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1 Abstract  

 

A novel kind of classical bracket of classical observables is proposed. This bracket is used 

directly as a derivation* of the commutator of the quantum mechanical observables that are 

simply obtained by Dirac quantization of the classical observables. Light bending in the 

presence of a massive object in Schwarzschild’s metric is considered and the above bracket is 

used to obtain a second quantized equation of the wave function of the photon in this 

situation via the Dirac quantization. 

 

2 Notation 

 

 Azimuthal Angle 

 Polar Angle, Also a Canonical Co-ordinate 

r Radial co-ordinate in the Schwarzschild setting 

V Velocity of a photon 

G Universal Gravitational Constant 

M Massive object in a Schwarzschild setting 

t Proper time 

 a constant of motion 

 a constant of motion 

ds line element in the Schwarzschild metric 

0r impact parameter 

p Canonical momentum 

L Lagrangian 

 Frequency of a photon 

q Canonical Co-ordinate 

p Canonical Momentum 

 Eigen Wave-function of the Photon in the canonical  representation 

 

3 Light Bending, Classical Observables (Canonical Co-ordinates) in Schwarzschild Metric 

  

Considering the well known Schwarzschild metric, specially the case of the line element lying 

in the equatorial plane ( 2  ), where ,r and   have their usual meaning  
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We have the following relationships regarding the photon orbit locally in the presence of a 

massive object of mass  M . 

 

From the constant of motion  
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Similarly from another constant of motion  
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At     
0rr      we have   
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From the quotient of 2 and 3 we have  
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Also from the quotient of 3 and 4,  we have 
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Now considering 

 

  as our canonical co-ordinate   

 

we find the canonical momentum 
p  given by   



 


 




L
p    where   

2

1

2

2

2

2
1

12
1

























































dt

d
r

dt

dr

r

GMr

GM
L


                                                                                         7 

 

 

which is gotten by using 0ds  

 

 

Therefore, 
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4  A Novel Bracket as the Derivation of the Commutator of the Quantum Mechanical 

Observables 

 

We propose the bracket of the form: 
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where the subscript denotes the time at which the canonical co-ordinate or the canonical 

momentum is evaluated. Taking 
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We further extend it to many co-ordinates in a similar fashion 
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where  i  is an index that runs for the number of co-ordinates. 

 

We will now comment on the motivation and the use of such a bracket. Quantizing classical 

dynamical systems to quantum mechanical systems involves mapping the Poisson Bracket to 

a Dirac Commutator by way of canonical quantization methods which incorporate the 

uncertainty as a function of the commutator by algebraic means. However, if we realize that 



a similar uncertainty as a function of  the commutator can be incorporated in such a 

quantization map by perturbation of time in a fashion as in 9 and then evaluating the 

canonical co-ordinates and the canonical momenta. The inverse of this time can be 

conveniently taken to be of the order of the frequency of the photon whereby we do not miss 

any capturing of the of the wave packet nature of the photon. At this stage we can simply 

promote our new co-ordinates in this bracket to Quantum Mechanical observables by simply 

using the Dirac map. Since we are using Dirac Quantization in addition to the quantization 

contributed by the “derivation” nature of the proposed novel bracket, the wave equation developed in 

this scheme should be a product of what we are motivated to call a second quantization.  

 

 We name this kind of bracket an Aryabhatta bracket in the honour of the ancient Indian 

astronomer Aryabhatta. Hence the subscript A in the notation of this bracket. 

 

Once we promote these canonical variables namely 
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where   and    are some constants. 

 

which we recognize as canonical variables again ready to be promoted to be quantum 

operators by simply doing 

 

Note: If   Aq  is the co-ordinate at time t  then  Ap  is the co-ordinate at time dtt    and vice-
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Substituting the 14 , 15 , 16 and 17 in 18 according the note mentioned above  in  the above 

equation we get 
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For an eigen wave function    in the canonical   representation that satisfies our quantum 

commutator we have 
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5 Wave Function of a Photon 

 

Noting  q  as our canonical co-ordinate  and the canonical momentum p  

  )(
1

,
dt

dq
p

dt

dp
qpq

A



     

              







 










t
ih

qt
ihq

2



 









































dt

dq

q
ih

q
ih

dt

d
q



1                                                                                                     25 

 

        

































dt

dq

qqt
q

ih 2


                                                                                                     

 


 1AAAA qppq

































dt

dq

qqt
q

ih 2


                     From 18                                                              26 

 

 

Therefore for our wave function    we have 
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6 Decomposition of the Wave Function 

 

We write the wave function ),,(  r   as       

)()()(),,(   rRr                                                                                                                      27a 

 

In our case, for the photon orbit lying in the equatorial plane we have, 
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7 Equation of  R(r) component of Wave Function of the Photon 

 

Explicitly the momentum operator in the radial and angular co-ordinates respectively is  

 

r
rpr



                                                                                                                                              28 

And 









r
p

1
                                                                                                                                         29 

 

(implying that 
p  is either discontinuous in    or multiple valued) 
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For our previously mentioned   rR  but only the r component (representation) is   
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Since r and t are independent variables, we have  
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 for the  R(r)  component wave function  of   the photon. 

 

8 Equation of R(r) component of Wave Function of the Photon in the Limit  of mass M 

considered in the Schwarzschild setting  going to zero 

 

The equation  

 

 

 

 

   
ihrr

rR
r

rt

rR
r



















 









2

2

      Note:  is the constant of motion; momentum.                           37                                                                  

  

As 








 





2rt 


 as 0M  in equation 6                                                                                              7a 

 

 

giving 

 

   
ihtr

rR
r

rt

rR
r


















 2



 

   
ihrr

rR

rt

rR
r




























 2

                                                                                                                 37b 

 

 

In the limit of  0M   equation 6 becomes 
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9 Equation of    component of   Wave Function of the Photon 
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Therefore we have for angular  part we have 
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Therefore we have, 
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Since r and t are independent variables, we have 
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i.e. for our previously mentioned     but only the   component (representation) is   
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i.e. we have  
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for the    component of wave function  of   the photon. 

 

10 Equation of    component of  Wave Function of the Photon in the Limit  of mass M 

considered in the Schwarzschild setting  going to zero. 

 

 

In the limit of  0M   equation 6 becomes        
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Therefore,  
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We simply write this as 

 



 rf                                                                                                                                             43d 

 

The solution of 43 being  
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11Conclusions 

 

We also note that this wave equation of photon involves the local space-time curvature term 

R (One can refer to Steven Weinberg’s text book on Gravitation for help). Exclusive 

computation of this bracket for this photon example clearly exhibits this. 
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