

N < 1,cosh ([ 7(s)ds) + [ cosh ([ 7(s)ds) r(s) ds, )
" [ sinh ([ 7(s) ds) r(s)ds + sinh ([ 7(s) ds) 7
) ds) r(

re o = < 1,fcosh(f7'(s S)KJ s)ds+sinh(fr(s)ds)7 )
o cosh ([ 7(s)ds) + [sinh ([ 7(s) ds) k(s) ds ’

reee':<1ef ds-|-fcosh(f (s)d ) (s)ds,>'
1eze3 efT(Sds"FfSlnh(f ()ds) (s)ds

4 Smarandache curves of some special curves in G}

4.1 Smarandache curves of a general helix

Let a(s) be an admissible general helix in G} with (7/k = m = const.), we have

Case 4.1.1 «(s) is spacelike:

afs) = <s,—% / cosh <m / (s) ds> ds,% / sinh <m / (s) ds> ds>.

Then o/, a”, o for this curve are respectively, expressed as

o/ (s) = <1,—%cosh <m/fe(s) d8> %Smh <m/“(3) ds)) =

o' (s) = <0, _ sinh <m / (s) ds> (s), cosh <m / (s) ds> Ii(S)) ,

o (s) = ( 0, —+'sinh (m [ K(s) ds) —mcosh (m [ k(s)ds) k*(s),
cosh (m [ k(s)ds) k' +msinh (m [ k(s) ds) k*(s)

The moving Frenet vectors of a(s) are given by

(e1)a = (1,—%005}1 (m//i(s) ds> ,%sinh <m//€(8) ds>>,
(e2) = <0,—sinh <m / (s) ds> cosh <m / () ds>>,
(e3)e = <0,—cosh <m / (s) ds> sinh <m / (s) d8>>.

From which, Smarandache curves are given by

T ( 1,—2L cosh (m [ k(s)ds) + msinh (m [ &(s)ds), )
h cosh (m [ k(s)ds) + - sinh (m [ k(s)d ) ’
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ooy — (1, _%(1 +m) cosh <m//1(s) ds> ,%(1 + m) sinh <m//1(s) ds>> ,

1,—L(1+m)cosh (m [ k(s)ds) +msi k(s)ds),
Ol ey = mn . (4.4)
em[n(s)ds 1 Lginp (m [ k(s)ds)

Case 4.1.2 «(s) is timelike:

afs) = <s% / sinh <m / (s) ds> ds,% / cosh <m / (s) ds> ds>. (4.5)

1,em rs)ds 4 Lsinh (m [ &(s)ds),
Q, =
e L(1+m)cosh (m [ K(s)ds) + sin

4.2 Smarandache curves of a circular helix

Let 8(s) be an admissible circular helix in G} with (7 = a = const., k = b = const.), we have
Case 4.2.1 [(s) is spacelike:

B(s) = <s,a / < / sinh(bs) ds> ds,a / < / cosh(bs) ds> ds). (4.9)
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For this curve, we have

/ _ a a .
B(s) = (17 2 cosh(bs), 7 smh(bs)> ,
" _ a a .
B(s) = (1, 2 cosh(bs), 7, Slnh(bs)) ,
5" (s) = (0, asinh(bs), a cosh(bs)) . (4.10)
Making necessary calculations from above, we have
a a .
(e1)p = (1, 3 cosh(bs), 7 Slnh(bs)> :

(e2)s = (0,sinh(bs), cosh(bs)) ,
(e3)g = (0, — cosh(bs), —sinh(bs)) . (4.11)

Considering the last Frenet vectors, the ejes, ejes and ejeses Smarandache curves of 5 are

respectively, as follows

Beje, = (1, % cosh(bs) + sinh(bs), cosh(bs) + %Sinh(bs)> ,

Beies = <1, (a ; ) cosh(bs), (a ; ) sinh(bs)) ,
b)

Beieses = <1, (% - 1) cosh(bs) + sinh(bs), cosh(bs) + (a; sinh(bs)> . (4.12)

Case 4.2.2 [(s) is timelike:

B(s) = <s,—a / < / cosh (bs) ds> ds,a / ( / sinh(bs) ds) ds). (4.13)

For [3(s), we have

B'(s) = (1, —% sinh(bs), % cosh(bs)) ,
B"(s) = (0, —acosh(bs), asinh(bs)),
B"(s) = (0, —absinh(bs), ab cosh(bs)) . (4.14)

