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Abstract

In 1997, Andrew Beal [1] announced the following conjecture : Let A,B,C,m, n,

and l be positive integers with m,n, l > 2. If Am + Bn = Cl then A,B, and

C have a common factor. We begin to construct the polynomial P (x) = (x −

Am)(x − Bn)(x + Cl) = x3 − px + q with p, q integers depending of Am, Bn

and Cl. We resolve x3 − px + q = 0 and we obtain the three roots x1, x2, x3

as functions of p, q and a parameter θ. Since Am, Bn,−Cl are the only roots of

x3 − px + q = 0, we discuss the conditions that x1, x2, x3 are integers. Three

numerical examples are given.
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O my Lord! Increase me further in knowledge.

(Holy Quran, Surah Ta Ha, 20:114.)

To my wife Wahida

1. Introduction

In 1997, Andrew Beal [1] announced the following conjecture :

Conjecture 1. Let A,B,C,m, n, and l be positive integers with m,n, l > 2. If:

Am +Bn = Cl (1)
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then A,B, and C have a common factor.

In this paper, we give a complete proof of the Beal Conjecture. Our idea is to

construct a polynomial P (x) of three order having as roots Am, Bn and −Cl

with the condition (1). The paper is organized as follows. In Section 2 of

preliminaries, we begin with the trivial case where Am = Bn. Then we consider

the polynomial P (x) = (x − Am)(x − Bn)(x + Cl) = x3 − px + q. We express

the three roots of P (x) = x3 − px + q = 0 in function of two parameters ρ, θ

that depend of Am, Bn, Cl. The Section 3 is the main part of the paper. We

write that A2m =
4p

3
cos2

θ

3
. As A2m is an integer, it follows that cos2

θ

3
must

be written as
a

b
where a, b are two positive coprime integers. We discuss the

conditions of divisibility of p, a, b so that the expression of A2m is an integer.

Depending on each individual case, we obtain that A,B,C have or not a common

factor. In the last Section, three numerical examples are presented. We finish

with the conclusion.

2. Preliminaries

We begin with the trivial case when Am = Bn. The equation (1) becomes:

2Am = Cl (2)

then 2|Cl =⇒ 2|C =⇒ ∃ c ∈ N∗/ C = 2c, it follows 2Am = 2lcl =⇒ Am =

2l−1cl. As l > 2, then 2|Am =⇒ 2|A =⇒ 2|Bn =⇒ 2|B. The conjecture (??) is

verified.

We suppose in the following that Am > Bn.

2.1. General Case

Let m,n, l ∈ N∗ > 2 and A,B,C ∈ N∗ such:

Am +Bn = Cl (3)
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We call:

P (x) = (x−Am)(x−Bn)(x+ Cl) = x3 − x2(Am +Bn − Cl)

+x[AmBn − Cl(Am +Bn)] + ClAmBn (4)

Using the equation (3), P (x) can be written:

P (x) = x3 + x[AmBn − (Am +Bn)2] +AmBn(Am +Bn) (5)

We introduce the notations:

p = (Am +Bn)2 −AmBn (6)

q = AmBn(Am +Bn) (7)

As Am 6= Bn, we have :

p > (Am −Bn)2 > 0 (8)

Equation (5) becomes:

P (x) = x3 − px+ q (9)

Using the equation (4), P (x) = 0 has three different real roots : Am, Bn and

−Cl.

Now, let us resolve the equation:

P (x) = x3 − px+ q = 0 (10)

To resolve (10) let:

x = u+ v (11)

Then P (x) = 0 gives:

P (x) = P (u+v) = (u+v)3−p(u+v)+q = 0 =⇒ u3+v3+(u+v)(3uv−p)+q = 0

(12)

To determine u and v, we obtain the conditions:

u3 + v3 = −q (13)

uv = p/3 > 0 (14)
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Then u3 and v3 are solutions of the second ordre equation:

X2 + qX + p3/27 = 0 (15)

Its discriminant ∆ is written as :

∆ = q2 − 4p3/27 =
27q2 − 4p3

27
=

∆̄

27
(16)

Let:

∆̄ = 27q2 − 4p3 = 27(AmBn(Am +Bn))2 − 4[(Am +Bn)2 −AmBn]3

= 27A2mB2n(Am +Bn)2 − 4[(Am +Bn)2 −AmBn]3 (17)

Noting :

α = AmBn > 0 (18)

β = (Am +Bn)2 (19)

we can write (17) as:

∆̄ = 27α2β − 4(β − α)3 (20)

As α 6= 0, we can also rewrite (20) as :

∆̄ = α3

(
27
β

α
− 4

(
β

α
− 1

)3
)

(21)

We call t the parameter :

t =
β

α
(22)

∆̄ becomes :

∆̄ = α3(27t− 4(t− 1)3) (23)

Let us calling :

y = y(t) = 27t− 4(t− 1)3 (24)

Since α > 0, the sign of ∆̄ is also the sign of y(t). Let us study the sign of y.

