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Abstract: Neutrosophic numbers are very suitable for expressing indeterminate evaluation information in 

complex decision making problems, and then projection measure is a useful method for handling the 

decision making problems. However, due to the lack of engineering applications of neutrosophic numbers 

and some shortcoming implied in general projection measures in some cases. Therefore, the paper proposes 

a bidirectional projection measure of interval numbers to overcome the shortcoming and extend it to the 

bidirectional projection measure of neutrosophic numbers, and then develops a bidirectional 

projection-based multiple attribute group decision making method with neutrosophic numbers. Through the 

bidirectional projection measure between each alternative decision matrix and the ideal alternative matrix, 

all the alternatives can be ranked to select the best one. Finally, an illustrative example demonstrates the 

application of the proposed method. The effectiveness and advantages of the proposed method are shown 

by the comparative analysis with existing relative methods. 
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1 Introduction 

Multiple attribute group decision making is an important branch of decision theory, which has been 

widely applied in many fields. Then, projection measure is a very suitable method for dealing with decision 

making problems because it can consider not only the distance but also the included angle between objects 

evaluated [1, 2]. Therefore, projection methods have been applied successfully to decision making. First, 

the projection methods were used for uncertain multiple attribute decision making with preference 

information [1, 2]. Then, the projection model-based approaches were applied to intuitionistic fuzzy and 

interval valued intuitionistic fuzzy multiple attribute decision making problems [3]. Further, grey relational 

projection methods with crisp values were presented and applied to multiple attribute decision making 

problems [4, 5]]. Projection model-based approaches were applied to intuitionistic fuzzy multiple attribute 

decision making problems [6]. A group decision making approach based on interval multiplicative and 

fuzzy preference relations was developed by using projection [7]. Projection methods were used for 

multiple attribute group decision making with intuitionistic fuzzy information [8-10]. A projection method 

was introduced for group decision making problems with incomplete weight information in linguistic 

setting [11]. A projection measure was introduced to deal with a group decision making method with 

hybrid intuitionistic fuzzy information [12]. However, the general projection measures imply some 

shortcoming (see examples in Subsection 2.2 and Section 3) in some cases and need to be improved to 
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overcome the shortcoming implied in projection measures.  

In multiple attribute group decision making, because of the indeterminacy of human thinking and the 

complexity of objective things, the attribute values expressed by the crisp numbers have difficulty in 

conveying people’s thinking about objective things. Hence, Smarandache [13-15] firstly proposed the 

concept of a neutrosophic number, which consists of two parts: a determinate part and an indeterminate part. 

The neutrosophic number can be expressed by N = d + uI for d, u  R (R is all real numbers), where d is its 

determinate part, uI is its indeterminate part, and I means indeterminacy. In the worst scenario, N can be 

expressed as the unknown part N = uI (d = 0). In the best scenario, N can be expressed as the determinate 

part N = d (uI = 0). Obviously, it is very suitable for the expression of indeterminate evaluation information 

in complex decision making problems. Therefore, Ye [16] firstly proposed a group decision making 

method with neutrosophic numbers based on a de-neutrosophication method and a possibility degree 

ranking method for neutrosophic numbers. Then, Kong et al. [17] developed a cosine similarity measure of 

neutrosophic numbers and applied it to the misfire fault diagnosis of gasoline engines with neutrosophic 

number information. Till this day, the study on the neutrosophic numbers used for handling indeterminate 

problems has made a little progress in scientific and engineering fields. Therefore, it is necessary to 

propose a new method based on the neutrosophic numbers to handle group decision making problems. In 

order to do so, the main purposes of this paper are: (1) to develop a bidirectional projection measure of 

interval numbers to overcome the shortcoming of the general projection measure, (2) to introduce a 

bidirectional projection measure of neutrosophic numbers based on the bidirectional projection measure of 

interval numbers, and (3) to develop a bidirectional projection-based multiple attribute group decision 

making method with neutrosophic numbers. 