The Frenet frame of 3 is

a . a
(e1)p = (17 3 sinh(bs), 3 cosh(bs)) ,
(e2)s = (0, — cosh(bs),sinh(bs)) ,

(e3)g = (0,sinh(bs), — cosh(bs)) . (4.15)
Thus the Smarandache curves of S are respectively, given by

Bejes = <1, —% (bcosh(bs) + asinh(bs)), % cosh(bs) + Sinh(b8)> ,

(a +b)

Beies = <1, — sinh(bs), (a+b) cosh(bs)) ,

(a+10)

Bejeses = <1, —% (bebs + asinh(bs)) , cosh(bs) + sinh(bs)> . (4.16)



4.3 Smarandache curves of Salkowski curve

Let (s) be a Salkowski curve in G} with (1 = 7(s),k = a = const.)

Case 4.3.1 ~(s) is spacelike:

2 (s) = (.s, —a/ (/sinh (/T(s) ds> ds> ds,a/ (/cosh (/T(s) ds> ds> ds>. (4.17)

If we differentiate this equation three times, one can obtain

0= (1m0 [ [ rre) ao [ [ 1) ).

i(s) = <0, —asinh < / (s) ds> “acosh < / (s) ds>> ,
+"(s) = (0, —acosh ( / (s) ds> #(s), asinh < / (s) ds> T(s)> . (4.18)

In addition to that, the tangent, principal normal and binormal vectors of + are in the following

(er), = (1,—& / sinh ( / (s) ds> ds,a / cosh < / () ds> ds> ,
(es), = (0, _sinh ( / (s) ds> cosh < / () ds>> ,
(e3)y = (0, — cosh ( / 7(s) ds> ,sinh < / 7(s) ds>> . (4.19)

Furthermore, Smarandache curves for v are

oo = < 1,—a [ sinh ([ 7(s) ds) ds — sinh ([ 7(s) ds) )
- cosh ([ 7(s)ds) +a [ cosh ([ 7(s)ds) ds ’

forms

Voo = ( 1,—cosh ([ 7(s)ds) — a [ sinh ([ 7(s) ds) ds, )
" a [ cosh ([ 7(s)ds) ds+ sinh ([ 7(s) ds) 7

Yerese; = <1, —ef(s)ds _ a/sinh </ 7(s) ds> ds,efT(s) ds 4 a/cosh </T(s) ds) ds) .

(4.20)
Case 4.3.2 7(s) is timelike:

~(s) = <s,a/ </cosh </T(s) ds> d.s> ds,a/ (/ sinh </T(s) ds> ds> ds>. (4.21)

We differentiate this equation three times to get

v (s) = (La/cosh </T(s) ds) ds,a/sinh </T(s) ds) ds),
= (oo i) s [ 1))

9



7"(s) = <0,asinh ( / (s) ds) #(s), acosh ( / (s) ds) T(s)> . (4.22)

The tangent, principal normal and binormal vectors of v are in the following forms

(e1)y = <1,a/cosh (/ 7(s) ds> ds,a/sinh (/ 7(s) ds> ds) ,

e = (0ot ([ 7ty [ 71 s) ).
(e3)y = <0,sinh < / 7(s) ds> , cosh ( / 7(s) ds>> . (4.23)

So, Smarandache curves for v are as follows

oo = ( 1,a [ cosh ([ 7(s)ds) ds + cosh ([ 7(s)ds) , )
- sinh ([ 7(s)ds) +a [ sinh ([ 7(s) ds) ds ’

Yores = < 1,sinh ([ 7(s)ds) + a [ cosh ([ 7(s) ds) ds, )

(s
a [sinh ([ 7(s)ds) ds + cosh ([ 7(s) ds)

Yeieses = <1,ef7(s) s 4 a/cosh </T(s) ds) ds,el 7V 4 g [ sinh </T(s) ds) ds)

(4.24)

4.4 Smarandache curves of Anti-Salkowski curve

Let 6(s) be Anti-Salkowski curve in G} with (k = k(s), T = a = const.)
Case 4.4.1 4(s) is spacelike:

5(s) = <s,— / ( / sinh(bs)k(s) ds> ds, / ( / cosh(bs)(s) ds> ds>. (4.25)

It gives us the following derivatives
§(s) = <1,—/sinh(bs)/<;(s) ds,/cosh(bs)m(s)ds) )
§"(s) = (0, — sinh(bs)k(s), cosh(bs)k(s)),
8" (s) = (0, —(s) sinh(bs) — beosh(bs)rk(s), ' (s) cosh(bs) + bsinh(bs)k(s)) . (4.26)
Further, we obtain the following Frenet vectors ej, es, es in the form
(e1)s = <1,—/Sinh(b8)/€(8) ds,/cosh(bs)/i(s) ds> ,