We obtain y′(t):

y′(t) = y′ = 3(1 + 2t)(5− 2t) (25)
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Figure 1: The table of variation

y′ = 0 =⇒ t1 = −1/2 and t2 = 5/2, then the table of variations of y is given

below:

The table of the variations of the function y shows that y < 0 for t > 4. In

our case, we are interested for t > 0. For t = 4 we obtain y(4) = 0 and for

t ∈]0, 4[=⇒ y > 0. As we have t = β
α > 4 because as Am 6= Bn:

(Am −Bn)2 > 0 =⇒ β = (Am +Bn)2 > 4α = 4AmBn (26)

Then y < 0 =⇒ ∆̄ < 0 =⇒ ∆ < 0. Then, the equation (15) does not have

real solutions u3 and v3. Let us find the solutions u and v with x = u + v is a

positive or a negative real and u.v = p/3.

2.2. Demonstration

Proof. The solutions of (15) are:

X1 =
−q + i

√
−∆

2
(27)

X2 = X1 =
−q − i

√
−∆

2
(28)

We may resolve:

u3 =
−q + i

√
−∆

2
(29)

v3 =
−q − i

√
−∆

2
(30)

Writing X1 in the form:

X1 = ρeiθ (31)
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with:

ρ =

√
q2 −∆

2
=
p
√
p

3
√

3
(32)

and sinθ =

√
−∆

2ρ
> 0 (33)

cosθ = − q

2ρ
< 0 (34)

Then θ [2π] ∈ ] +
π

2
,+π[, let:

π

2
< θ < +π ⇒ π

6
<
θ

3
<
π

3
⇒ 1

2
< cos

θ

3
<

√
3

2
(35)

and:
1

4
< cos2

θ

3
<

3

4
(36)

hence the expression of X2:

X2 = ρe−iθ (37)

Let:

u = reiψ (38)

and j =
−1 + i

√
3

2
= ei

2π
3 (39)

j2 = ei
4π
3 = −1 + i

√
3

2
= j̄ (40)

j is a complex cubic root of the unity ⇐⇒ j3 = 1. Then, the solutions u and v

are:

u1 = reiψ1 = 3
√
ρei

θ
3 (41)

u2 = reiψ2 = 3
√
ρjei

θ
3 = 3
√
ρei

θ+2π
3 (42)

u3 = reiψ3 = 3
√
ρj2ei

θ
3 = 3
√
ρei

4π
3 e+i

θ
3 = 3
√
ρei

θ+4π
3 (43)

and similarly:

v1 = re−iψ1 = 3
√
ρe−i

θ
3 (44)

v2 = re−iψ2 = 3
√
ρj2e−i

θ
3 = 3
√
ρei

4π
3 e−i

θ
3 = 3
√
ρei

4π−θ
3 (45)

v3 = re−iψ3 = 3
√
ρje−i

θ
3 = 3
√
ρei

2π−θ
3 (46)
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We may now choose uk and vh so that uk + vh will be real. In this case, we

have necessary :

v1 = u1 (47)

v2 = u2 (48)

v3 = u3 (49)

We obtain as real solutions of the equation (12):

x1 = u1 + v1 = 2 3
√
ρcos

θ

3
> 0 (50)

x2 = u2 + v2 = 2 3
√
ρcos θ+2π

3 = − 3
√
ρ
(
cos θ3 +

√
3sin θ3

)
< 0 (51)

x3 = u3 + v3 = 2 3
√
ρcos θ+4π

3 = 3
√
ρ
(
−cos θ3 +

√
3sin θ3

)
> 0 (52)

We compare the expressions of x1 and x3, we obtain:

2 3
√
pcos θ3

?︷︸︸︷
> 3
√
p
(
−cos θ3 +

√
3sin θ3

)
3cos θ3

?︷︸︸︷
>
√

3sin θ3 (53)

As
θ

3
∈ ] +

π

6
,+

π

3
[, then sin

θ

3
and cos

θ

3
are > 0. Taking the square of the two

members of the last equation, we get:

1

4
< cos2

θ

3
(54)

which is true since
θ

3
∈ ] +

π

6
,+

π

3
[ then x1 > x3. As Am, Bn and −Cl are the

only real solutions of (10), we consider, as Am is supposed great than Bn, the

expressions:

Am = x1 = u1 + v1 = 2 3
√
ρcos

θ

3

Bn = x3 = u3 + v3 = 2 3
√
ρcos

θ + 4π

3
= 3
√
ρ

(
−cosθ

3
+
√

3sin
θ

3

)

−Cl = x2 = u2 + v2 = 2 3
√
ρcos

θ + 2π

3
= − 3
√
ρ

(
cos

θ

3
+
√

3sin
θ

3

)
(55)
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3. Proof of the Main Theorem

Main Theorem: Let A,B,C,m, n, and l be positive integers with m,n, l >

2. If:

Am +Bn = Cl (56)

then A,B, and C have a common factor.