The rest of the paper is organized as follows. Section 2 briefly describes some basic concepts of 

neutrosophic numbers and the general projection measure of interval numbers. Section 3 proposes a 

bidirectional projection measure between interval numbers to overcome some shortcoming implied in the 

general projection measure. In Section 4, we develop a bidirectional projection-based multiple attribute 

group decision making method with neutrosophic numbers. In Section 5, an illustrative example is 

presented to demonstrate the application of the proposed method, and then the effectiveness and advantages 

of the proposed method are demonstrated by the comparative analysis with existing relative methods. 

Finally, Section 6 contains conclusions and future work. 

 

2. Preliminaries 

2.1 Some concepts of neutrosophic numbers 

A neutrosophic number, proposed by Smarandache [13-15], consists of the determinate part and the 

indeterminate part, which is denoted by N = d + uI, where d and u are real numbers, and I is indeterminacy, 

such that In = I for n > 0, 0I = 0, and uI/kI = undefined for any real number k. 

For example, assume that there is a neutrosophic number N = 7 + 3I. If I  [0, 0.2], it is equivalent to N 

 [7, 7.6] for sure N  7, this means that its determinate part is 7 and its indeterminate part is 3I for the 

indeterminacy I  [0, 0.2] and the possibility for the number “N” is within the interval [7, 7.6]. 

Let N1 = d1 + u1I and N2 = d2 + u2I be two neutrosophic numbers for d1, u1, d2, u2  R. their operational 

relations are as follows [16-18]: 

(1) N1 + N2 = d1 + d2 + (u1 + u2)I; 

(2) N1  N2 = d1  d2 + (u1  u2)I;; 

(3) N1  N2 = d1d2 + (d1u2 + u1d2 + u1u2)I; 
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Definition 1. Let N = d + uI be a neutrosophic number. If d, u  0, then N is called positive neutrosophic 

numbers.  

In the following, all neutrosophic numbers are considered to be positive and are called neutrosophic 

numbers for short, unless they are stated. 

2.2 Projection measure of interval numbers 

Kaufmann and Gupta [18] introduced interval numbers and defined as follows. 

Definition 2 [18]. If },,|{],[ Raaaxaxaaa ululul  , then a is called an interval number. If 

}0|{],[ ulul axaxaaa  , then a is called a positive interval number. If al = au, then a is 

reduced to a real number (crisp value). 

In the following, all interval numbers are considered to be positive and are called interval numbers for 

short, unless they are stated. 

Definition 3 [2]. Let ]),[],...,,[],,([ 2211

u
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interval vectors, then the modules of a and b are defined as 
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is called the cosine of the included angle between a and b. 

Definition 4 [2]. Let ]),[],...,,[],,([ 2211
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is called the projection of the vector a on the vector b. 

The projection measure Projb(a) can include both the distance and the included angle between a and b. 

In general, the larger the value of Projb(a) is, the closer a is to b [2]. However, this case is not always 

reasonable in some case. For example, let ]),[],...,,[],,([ 2211

u

n

l

n

ulul aaaaaaba   and 

])2,2[],...,2,2[],2,2([ 2211

u

n

l

n

ulul aaaaaac  , then Projb(a) = ||b|| and Projb(c) = 2||b||. Clearly, Projb(c) is 

larger than Projb(a). In fact, a is closer to b than c. Hence, the projection cannot accurately depict the 

degree of a close to b. However, the “closeness” between two vectors for the general projection measure 

introduced by Xu [2] is not also always reasonable in some case. Then, author notices that when a is equal 

to b, Projb(a) should be equal to 1, conversely Proja(b) should be also equal to 1. Hence, author proposes a 

bidirectional projection measure for interval numbers and neutrosophic numbers below to overcome the 

shortcoming. 

3 Bidirectional projection measures of interval numbers and neutrosophic numbers 

This section firstly proposes a bidirectional projection measure between interval numbers to overcome 

the shortcoming of the general projection measure of interval numbers, and then extend it to the 

bidirectional projection measure between neutrosophic numbers. 

