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The paper considers transformation of the equation of motion in stresses for an incompressible 

Newtonian fluid. The aim of the transformation is to obtain more detailed equations that account 

for the impact of vortex (rotational) and linear (forward) flows on the process of viscous friction. 

The transformation method is based on adding zero to the expressions for shear stresses with 

subsequent distinguishing of rotor velocity function and derivatives characterizing the linear 

flow. This approach as a form of recording the original equation does not require any additional 

restrictions. The transformation has resulted in new systems of equations for viscous vortex and 

vortex-free flows as well as three-dimensional vortex. The obtained equations allow obtaining 

the known exact solution for the laminar flow (Poiseuille’s formula) and Euler’s differential 

equation for an ideal fluid. We have shown that the Navier-Stokes equation is a separate case of 

a more general equation for Newtonian fluid motion. The obtained equations and connections 

between them allow improvement of the mathematical description of the incompressible fluid 

flow. 

Keywords: general equation; Navier-Stokes; Euler; Poiseuille; vortex-free flow; 3D vortex. 

 

1. Introduction 

 

Mathematical description of liquids and gases behavior is an important and difficult task 

that has not been solved until now. The main difficulty consists in large deformations 

(deformation speed) of fluid environment that it is impossible to ignore unlike the deformed 

solid body. In spite of the identical initial system of solid and liquid equations obtained by 

Navier for a continuous environment, exact and numeral description of liquid behavior is less 

complete than that for a solid body. 

Such a historically existing situation requires that theoretical and experimental researches 

be carried out that scientists from many countries of the world are being engaged in. A search for 

new exact equations of motion of fluid environment has a significant importance as they have 

much in common and their application domain is unlimited. The motion of transport vehicles in 

water and in mid air, in wind power engineering, in flows into power plants, in weather forecast 

improvements, in some aspects of astrophysics related to the flow of plasma can be referred to 

some of the fields [1, 2]. 

 

2. Analysis of literature and set of problem 

 

Obtaining property of fluidity in liquid results in the final quantity of convective 

accelerations, and equations of motion become nonlinear. There is plenty of information on 

calculations of particular flows of liquid; however, there are just few exact solutions of equations 

of motion in this field of mechanics. For a turbulent flow, such solutions are unavailable that 

required the development of semi empiric theory of turbulence [3, 4]. For a laminar flow, there 

are a few exact tasks the most well-known one is named after Poiseuille. Within the framework 

of ideal liquid model, it is well-known Euler differential equation of motion including a few their 

exact solutions [5, 6]. All this resulted in large part of physical and numerical experiment while 

implementing any research in field of mechanics of liquid and allied subjects [7-9]. 
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Besides the power field characterized by equations of motion, there exists the second 

physical field in an incompressible liquid - speeds of deformations, whose equations are not 

examined in this paper. 

Equation of motion in tensions (Navier) that can be presented as   [5, 6, 10] underlies 

mathematical description of flow of liquid.   
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where  , ,xx yy zzp p p  are normal tensions, , ,yx zx yz    are tangent tensions, , ,X Y Z   are specific mass 

force, , ,x y zu u u  are speed projections , t  is time. 

One of the special cases of this equation for a Newtonian liquid is Navier-Stokes equation. 

There are a few methods of its derivation from which we would like to draw your attention to the 

one described in works [5, 6]. The characteristic feature of this derivation is a more clear 

formulation of accepted assumptions from which it is necessary to distinguish the following: 

 – average (AV) point pressure of Newtonian liquid can be found as an arithmetical mean 

value of projections 
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x y zp p p
p

 
  .                                                      (2)  

 

As mentioned in some works, it is impossible to prove that the quantity from a formula (2) 

is a pressure in the thermodynamics sense [5, 11]. 

– viscosity influences not only on tangents but also on normal tensions( , ,xx yy zzp p p ), that 

is illustrated by the system of equations [5, 6, 10]. 
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. 

 

The system (3) does not comply with the Newton's law for a viscous friction according to 

which viscosity influences on tangent tensions only [5, 6, 10]. 

Navier-Stokes equation has not been solved in a general view, and all their particular exact 

solutions possess one general property -  

the calculations results correspond to the supervisions in the number range of Reynolds  

Re  (10
-3

… 5).   

Over the past decades, many critical remarks have been spoken out concerning this 

equation; nevertheless it was widely spread not only in mechanics of liquid, but also in other 

sciences. Reason for such situation is absence of other equations that would have been more 

reasonable from the physical and mathematical point of view [5-7, 8, 12]. 
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3. Aim and research tasks  

 

The aim of the current research paper is to obtain more detailed equations of motion by 

transformation (1) at the minimum number of the well-known limitations characteristic of 

Newtonian nonviscous and ideal liquid. 

In order to gain the goal, the well-known method of transformation that consists in adding 

zero to mathematical expression with its subsequent presentation in a form of two identical 

elements with different signs has been selected. Such method of transformation does not require 

the use of additional conditions and their proof. 

 

4. Transformation of equations of motion and special cases 

 

We will transform the system (1) by dissociating pressure from tangent tensions. As 

xx xp p 
 yy yp p  zz zp p 

 
(where , ,x y zp p p  are 

 
projections of pressure). 
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Let us transform the first line of equation (4) putting expressions for tangent tensions in a 

Newtonian liquid 

 

1 yx x x xz
up u u duu

X
x y x y z z x dt



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. 