Proof. Am = 2 3
√
ρcos

θ

3
is an integer⇒ A2m = 4 3

√
ρ2cos2

θ

3
is an integer. But:

3
√
ρ2 =

p

3
(57)

Then:

A2m = 4 3
√
ρ2cos2

θ

3
= 4

p

3
.cos2

θ

3
= p.

4

3
.cos2

θ

3
(58)

As A2m is an integer, and p is an integer then cos2
θ

3
must be written in the

form:

cos2
θ

3
=

1

b
or cos2

θ

3
=
a

b
(59)

with b ∈ N∗, for the last condition a ∈ N∗ and a, b coprime.

3.1. Case cos2
θ

3
=

1

b

We obtain :

A2m = p.
4

3
.cos2

θ

3
=

4.p

3.b
(60)

As
1

4
< cos2

θ

3
<

3

4
⇒ 1

4
<

1

b
<

3

4
⇒ b < 4 < 3b⇒ b = 1, 2, 3.

3.1.1. Case b = 1

b = 1⇒ 4 < 3 which is impossible.
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3.1.2. Case b = 2

b = 2 ⇒ A2m = p.
4

3
.
1

2
=

2.p

3
⇒ 3|p ⇒ p = 3p′ with p′ 6= 1 because 3 � p,

and b = 2, we obtain:

A2m =
2p

3
= 2.p′ (61)

But :

BnCl = 3
√
ρ2
(

3− 4cos2
θ

3

)
=
p

3

(
3− 4

1

2

)
=
p

3
=

3p′

3
= p′ (62)

On the one hand:

A2m = (Am)2 = 2p′ ⇒ 2|p′ ⇒ p′ = 2p”2 ⇒ A2m = 4p”2

⇒ Am = 2p”⇒ 2|Am ⇒ 2|A

On the other hand:

BnCl = p′ = 2p”2 ⇒ 2|Bn or 2|Cl. If 2|Bn ⇒ 2|B. As Cl = Am + Bn and

2|A and 2|B, it follows 2|Am and 2|Bn then 2|(Am +Bn)⇒ 2|Cl ⇔ 2|C.

Then, we have : A,B and C solutions of (3) have a common factor. Also if 2|Cl,

we obtain the same result : A,B and C solutions of (3) have a common factor.

3.1.3. Case b = 3

b = 3⇒ A2m = p.
4

3
.
1

3
=

4p

9
⇒ 9|p⇒ p = 9p′ with p′ 6= 1 since 9 � p then

A2m = 4p′ =⇒ p′ is not a prime. Let µ a prime with µ|p′ ⇒ µ|A2m ⇒ µ|A.

On the other hand:

BnCl =
p

3

(
3− 4cos2

θ

3

)
= 5p′

Then µ|Bn or µ|Cl. If µ|Bn ⇒ µ|B. As Cl = Am + Bn and µ|A and µ|B, it

follows µ|Am and µ|Bn then µ|(Am +Bn)⇒ µ|Cl =⇒ µ|C.

Then, we have : A,B and C solutions of (3) have a common factor. Also if µ|Cl,

we obtain the same result : A,B and C solutions of (3) have a common factor.

9



3.2. Case a > 1, cos2
θ

3
=
a

b

That is to say:

cos2
θ

3
=
a

b
(63)

A2m = p.
4

3
.cos2

θ

3
=

4.p.a

3.b
(64)

and a, b verify one of the two conditions:

{3|p and b|4p} or {3|a and b|4p} (65)

and using the equation (36), we obtain a third condition:

b < 4a < 3b (66)

In these conditions, respectively, A2m = 4 3
√
ρ2cos2 θ3 = 4

p

3
.cos2

θ

3
is an integer.

Let us study the conditions given by the equation (65).

3.2.1. Hypothesis: {3|p and b|4p}

3.2.1.1. Case b = 2 and 3|p :. 3|p ⇒ p = 3p′ with p′ 6= 1 because 3 � p, and

b = 2, we obtain:

A2m =
4p.a

3b
=

4.3p′.a

3b
=

4.p′.a

2
= 2.p′.a (67)

As:
1

4
< cos2

θ

3
=
a

b
=
a

2
<

3

4
⇒ a < 2⇒ a = 1 (68)

But a > 1 then the case b = 2 and 3|p is impossible.