To overcome the shortcoming implied in the existing projection, author proposes a bidirectional 

projection measure between interval numbers below. 

Definition 5. Let ]),[],...,,[],,([ 2211
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is called the bidirectional projection between a and b, where 
22

1
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)()( u

j

n

j

l

j bbb   
 are the modules of a and b respectively, and )(

1
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 is 

the inner product between a and b. 

The bidirectional projection measure can include not only both the distance and the included angle 

between a and b but also the bidirectional projection magnitude between two vectors a and b. 

Obviously, the closer the value of BProj(a, b) is to 1, the closer a is to b, and then there are BProj(a, b) 

= 1 if and only if a = b and 0  BProj(a, b)  1 for any two interval vectors a and b, which is a normalized 

measure. 

To demonstrate the rationality and effectiveness of the bidirectional projection measure, we give the 

following example. 

Example 1. Let a = ([0, 4], [0, 6]) and b = ([0, 3], [0, 4]) be two interval vectors. Since ab = 36, ||a|| = 

52  and ||b|| = 5, firstly according to Eq. (2), we have that Projb(a) = 36/5 = 7.2 and Projb(b) = 25/5 = 5. In 

this case, we have that Projb(b) < Projb(a). Since a  b, b should be much closer to itself rather than to a. So, 

the projection measure is not reasonable. Then according to Eq. (3), we have that BProj(a, b) = 

1/(1+36/ 52   36/5) = 0.3118 and BProj(b, b) =1/(1+ 25/5  25/5) = 1. Hence BProj(b, b) > BProj(a, b). 
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Obviously, the bidirectional projection measure is reasonable and effective. 

Then, the bidirectional projection measure of interval numbers can be extended to the bidirectional 

projection measure of neutrosophic numbers. Assume that there is a set of neutrosophic numbers A = {N1, 

N2, …, Nn} for dj, uj  0 and j = 1, 2, …, n. A neutrosophic number Nj = dj + ujI for j = 1, 2, …, n can be 

transformed into an interval number based on the maximum and minimum ranges for I, where the lower 

limit of indeterminacy I is denoted by inf I and the upper limit of indeterminacy I is denoted by sup I. Thus, 

the neutrosophic number Nj = dj + ujI is equivalent to ]sup,inf[ IudIudN jjjjj   for j = 1, 2, …, n. If 

the two sets of neutrosophic numbers A = {NA1, NA2, …, NAn} and B = {NB1, NB2, …, NBn} are considered as 

two neutrosophic number vectors, based on the bidirectional projection measure between interval vectors, 

we can give the bidirectional projection measure between two neutrosophic numbers. 

Definition 6. Let A = (NA1, NA2, …, NAn) and B = (NB1, NB2, …, NBn) be two neutrosophic number vectors, 

where NAj = dAj + uAjI and NBj = dBj + uBjI (j = 1, 2, …, n) for dAj, uAj, dBj, uBj  0 and I  [inf I, sup I]. Then,  
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is called the inner product of A and B, and then 
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is called the cosine of the included angle between A and B. 

Definition 7. Let A = (NA1, NA2, …, NAn) and B = (NB1, NB2, …, NBn) be two neutrosophic number vectors, 

where NAj = dAj + uAjI and NBj = dBj + uBjI (j = 1, 2, …, n) for dAj, uAj, dBj, uBj  0 and I  [inf I, sup I]. Then 
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is called the bidirectional projection measure between A and B, where 

  
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Obviously, the closer the value of BProj(A, B) is to 1, the closer A is to B, and then there are BProj(A, B) 

= 1 if and only if A = B and 0  BProj(A, B)  1 for any two neutrosophic number vectors A and B, which is 

a normalized measure. 

In the following, we introduce the projection between neutrosophic number matrices whose elements 

are all neutrosophic numbers. 