(e2)s = (0, — sinh(bs), cosh(bs)) ,

(e3)s = (0, — cosh(bs), sinh(bs)) . (4.27)
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Thus, the above computations of Frenet vectors give Smarandache curves as follows

derey = <1, — /sinh(bs)/ﬁ(s) ds — sinh(bs), cosh(bs) + /Cosh(bs)m(s)ds) ,

Jeje5 = (1, — cosh(bs) — /sinh(bs)ﬂ;(s)ds,/cosh(bs)/f(s) ds + sinh(bs)) ,

Jejeses = <1,—ebs — /sinh(bs)n(s)ds,ebs + /COSh(bS)/ﬁZ(S) ds> . (4.28)

Case 4.4.2 4(s) is timelike:

5(s) = <s, / < / cosh(bs)(s) ds> ds, / < / sinh(bs)k(s) ds) ds>. (4.29)

The derivatives of § are

5(s) = (1, / cosh(bs)r(s) ds, / sinh(bs)m(s)ds),

8"(s) = (0, cosh(bs)k(s),sinh(bs)k(s)),
8" (s) = (0, ' (s) cosh(bs) + bsinh(bs)r(s), &' (s) sinh(bs) + bcosh(bs)k(s)) - (4.30)

Hence, we obtain the following Frenet vectors

(e1)s = <1,/cosh(bs)/£(s) ds,/sinh(bs)/ﬁ(s) ds) )
(e2)s = (0, cosh(bs),sinh(bs)),
(e3)s = (0,sinh(bs), cosh(bs)) . (4.31)

Thus the Smarandache curves by

Sorey = <1,cosh(bs) + / cosh(bs)r(s)ds, / sinh(bs)(s) ds+sinh(bs)>,

Sorey = <1, / cosh(bs)r(s)ds + sinh(bs), cosh(bs) + / sinh (bs)#(s) ds>,

Soroges = <1,eb5 + / cosh(bs)r(s) ds, e + / sinh(bs)t@(s)ds). (4.32)

Notation 4.1 In the light of the above calculations, there are not eses Smarandache curves in

the Galilean or pseudo-Galilean spaces.
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5 Examples

Example 5.1 Consider a(u) is a spacelike general heliz in G parameterized by
1 . 1 .

a(s) = <u, gu (—cosh (2In(u)) + 2sinh (21In(u))), gu (2cosh (2In(u)) — sinh (2 ln(u)))> .

We use the derivatives of a; o, a”,a”” to get the associated trihedron of v as follows

(e1)a = <1, % cosh (2In(u)), % sinh (2ln(u))> ,

(e2)a = (0,sinh (2In(u)), cosh (21n(u))),
(e3)a = (0,—cosh (2In(u)) , — sinh (21n(u))) .

Curvature r(s) and torsion 7(s) are obtained as follows

1 -2
Ko = —Ta = —.
U U

According to the above calculations, Smarandache curves of o are

1 1+ 3u?
ooy = <1, 3 cosh (2In(u)) + sinh (21In(u)) , %) )
1 1 .
Qejes = | 1, —3 cosh (2In(u)), —3 sinh (2In(u)) |,

—3+u 3+u!
Qejeses; = | 1 " 42 :

42

Figure 1: The spacelike general helix « in G} with r, = % and 7, = _72
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Figure 2: The ejeq, eje3 and ejeses Smarandache curves of a.

Example 5.2 Consider a*(s) is a timelike general heliz in Gzl,) given by
1 1
a*(s) = <u, i (2cosh (2In(u)) — sinh (21n(u))), i (—cosh (2In(u)) + 2sinh (2 ln(u)))> .

Also, we use the derivatives of o;(a*), (a*)”, (a*)"” to get the associated trihedron of o* as

follows

(1) = (1,

(€2)ar = (
(e3)a* = (0,sinh (2In(u)), cosh (21n(u))) .

1 . 1
3 sinh (21n(u)), 3 cosh (2 ln(u))> )
0, cosh (21In(u)) ,sinh (21n(u))),

Curvature k(s) and torsion 7(s) are obtained as follows

1 2
Ka*r = —, Ta*x = —.
U U

According to the above calculations, Smarandache curves of o are

1+3u' 1
ey = (1, +iu” 1 cosh (2In(u)) + sinh (2 ln(u))) )

@ 2 2

Qoes = <1, g sinh (2In(u)), g cosh (2 ln(u))> ,

1 +5u4>

ot = <1, cosh (2In(u)) + gsinh (2In(u)), e

ejeges
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S

Figure 3: The timelike general helix o* in G} with k« = % and 7o+ =

X
0%510;5,

Figure 4: The ejes, eje3 and ejeses Smarandache curves of a.