3.2.1.2. Case b = 4 and 3|p :. We have 3|p =⇒ p = 3p′ with p′ ∈ N∗, it follows:

A2m =
4p.a

3b
=

4.3p′.a

3× 4
= p′.a (69)

and:
1

4
< cos2

θ

3
=
a

b
=
a

4
<

3

4
⇒ 1 < a < 3⇒ a = 2 (70)

But a, b are coprime. Then the case b = 4 and 3|p is impossible.
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3.2.1.3. Case: b 6= 2, b 6= 4, b|p and 3|p :. As 3|p then p = 3p′ and :

A2m =
4p

3
cos2

θ

3
=

4p

3

a

b
=

4× 3p′

3

a

b
=

4p′a

b
(71)

We consider the case: b|p′ =⇒ p′ = bp” and p” 6= 1 (if p” = 1, then p = 3b, see

sub-paragraph II. Case k’=1 of paragraph 3.2.1.8). Hence :

A2m =
4bp”a

b
= 4ap” (72)

Let us calculate BnCl:

BnCl =
p

3

(
3− 4cos2

θ

3

)
= p′

(
3− 4

a

b

)
= b.p”.

3b− 4a

b
= p”.(3b− 4a) (73)

Finally, we have the two equations:

A2m =
4bp”a

b
= 4ap” (74)

BnCl = p”.(3b− 4a) (75)

I. Case p” is prime:

From (74), p”|A2m ⇒ p”|Am ⇒ p”|A. From (75), p”|Bn or p”|Cl. If p”|Bn ⇒

p”|B, as Cl = Am+Bn ⇒ p”|Cl ⇒ p”|C. If p”|Cl ⇒ p”|C, as Bn = Cl−Am ⇒

p”|Bn ⇒ p”|B.

Then A,B and C solutions of (3) have a common factor.

II. Case p” is not prime:

Let λ one prime divisor of p”. From (74), we have :

λ|A2m ⇒ λ|Am asλ is prime then λ|A (76)

From (75), as λ|p” we have:

λ|BnCl ⇒ λ|Bn or λ|Cl (77)

If λ|Bn, λ is prime λ|B, and as Cl = Am +Bn then we have also :

λ|Cl asλ is prime, then λ|C (78)
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By the same way, if λ|Cl, we obtain λ|B.

Then: A,B and C solutions of (3) have a common factor.

Let us verify the condition (66) given by:

b < 4a < 3b

In our case, the last equation becomes:

p < 3A2m < 3p with p = A2m +B2n +AmBn (79)

The condition 3A2m < 3p =⇒ A2m < p is verified.

If :

p < 3A2m =⇒ 2A2m −AmBn −B2n > 0

We put Q(Y ) = 2Y 2 − BnY − B2n, the roots of Q(Y ) = 0 are Y1 = −B
n

2

and Y2 = Bn. Q(Y ) > 0 for Y < Y1 and Y > Y2 = Bn. In our case, we

take Y = Am. As Am > Bn then p < 3A2m is verified. Then the condition

b < 4a < 3b is true.

In the following of the paper, we verify easily that the condition b < 4a < 3b

implies to verify Am > Bn which is true.

3.2.1.4. Case b = 3 and 3|p :. As 3|p =⇒ p = 3p′ and we write :

A2m =
4p

3
cos2

θ

3
=

4p

3

a

b
=

4× 3p′

3

a

3
=

4p′a

3
(80)

As A2m is an integer and that a and b are coprime and cos2
θ

3
can not be one in

reference to the equation (35), then we have necessary 3|p′ =⇒ p′ = 3p” with

p” 6= 1, if not p = 3p′ = 3 × 3p” = 9 but p = A2m + B2n + AmBn > 9, the

hypothesis p” = 1 is impossible, then p” > 1. hence:

A2m =
4p′a

3
=

4× 3p”a

3
= 4p”a (81)

BnCl =
p

3

(
3− 4cos2

θ

3

)
= p′

(
3− 4

a

b

)
=

3p”(9− 4a)

3
= p”.(9− 4a) (82)
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As
1

4
< cos2

θ

3
=
a

b
=
a

3
<

3

4
=⇒ 3 < 4a < 9 =⇒ a = 2 as a > 1. a = 2, we

obtain:

A2m =
4p′a

3
=

4× 3p”a

3
= 4p”a = 8p” (83)

BnCl =
p

3

(
3− 4cos2

θ

3

)
= p′

(
3− 4

a

b

)
=

3p”(9− 4a)

3
= p” (84)

The two last equations give that p” is not prime. Then we use the same method-

ology described above for the case 3.2.1.3., and we have : A,B and C solutions

of (3) have a common factor.

3.2.1.5. Case 3|p and b = p :. We have :

cos2
θ

3
=
a

b
=
a

p

and :

A2m =
4p

3
cos2

θ

3
=

4p

3
.
a

p
=

4a

3
(85)

As A2m is an integer, this implies that 3|a, but 3|p =⇒ 3|b. As a and b are

coprime, hence the contradiction. Then the case 3|p and b = p is impossible.