Definition 8. Let X = (xkj)tn and Y = (ykj)tn be two neutrosophic number matrices, where xkj = dxkj + uxkjI 

and ykj = dykj + uykjI for dxkj, uxkj, dykj, uykj  0 and I  [inf I, sup I] (k = 1, 2, …, t; j = 1, 2, …, n). Then the 

bidirectional projection measure between X and Y are defined as  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 6 

YXYXYX
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)sup)(sup()inf)(inf( . Especially 

when dxkj and dykj are some real numbers (crisp values) for I = 0, which are the special cases of the 

neutrosophic numbers, the interval numbers of the equality of the upper and lower limits are also 

represented by ],[ xkjxkjkj ddx   and ],[ ykjykjkj ddy  to apply Eq. (6) conveniently. 

Example 2. Suppose that there are the two neutrosophic number matrices: 
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 for I  [0, 2]. 

Then, the two matrices can be transformed into the following forms: 
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Y . 

Hence, we firstly give the following calculations: 

156)4462()5355( 22222222 X , 

324)8475()7766( 22222222 Y , 

216)84447652()75736565( YX . 

Then, by using Eq. (6), we have the following bidirectional projection measure result: 

1589.0
216)156324(324156
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),(Pr 
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4 Group decision making method based the bidirectional projection measure 

In this section, we present a handling method for multiple attribute group decision making problems 

with neutrosophic numbers by using the bidirectional projection measure of neutrosophic numbers. 

In a multiple attribute group decision making problem with neutrosophic numbers, let S = {S1, 

S2, . . . , Sm} be a set of alternatives, A = {A1, A2, . . . , An} be a set of attributes, and E = {E1, E2, . . . , Et} be 

a set of decision makers or experts. If the decision maker Ek (k = 1, 2,…, t) provide an evaluation value of 

the attribute Aj (j = 1, 2,…, n) for the alternative Si (i = 1, 2, . . . , m) by using a scale from 1 (less fit) to 10 

(more fit) with indeterminacy I, which is represented by the form of a neutrosophic number 

Iudx i
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kj ud ,  R (k = 1, 2,…, t; j = 1, 2,…, n; i = 1, 2,…, m) and I  [inf I, 

sup I]. Thus, we can establish the alternative decision matrix of neutrosophic numbers Xi (i = 1, 2, . . . , m): 
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In the following statements, Xi is called the alternative decision matrix for short. 

If the weights of attributes and decision makers are considered as the different importance of each 

attribute Aj (j = 1, 2, . . . , n) and each decision maker Ek (k = 1, 2,…, t), the weight vector of attributes is W 

= (w1, w2,…, wn)T with wj  0 and  


n

j jw
1

1  and the weight vector of decision makers is V = (v1, v2,…, 

vt)T with vk  0 and  


t

k jv
1

1.  

Then, the procedure of the group decision making problem is described as follows: 

Step 1: For de-neutrosophication in the decision making problem, each alternative decision matrix of 

neutrosophic numbers Xi can be transformed into an alternative decision matrix of interval numbers when a 

neutrosophic number Iudx i

kj

i

kj

i

kj   is transformed into ],[]sup,inf[ ui

kj

li

kj

i

kj

i

kj

i

kj

i

kj

i

kj xxIudIudx   

with respect to the specified indeterminacy I  [inf I, sup I] according to decision makers’ and real 

requirements.  

Step 2: By calculating ],[],[ lu

kjj

li

kjj

ui

kj

li

kj

i

kj xwxwyyy   (k = 1, 2,…, t; j = 1, 2,…, n; i = 1, 2,…, m) 

for Xi (i = 1, 2, …, m), a weighted alternative decision matrix is obtained as follows: 























i

tn

i

t

i

t

i

n

ii

i

n

ii

i

yyy

yyy

yyy

Y









21

22221

11211

. 