We will add a zero to the derivatives into brackets presenting it in a form of two identical 

components with a different sign. 
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As a result, we will obtain 
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After analogical transformations 
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4 

 

In equations (4, 5) the following expressions are used:  

-for tangent tensions in a Newtonian liquid [5, 6] y x
xy

u u

x y
 

 
  

  
, 

xz
xz

uu

x z
 

 
  

  
, yz
yz

uu
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  ; 

-for the rotor of speed [5]  (  )
yz

x
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y z


 
 

, (  ) x z
y

u u
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 
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, (  )
y x

z

u u
rot u

x y

 
 
  .

 

The characteristic feature of the system (5) is an influence of vortical (rotatory) and linear 

(forward) flow of liquid to be recorded, and also direct dependence of pressure from position of  

surface element. 

From equations (5) by the data  (  ) 0irot u    follow equations of viscous irrotational 

(noncirculatory) flow. 
2 2
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 ,                                  (6) 
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Using cylindrical coordinates(r, z), it is possible to get the special case of equations(6) for 

a round pipe in the form of 
2

2

1
 

2

zd u
grad p

dr 
    from which it follows Poiseuille equation for the 

laminar flow mode [5, 6, 10]. 

The system (5) has another special case for the three-dimensional revolved vortex without 

forward motion. Excepting linear speeds in the left part (5), we will obtain:  
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Equation (7) can be presented in other form that uses rotary particle velocity.   
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where i i(rot u) =2ω ,  /
i

  - is an rotary velocity of particle rotation /.  

Comparing expressions in brackets with formulas for tangent tensions, one can notice their 

analogy. These expressions (formula), in accordance with a dimension, characterize the force of 

friction attributed to the quantity of the revolved volume. 

The examined approach allows to derive equation of motion within the framework of the 

nonviscous liquid model. Supposing 0  , we will obtain from (5) -(7) : 

 
1 x xp du

X
x dt


 


, 

 

1 y yp du
Y

y dt


 


 ,                                                    (8) 

 
1 z zp du

Z
z dt


 


. 

 

From (8) it follows that the projections of pressure can differ in the absence of viscosity 

influence (impact). This conclusion conflicts with the well-known point of view that 
x y zp p p   

is possible only under influence of viscosity [5, 6, 10]. 

If we consider the hydrostatical law of distribution of pressure ( x y zp p p p   _), then we 

will obtain Euler equation from the dynamics of ideal liquid [5, 12]. From (1) it is possible to 

derive Navier-Stokes equation making use of a few well-known assumptions [5-7]. 

 

5. Short analysis of transformation 

 

Connection between the considered equations can be presented in the form of the 

following chart (fig. 1). 

 
Fig.1. Chart of connections between equations. 

 

In equalization (5) there are elements characterizing all types of incompressible liquid 

flow: forward and vortex. It allows to suppose that it can be used for the calculation of turbulent 

flow. 
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Using the well-known definition for an irrotational flow, from (5) it is possible to derive 

equations for a viscous irrotational flow, and also for viscous three-dimensional vortex without 

linear speed. 

Equation in a form (1) or (3) used establish Navier-Stokes equation with the use of two 

basic assumptions [5, 6]: 

Linear equalization 
3

x y zp p p
p

  
 

 
 is correct to obtain mean pressure of nonlinear 

function ( , , , )p f x y z t . This standard assumption is executed at the small interval of averaging 

only and must be considered approximate. 

Point pressure changes under influence of viscosity. This assumption does not comply with 

the Newton's law for a viscid friction and conflicts with equation of motion for the nonviscous 

liquid (8). 

Taking into account both assumptions Navier-Stokes equation must be considered 

approximate for the laminar flow mode. 

The approach being considered in the paper towards mathematical description of flow of 

incompressible liquid allows us to find another way of deriving the well-known formula for a 

laminar flow (Poiseuille) and differential Euler equation  (fig.1). 

 

 

6. Discussion of equations and connections between them  

 

The system of motion equations of Newtonian liquid (5) is obtained from (1) while using 

only one assumption based on the Newton's law for a viscous friction. It allows considering that 

(5) is the most general system of motion equations of Newtonian liquid. A presence of elements 

that characterize two possible types of motion (linear and vortex) in these equations gives hope 

to the description of the turbulent flow mode.  

As the exact solutions of particular tasks for this mode are absent, it is necessary to 

undertake additional theoretical and experimental studies to clarify the possibilities of this 

equations system. 

The system (6) is obtained from (5) except for function of rotor of speed that characterizes 

vortex formation. By simplifying the system (6) it is possible to obtain the well-known Poiseuille 

formula. It allows to suppose that the well-known definition for an irrotational flow refers to the 

laminar mode.  

At the same time, simplification (6) requires a large number of elements be eliminated 

whose contribution to the general result of calculation is not clear enough. It requires that a more 

detailed analysis of elements be conducted depending on viscosity. 

The system (7) is obtained by eliminating from (5) elements that characterize linear 

motion, and does not have clear definition in literature, and also exact solutions. Nevertheless, 

the flows of such type (stand-up air and aquatic vortex) are observed in nature and technology 

that gives hope to perfection of their mathematical description [1, 6]. 

Found systems of equations (5) - (8) are open and their exact solutions are possible for 

some simple tasks only. 

 

7. Conclusions 

 

The applied method of transformation of the equations system of motion in tensions 

allowed to distinguish (single out) two types of components characteristic of a viscous friction in 

a Newtonian liquid at a vortical and linear (forward) flow. It allowed making up three systems of 

equations for three varieties of flow process: flow at joint influence of friction in two types of 

flow; linear flow with a friction only; vortical flow with a friction only.  

The special cases of the found general equations system’s comparison was conducted with 

the well-known exact solution for the laminar flow mode (Poiseuille formula). 
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The new way of differential Euler equation derived in which the successive change of terms and 

equations takes place has been described according to a chart: viscous liquid  non-viscous 

liquid  ideal liquid (fig. 1). 
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