3.2.1.6. Case 3|p and b = 4p :. 3|p =⇒ p = 3p′, p′ 6= 1 because 3 � p, hence

b = 4p = 12p′.

A2m =
4p

3
cos2

θ

3
=

4p

3

a

b
=
a

3
=⇒ 3|a (86)

because A2m is an integer. But 3|p =⇒ 3| [(4p) = b], that is in contradiction

with the hypothesis a, b are coprime. Then the case b = 4p is impossible.

3.2.1.7. Case 3|p and b = 2p :. 3|p =⇒ p = 3p′, p′ 6= 1 because 3 � p, hence

b = 2p = 6p′.

A2m =
4p

3
cos2

θ

3
=

4p

3

a

b
=

2a

3
=⇒ 3|a (87)

because A2m is an integer. But 3|p =⇒ 3|(2p) =⇒ 3|b, that is in contradiction

with the hypothesis a, b are coprime. Then the case b = 2p is impossible.
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3.2.1.8. Case 3|p and b 6= 3 is a divisor of p :. We have b = p′ 6= 3, and p is

written as:

p = kp′ with 3|k =⇒ k = 3k′ (88)

and :

A2m =
4p

3
cos2

θ

3
=

4p

3
.
a

b
=

4× 3.k′p′

3

a

p′
= 4ak′ (89)

We calculate BnCl:

BnCl =
p

3
.

(
3− 4cos2

θ

3

)
= k′(3p′ − 4a) (90)

I. Case k′ 6= 1:

We suppose k′ 6= 1, we use the same methodology described for the case 3.1.2.3.,

and we obtain: A,B and C solutions of (3) have a common factor.

II. Case k′ = 1:

We have k′ = 1 =⇒ p = 3b, then we have:

A2m = 4a =⇒ a is even (91)

and :

AmBn = 2 3
√
ρcos

θ

3
. 3
√
ρ

(√
3sin

θ

3
− cosθ

3

)
=
p
√

3

3
sin

2θ

3
− 2a (92)

let:

A2m + 2AmBn =
2p
√

3

3
sin

2θ

3
= 2b
√

3sin
2θ

3
(93)

The left member of (93) is an integer and b also, then 2
√

3sin
2θ

3
can be written

in the form:

2
√

3sin
2θ

3
=
k1
k2

(94)

where k1, k2 are two coprime integers and k2|b =⇒ b = k2.k3.

II.1. Case k3 6= 1:

We suppose k3 6= 1. Hence:

A2m + 2AmBn = k3.k1 (95)
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Let µ is an prime integer such that µ|k3. If µ = 2 ⇒ 2|b, but 2|a that is

contradiction with a, b coprime. We suppose µ 6= 2 and µ|k3, then:

µ|Am(Am + 2Bn) =⇒ µ|Am or µ|(Am + 2Bn) (96)

II.1.1. Case µ|Am:

If µ|Am =⇒ µ|A2m =⇒ µ|4a =⇒ µ|a. As µ|k3 =⇒ µ|b and that a, b are coprime

hence the contradiction.

II.1.2. Case µ|(Am + 2Bn):

If µ|(Am+2Bn) =⇒ µ - Am and µ - 2Bn then µ 6= 2 and µ - Bn. µ|(Am+2Bn),

we can write:

Am + 2Bn = µ.t′ t′ ∈ N∗ (97)

It follows:

Am +Bn = µt′ −Bn =⇒ A2m +B2n + 2AmBn = µ2t′2 − 2t′µBn +B2n

Using the expression of p, we obtain:

p = t′2µ2 − 2t′Bnµ+Bn(Bn −Am) (98)

As p = 3b = 3k2.k3 and µ|k3 hence µ|p =⇒ p = µµ′, so we have :

µ′µ = µ(µt′2 − 2t′Bn) +Bn(Bn −Am) (99)

then:

µ|Bn(Bn −Am) =⇒ µ|Bn or µ|(Bn −Am) (100)

II.1.2.1. Case µ|Bn:

If µ|Bn =⇒ µ|B which is in contradiction with case II.1.2. above.

II.1.2.2. Case µ|(Bn −Am):
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If µ|(Bn −Am) and using µ|(Am + 2Bn), we obtain:

µ|3Bn (101)

II.1.2.2.1. Case µ|Bn:

If µ|Bn, using the result above of II.1.2.1. of this paragraph, it is impossible.

II.1.2.2.2. Case µ = 3:

If µ = 3 =⇒ 3|k3 =⇒ k3 = 3k′3, and we have b = k2k3 = 3k2k
′
3, it follows

p = 3b = 9k2k
′
3 then 9|p, but p = (Am −Bn)2 + 3AmBn then :

9k2k
′
3 − 3AmBn = (Am −Bn)2

we write it as :

3(3k2k
′
3 −AmBn) = (Am −Bn)2 (102)

hence :

3|(3k2k′3 −AmBn) =⇒ 3|AmBn =⇒ 3|Am or 3|Bn (103)

II.1.2.2.2.1. Case 3|Am:

If 3|Am =⇒ 3|A and we have also 3|A2m, but A2m = 4a =⇒ 3|4a =⇒ 3|a. As

b = 3k2k
′
3 then 3|b, but a, b are coprime hence the contradiction. Then 3 - A.