Step 3: According to )](max),(max[],[ *** ui

kj
i

li

kj
i

u

kj

l

kjkj yyyyy   (k = 1, 2,…, t; j = 1, 2,…, n; i = 1, 

2,…, m), the ideal alternative matrix is determined as follows: 























**

2

*

1

*

2

*

22

*

21

*

1

*

12

*

11

*

tntt

n

n

yyy

yyy

yyy

Y









. 

Step 4: According to Eq. (6), the bidirectional projection measure between each weighted alternative 

decision matrix Yi (i = 1, 2,…, m) and the ideal alternative matrix Y* can be calculated by 

***

*

*),(Pr
YYYYYY

YY
YYojB

iii

i

i


 ,                 (7) 
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where    


t

k

n

j

ui

kj

li

kjj

i yyvY
1

22 )()( ,    


t

k

n

j kjkjk yyvY
1 1

2*2** )()( , and 

   


t

k

n

j

u

kj

ui

kj

l

kj

li

kjj

i yyyyvYY
1 1

***
. 

Step 5: The alternatives are ranked in a descending order according to the values of BProj(Yi, Y*) for i 

= 1, 2, …, m. The greater value of BProj(Yi, Y*) means the better alternative Si. 

Step 6: End. 

5. Example analysis 

In this section, an illustrative example above a multiple attribute group decision making problem with 

neutrosophic numbers is given to show the applications and effectiveness of the proposed group decision 

making method in realistic scenarios.  

5.1 Illustrative example 

An illustrative example about investment alternatives for a multiple attribute group decision-making 

problem adopted from [16] is given to demonstrate the applications of the proposed group decision-making 

method with neutrosophic numbers. Assume that an investment company wants to invest a sum of money 

for the best option. To invest the money, there are four possible alternatives: (1) S1 is a car company; (2) S2 

is a food company; (3) S3 is a computer company; (4) S4 is an arms company. The investment company 

must take a decision according to the three attributes: (1) A1 is the risk factor; (2) A2 is the growth factor; (3) 

A3 is the environmental factor. Assume that the weighting vector of the attributes is W = (0.35, 0.25, 0.4)T. 

If three experts are required in the evaluation process and their weighting vector is V = (0.37, 0.33, 0.3)T, 

the expert Ek (k = 1, 2, 3) evaluates the four possible alternatives of Si (i = 1, 2, 3, 4) with respect to the 

three attributes of Aj (j = 1, 2, 3) by the form of neutrosophic numbers Iudx i

kj

i

kj

i

kj   for 
i

kj

i

kj ud ,  0 and 

i

kj

i

kj bd ,  R (k = 1, 2, 3; j = 1, 2, 3; i = 1, 2, 3, 4).  

For example, the first expert E1 gives the neutrosophic number of an attribute A1 for an alternative S1 as 

1

11x = 4 + I by using a scale from 1 (less fit) to 10 (more fit) with indeterminacy I, which indicates that the 

grade of the attribute A1 with respect to the alternative S1 is the determinate degree 4 with an indeterminacy 

I. Thus, when the four possible alternatives with respect to the three attributes are evaluated by the three 

experts, we can establish the following four alternative decision matrices, respectively: 























454

445

354
1

I

II

X , 





















I

IX

576

665[

566
2

, 
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























654

554

653
3

I

I

I

X , 

























I

I

I

X

468

566

467
4

. 

. 

Then, the developed approach is applied to the decision making problem and described by the 

following steps: 

Step 1: Assume that the specified indeterminacy is I  [0, 0.5] according to the decision makers’ and 

real requirements. Then, the four alternative decision matrices of Xi (i = 1, 2, …, m) can be transformed into 

the following forms, respectively: 



















]4,4[]5.5,5[]4,4[

]4,4[]4,4[]5,5[

]5.3,3[]5,5[]5.4,4[
1X , 



















]5.5,5[]7,7[]6,6[

]6,6[]6,6[]5.5,5[

]5,5[]6,6[]6,6[
2X , 



















]6,6[]5,5[]5.4,4[

]5.5,5[]5,5[]4,4[

]6,6[]5.5,5[]3,3[
3X , 



















]5.4,4[]6,6[]8,8[

]5,5[]6,6[]5.6,6[

]5.4,4[]6,6[]7,7[
4X . 