Example 5.3 Let § : I — G} be a spacelike Anti-Salkowski curve parameterized by

0(s) = <u, 1e_“ (4 cosh(2u) + 5sinh(2u)) , %e_“ (5cosh(2u) + 4sinh(2u))> .

By differentiation, we get
1 1 “
§(s) = (1, 6 (6_3“ + 3¢e) ,—66_3“ + %) ,
8"(s) = (0,e " sinh(2u), e cosh(2u)) ,
1 1
8" (s) = <0, 3 (36_3“ +e"), 3 (—36_3“ + e“)) .
Using (2.5) to obtain

1 1 v
(61)5 = <]~7 6 (e—3u + Seu) ,—66_3u + %) s

(e2)s = (0,sinh(2u), cosh(2u)),

(e3)s = (0, — cosh(2u), — sinh(2u)) .
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The natural equations of this curve are given by
ks =€ 15 = —2.

Thus, the Smarandache curves of § are respectively, given by

1 1 u
Sojey = <1, - (6_3“ + 36“) + sinh(2u), —66_3“ + % + COSh(Qu)> ,

(=}

u

1
Oeres = < (e U et — 6 cosh(2u)) ,—66_3“ + % — sinh(2u)> ,

1
6
1 1
e1e2e3 = < 6 _3u 6€u + 3e4u) s 66_3u (—1 + 66“ + 3€4u)> .

21090 71_'2/
X

Figure 5: The spacelike Anti-Salkowski curve § in G% with kg = e ™ and 75 = —2.

%0 15 10 05 00
X

Figure 6: From left to right, the ejes, e;e3 and ejeses Smarandache curves of §.

Example 5.4 Let 6* be a timelike Anti-Salkowski curve in G} given by

d*(s) = <u, %e‘“ (5 cosh(2u) + 4sinh(2u)), %e‘“ (4 cosh(2u) + 5sinh(2u))> .
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By differentiation, we get

1 u
(0%)(s) = <1, —66_3“ + %, (7" + 3e“)> )

(6%)"(s) = (0,e " cosh(2u), e~ " sinh(2u)) ,

(5*)”/(8) = (07 % (—36_3u + eu) ’ % (36—3u + eu)> ‘

| =

Using (2.5) to obtain

(e2)s+ = (0, cosh(2u), sinh(2u)),
(e3)sx = (0,sinh(2u), cosh(2u)) .
The natural equations of this curve are given by
Ker = e 4, e = 2.
Thus, the Smarandache curves of 6* are respectively, given by

(6_3“ +3e") + Sinh(2u)> ,

| =

1 u
(0%)eres = (1, _66_3u + % + cosh(2u),

1 u 1
* 1 _ et e—3u el
(5 )91e2e3 = <1, _66 Su + b} + €2u, T + > + €2u> .

Figure 7: The timelike Anti-Salkowski curve 6* in G% with kg« = e ™ and 75+ = 2.
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Figure 8: From left to right, the ejes, e;e3 and ejeses Smarandache curves of §*.

Example 5.5 Consider n is a timelike spiral in G} parameterized as follows
n(s) = (u, (2+u)(—1+1n(2+u)),0).

So, we get
1'(s) = (L1n(2 +u),0),

') = (0.572:0).

(e1)y = (1,In(2 4+ u),0),

The Frenet vectors of n are

(GQ)T] = (07 170) 5
(e3)77 = (07 07 1) .
The curvatures of this curve are given by

1

Ky = ———— . Ty, =
Y 2_|_u’77

Thus, the Smarandache curves of this spiral are given by
Neies = (17 1H(2 + u)v 1) )

Nejes = (1,1 +1In(24+u), 1),

77e1e2e3 - (17 1 + 111(2 + u), 1) .

17



Figure 9: The timelike spiral curve 7 in G} with Ky = 2J+u and 7, = 0.

Figure 10: The e;es, ejes and ejeses Smarandache curves of 7.

6 Conclusion

In the three-dimensional pseudo-Galilean space G},}, Smarandache curves of space and timelike
arbitrary curve and some of its special curves have been studied. Some examples of these curves

such as general helix, Ant-Salkowski and spiral curves have been given and plotted.
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