II.1.2.2.2.2. Case 3|Bn:

If 3|Bn =⇒ 3|B, but the (102) gives 3|(Am − Bn)2 =⇒ 3|(Am − Bn) =⇒

3|Am =⇒ 3|(A2m = 4a)⇒ 3|a. As 3|b then the contradiction with a, b coprime.

Then the hypothesis k3 6= 1 is impossible.

III. Case k3 = 1:

Now we suppose that k3 = 1 =⇒ b = k2 and p = 3b = 3k2. We have then:

2
√

3sin
2θ

3
=
k1
b

(104)
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with k1, b coprime. We write (104) as :

4
√

3sin
θ

3
cos

θ

3
=
k1
b

Taking the square of the two members and replacing cos2
θ

3
by

a

b
, we obtain:

3× 42.a(b− a) = k21 (105)

which implies that :

3|a or 3|(b− a) (106)

III.1. Case 3|a:

If 3|a, as A2m = 4a =⇒ 3|A2m =⇒ 3|A and 3|a. But p = (Am−Bn)2 + 3AmBn

and that 3|p =⇒ 3|(Am−Bn)2 =⇒ 3|(Am−Bn). But 3|A hence 3|Bn =⇒ 3|B,

as m ≥ 3 =⇒ 32|p, it follows 3|b then the contradiction with a, b coprime.

III.2. Case 3|(b− a):

Considering now that 3|(b − a). As k1 = Am(Am + 2Bn) by the equation (95)

and that 3|k1 =⇒ 3|Am(Am + 2Bn) =⇒ 3|Am or 3|(Am + 2Bn) .

III.2.1. Case 3|Am:

If 3|Am =⇒ 3|A =⇒ 3|A2m then 3|4a =⇒ 3|a. But 3|(b − a) =⇒ 3|b hence the

contradiction with a, b are coprime.

III.2.2. Case 3|(Am + 2Bn):

If:

3|(Am + 2Bn) =⇒ 3|(Am −Bn) (107)

But p = A2m + B2n + AmBn = (Am − Bn)2 + 3AmBn then p − 3AmBn =

(Am − Bn)2 =⇒ 9|(p − 3AmBn) or 9|(3b − 3AmBn), then 3|(b − AmBn) but

3|(b − a) =⇒ 3|(a − AmBn). As A2m = 4a = (Am)2 =⇒ ∃a′ ∈ N∗ and

a = a′2 =⇒ Am = 2a′. We arrive to:

3|(a′2 − 2a′Bn)⇒ 3|a′(a′ − 2Bn)⇒ 3|a′ or 3|(a′ − 2Bn) (108)
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III.2.2.1. Case 3|a′:

If 3|a′ ⇒ 3|a′2 ⇒ 3|a, but 3|(b − a) ⇒ 3|b, then the contradiction with a, b

coprime.

III.2.2.2. Case 3|(a′ − 2Bn):

Now if 3|(a′−2Bn)⇒ 3|(2a′−4Bn)⇒ 3|(Am−4Bn)⇒ 3|(Am−Bn), we refind

the case III.2.2., equation (107), that has a solution given by the case 2.2.1.

above.

Then, the study of the case 3.2.1.8. is finished.

3.2.1.9 Case 3|p and b|4p:. As 3|p ⇒ p = 3p′ and b|4p ⇒ ∃k1 ∈ N∗ and

4p = 12p′ = k1b.

I. Case k1 = 1:

If k1 = 1, then b = 12p′, (p′ 6= 1 if not p = 3 � A2m + B2n + AmBn). But

A2m =
4p

3
.cos2

θ

3
=

12p′

3

a

b
=

4p′.a

12p′
=
a

3
⇒ 3|a because A2m is an integer, then

the contradiction with a, b coprime.

II. Case k1 = 3:

If k1 = 3, then b = 4p′ and A2m =
4p

3
.cos2

θ

3
=
k1.a

3
= a.