Step 2: By calculating ],[],[ lu

kjj

li

kjj

ui

kj

li

kj

i

kj xwxwyyy   (k = 1, 2,…, t; j = 1, 2,…, n; i = 1, 2,…, m) 

for Xi (i = 1, 2, …, m), the four weighted alternative decision matrices are obtained, respectively, as 

follows: 



















]6.1,6.1[]375.1,25.1[]4.1,4.1[

]6.1,6.1[]1,1[]75.1,75.1[

]4.1,2.1[]25.1,25.1[]575.1,4.1[
1Y , 



















]2.2,2[]75.1,75.1[]1.2,1.2[

]4.2,4.2[]5.1,5.1[]925.1,75.1[

]2,2[]5.1,5.1[]1.2,1.2[
2Y , 
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

















]4.2,4.2[]25.1,25.1[]575.1,4.1[

]2.2,2[]25.1,25.1[]4.1,4.1[

]4.2,4.2[]375.1,25.1[]05.1,05.1[
3Y , 



















]8.1,6.1[]5.1,5.1[]8.2,8.2[

]2,2[]5.1,5.1[]275.2,1.2[

]8.1,6.1[]5.1,5.1[]45.2,45.2[
4Y . 

 

Step 3: According to )](max),(max[],[ *** ui

kj
i

li

kj
i

u

kj

l

kjkj yyyyy   (k = 1, 2,…, t; j = 1, 2,…, n; i = 1, 

2,…, m), the ideal alternative matrix is determined as follows: 



















]4.2,4.2[]75.1,75.1[]8.2,8.2[

]4.2,4.2[]5.1,5.1[]275.2,1.2[

]4.2,4.2[]5.1,5.1[]45.2,45.2[
*Y . 

Step 4: According to Eq. (7), the bidirectional projection measure values between each weighted 

alternative decision matrix Yi (i = 1, 2, 3, 4) and the ideal alternative matrix Y* can be obtained as follows:  

BProj(Y1, Y*) = 0.3505, BProj(Y2, Y*) = 0.6185, BProj(Y3, Y*) = 0.4632, and BProj(Y4, Y*) = 0.6814. 

Step 5: Since the values of the bidirectional projection measure are BProj(Y4, Y*) > BProj(Y2, Y*) > 

BProj(Y3, Y*) > BProj(Y1, Y*), the ranking order of the four alternatives is S4 > S2 > S3 > S1. Hence, the 

alternative S4 is the best choice among all the alternatives. 

5.2 Comparative analysis 

In this subsection, we give the comparative analysis with the general projection measure and the 

decision making method proposed by Ye [16] to illustrate the effectiveness and advantages of the 

developed method. 

For the above-mentioned example, if Eq.(7) are replaced by the general projection measure: 

*

*

)(Pr *

Y

YY
Yoj

i
i

Y


 .                             (8) 

Then, the projections of Yi (i = 1, 2, 3, 4) on the ideal decision R* can be calculated by Step 3 and using 

Eq. (8). The results are shown as follows: 

ProjY*(Y1) = 3.4422, ProjY*(Y2) = 4.7239, ProjY*(Y3) = 4.0006, and ProjY*(Y4) = 4.7818. 

Since the values of the projection measure are ProjY*(Y4) > ProjY*(Y2) > ProjY*(Y3) > ProjY*(Y1), the 

ranking order of the four alternatives is also S4 > S2 > S3 > S1. Hence, the alternative S4 is also the best 

choice among all the alternatives. 