Let us calculate AmBn:

AmBn = 2 3
√
ρcos

θ

3
. 3
√
ρ

(√
3sin

θ

3
− cosθ

3

)
=
p
√

3

3
sin

2θ

3
− a

2
(109)

Let:

A2m + 2AmBn =
2p
√

3

3
sin

2θ

3
= 2p′

√
3sin

2θ

3
(110)

The left member of the equation (110) is an integer and also p′, then 2
√

3sin
2θ

3
can be written as :

2
√

3sin
2θ

3
=
k2
k3

(111)

where k2, k3 are two coprime integers and:

k3|p′ =⇒ ∃k4 ∈ N∗ and p′ = k3.k4 (112)
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II.1. Case k4 6= 1:

We suppose that k4 6= 1, then:

A2m + 2AmBn = k2.k4 (113)

Let µ one prime integer with:

µ|k4 (114)

Then :

µ|Am(Am + 2Bn) =⇒ µ|Am or µ|(Am + 2Bn) (115)

II.1.1. Case µ|Am:

If µ|Am =⇒ µ|A2m =⇒ µ|a. As µ|k4 =⇒ µ|p′ ⇒ µ|(4p′ = b). But a, b are

coprime then the contradiction.

II.1.2. Case µ|(Am + 2Bn):

If µ|(Am+2Bn) =⇒ µ - Am and µ - 2Bn then µ 6= 2 and µ - Bn. µ|(Am+2Bn),

we can write:

Am + 2Bn = µ.t′ t′ ∈ N∗ (116)

It follows:

Am +Bn = µt′ −Bn =⇒ A2m +B2n + 2AmBn = µ2t′2 − 2t′µBn +B2n

Using the expression of p, we obtain:

p = t′2µ2 − 2t′Bnµ+Bn(Bn −Am) (117)

As p = 3p′ and µ|p′ ⇒ µ|(3p′)⇒ µ|p, we can write :∃µ′ ∈ N∗ and p = µµ′, then

we obtain :

µ′µ = µ(µt′2 − 2t′Bn) +Bn(Bn −Am) (118)

and:

µ|Bn(Bn −Am) =⇒ µ|Bn or µ|(Bn −Am) (119)
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II.1.2.1. Case µ|Bn:

If µ|Bn =⇒ µ|B which is in contradiction with the case II.1.2. above.

II.1.2.2. Case µ|(Bn −Am):

If µ|(Bn −Am) and using µ|(Am + 2Bn), we obtain:

µ|3Bn (120)

II.1.2.2.1. Case µ|Bn:

If µ|Bn it is impossible, see the case II.1.2.1. above.

II.1.2.2.2 Case µ = 3:

If µ = 3 =⇒ 3|k4 =⇒ k4 = 3k′4, and we obtain p′ = k3k4 = 3k3k
′
4, it follows

p = 3p′ = 9k3k
′
4 then 9|p, but p = (Am −Bn)2 + 3AmBn, then:

9k4k
′
5 − 3AmBn = (Am −Bn)2

that we write :

3(3k4k
′
5 −AmBn) = (Am −Bn)2 (121)

then 3|(3k4k′5 −AmBn) =⇒ 3|AmBn =⇒ 3|Am or 3|Bn .

II.1.2.2.2.1. Case 3|Am:

If 3|Am =⇒ 3|A2m ⇒ 3|a, but 3|p′ ⇒ 3|(4p′)⇒ 3|b, then the contradiction with

a, b coprime. Then 3 - A.

II.1.2.2.2.2. Case 3|Bn:

If 3|Bn and using (116), we have Am = µt′ − 2Bn = 3t′ − 2Bn =⇒ 3|Am ⇒

3|A2m ⇒ 3|a, but 3|p′ ⇒ 3|(4p′)⇒ 3|b, then the contradiction with a, b coprime.

Then the hypothesis k4 6= 1 is impossible.

II.2. Case k4 = 1:
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We suppose that k4 = 1 =⇒ p′ = k3k4 = k3. Then we obtain:

2
√

3sin
2θ

3
=
k2
p′

(122)

with k2, p
′ coprime, we write (122) as :

4
√

3sin
θ

3
cos

θ

3
=
k2
p′

Taking the square of the two members and replacing cos2
θ

3
by

a

b
and b = 4p′,

we obtain:

3.a(b− a) = k22 (123)

that implies:

3|a or 3|(b− a) (124)

II.2.1. Case 3|a:

If 3|a⇒ 3|A2m ⇒ 3|A, as p = (Am −Bn)2 + 3AmBn and that 3|p =⇒ 3|(Am −

Bn)2 =⇒ 9|(Am − Bn)2. But (Am − Bn)2 = p − 3AmBn = 3b − 3AmBn =⇒

3|(b−AmBn). As 3|Am =⇒ 3|b =⇒ the contradiction with a, b coprime.

II.2.2. Case 3|(b− a):

We consider that 3|(b−a). As k2 = Am(Am+2Bn) given by the equation (113)

and that 3|k2 =⇒ 3|Am(Am + 2Bn) =⇒ 3|Am or 3|(Am + 2Bn) .

II.2.2.1. Case 3|Am:

If 3|Am =⇒ 3|A2m =⇒ 3|a, but 3|(b − a) =⇒ 3|b then the contradiction with

a, b coprime.