Obviously, the two ranking orders obtained by using the general projection method and the 

bidirectional projection method are identical. Compared with the general projection measure decision 

making method, the proposed bidirectional projection measure decision making method is superior to the 

general projection measure decision making method because the bidirectional projection measure can 

consider not only the distance and included angle between objects evaluated but also the bidirectional 

projection magnitudes, while the general projection measure only consider the single directional projection 

magnitude between objects evaluated rather than the bidirectional projection magnitudes and implies some 
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unreasonable phenomena in some case. As mentioned above, furthermore, the bidirectional projection 

measure can overcome the shortcoming of the general projection measure and is superior to the general 

projection measure. 

Compared with the decision making method proposed by Ye [16], the bidirectional projection decision 

making method demonstrates the same ranking order as Ye’s method [16]. For convenient comparison, if 

we consider different ranges of the indeterminate degree for I, by Steps 1-4, all the results are shown in 

Table 1. 

Table 1. Ranking alternatives in different indeterminate ranges for I 

I 

Ranking order of the 

bidirectional projection 

method 

Ranking order of Ye’s 

method [16] 

I = 0 S4 > S2 > S3 > S1 S2 > S4 > S3 > S1 

I  [0, 0.2] S4 > S2 > S3 > S1 S2 > S4 > S3 > S1 

I  [0, 0.4] S4 > S2 > S3 > S1 S4 > S2 > S3 > S1 

I  [0, 0.6] S4 > S2 > S3 > S1 S4 > S2 > S3 > S1 

I  [0, 0.8] S4 > S2 > S3 > S1 S4 > S2 > S3 > S1 

I  [0, 1] S4 > S2 > S3 > S1 S4 > S2 > S3 > S1 

 

From Table 1, it is obvious that the ranking orders indicate their difference in the indeterminate degree 

for I  [0, 0.2] based on different methods, while the ranking orders are identical in the indeterminate 

degree from I  [0, 0.4] to I  [0, 1]. The method proposed by Ye [16] is based on the de-neutrosophication 

process and possibility degree ranking order of neutrosophic numbers, then it cannot evaluate the proximity 

between an ideal solution (an ideal alternative) and alternatives; while the new method proposed in this 

paper is based on the bidirectional projection between each alternative decision matrix and the ideal 

alternative matrix, and then it shows that the closer the alternative is to the ideal alternative, the better the 

alternative is. Therefore, the new method is more reasonable than the existing method [16]. 

However, the main advantages of the proposed method are outlined as follows:  

(1) The bidirectional projection method is more reasonable than the general projection method because 

the former can overcome the shortcoming of the latter, then the bidirectional projection measure value is 

bounded within [0, 1], which is a normalized measure. 

(2) The bidirectional projection method is more comprehensive than the general projection method 

because the bidirectional projection can consider not only the distance and the included angle between 

objects evaluated but also the bidirectional projection magnitudes. 

(3) The bidirectional projection-based multiple attribute group decision making method with 

neutrosophic numbers is reasonable and effective and provide a new decision making method under a 

neutrosophic number environment 

6 Conclusion 

This paper firstly proposed a bidirectional projection measure of interval numbers to overcome the 

shortcomings of the general projection measure, and then extended it to the bidirectional projection 

measure between neutrosophic numbers. Further, a bidirectional projection-based multiple attribute group 

decision making method was developed under a neutrosophic number environment. Through the 

bidirectional projection measure between each alternative decision matrix and the ideal alternative matrix, 

the ranking order of all alternatives can be determined to select the best alternative. Finally, an illustrative 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 12 

example demonstrated the application of the developed method, and then the effectiveness and rationality 

of the developed method are demonstrated by the comparative analysis with existing relative methods.  

In the future work, we shall extend the bidirectional projection method to other decision data, such as 

intuitionistic fuzzy sets and neutrosophic sets, and develop the applications such as pattern recognition and 

medical diagnosis. 
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Table 1. Ranking alternatives in different indeterminate ranges for I 

I 

Ranking order of the 

bidirectional projection 

method 

Ranking order of Ye’s 

method [16] 
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