II.2.2.2. Case 3|(Am + 2Bn):

If:

3|(Am + 2Bn) =⇒ 3|(Am −Bn) (125)

but p = A2m + B2n + AmBn = (Am − Bn)2 + 3AmBn then p − 3AmBn =

(Am − Bn)2 =⇒ 9|(p − 3AmBn) or 9|(3p′ − 3AmBn), then 3|(p′ − AmBn) ⇒
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3|4(p′ − 4AmBn) ⇒ 3|(b − 4AmBn) but 3|(b − a) =⇒ 3|(a − AmBn). As

3|(A2m − 4AmBn)⇒ 3|Am(Am − 4Bn) .

II.2.2.2.1. Case 3|Am:

If 3|Am =⇒ 3|A2m =⇒ 3|a, but 3|(b − a) =⇒ 3|b then the contradiction with

a, b coprime.

II.2.2.2.2. Case 3|(Am − 4Bn):

Now if 3|(Am−4Bn) =⇒ 3|(Am−Bn), we refind the hypothesis of the beginning

(125) above, that has a solution II.2.2.2.1..

III. Case k1 6= 3 and 3|k1:

We suppose k1 6= 3 and 3|k1 ⇒ k1 = 3k′1 with k′1 6= 1. We have 4p = 12p′ =

k1b = 3k′1b⇒ 4p′ = k′1b. A
2m can be written as :

A2m =
4p

3
cos2

θ

3
=

3k′1b

3

a

b
= k′1a (126)

and BnCl:

BnCl =
p

3

(
3− 4cos2

θ

3

)
=
k′1
4

(3b− 4a) (127)

As BnCl is an integer, we must have 4|(3b− 4a) or 4|k′1 .

III.1. Case 4|(3b− 4a):

We suppose that 4|(3b− 4a)⇒ 3b− 4a

4
= c ∈ N∗, and we obtain:

A2m = k′1a

BnCl = k′1c

III.1.1. Case k′1 is prime:

If k′1 is prime, then k′1|A2m ⇒ k′1|A and k′1|BnCl ⇒ k′1|Bn or k′1|Cl. If

k′1|Bn ⇒ k′1|B, then k′1|Cl ⇒ k′1|C. With the same method if k′1|Cl, we ar-

rive to k′1|B.
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We obtain: A,B and C solutions of (3) have a common factor.

III.1.2. Case k′1 not a prime:

We suppose k′1 not a prime. Let µ a prime divisor of k′1, as described in III.1.1.

above, we obtain : A,B and C solutions of (3) have a common factor.

III.2. Case 4|k′1:

Now, we suppose that 4|k′1.

III.2.1. Case k′1 = 4:

We suppose k′1 = 4, then A2m = 4a and BnCl = 4c, It is easy to verify that 2

is a common factor of A,B,C.

We obtain: A,B and C solutions of (3) have a common factor.

III.2.2. Case k′1 = 4k”1:

If k′1 = 4k”1 with k”1 > 1. Then, we have:

A2m = 4k”1a (128)

BnCl = k”1(3b− 4a) (129)

III.2.2.1. Case k”1 prime:

If k”1 is prime, then k”1|A2m ⇒ k”1|A and k”1|BnCl ⇒ k”1|Bn or k”1|Cl. If

k”1|Bn ⇒ k”1|B, then k”1|Cl ⇒ k”1|C. With the same method if k”1|Cl, we

arrive to k”1|B.

We obtain: A,B and C solutions of (3) have a common factor.

III.2.2.2. Case k”1 not a prime:

If k”1 not a prime. Let µ a prime divisor of k”1, as described in case III.2.2.1.

above, we obtain : A,B and C solutions of (3) have a common factor.
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3.2.2. Hypothesis : {3|a and b|4p}

We have :

3|a =⇒ ∃a′ ∈ N∗ / a = 3a′ (130)

3.2.2.1. Case b = 2 and 3|a :. A2m is written as :

A2m =
4p

3
.cos2

θ

3
=

4p

3
.
a

b
=

4p

3
.
a

2
=

2.p.a

3
(131)

Using the equation (130), A2m becomes:

A2m =
2.p.3a′

3
= 2.p.a′ (132)

But cos2
θ

3
=
a

b
=

3a′

2
> 1 which is impossible, then b 6= 2.

3.2.2.2. Case b = 4 and 3|a :. A2m is written as :

A2m =
4.p

3
cos2

θ

3
=

4.p

3
.
a

b
=

4.p

3
.
a

4
=
p.a

3
=
p.3a′

3
= p.a′ (133)

and cos2
θ

3
=
a

b
=

3.a′

4
<

(√
3

2

)2

=
3

4
=⇒ a′ < 1 (134)

which is impossible.

Then the case b = 4 is impossible.

3.2.2.3. Case b = p and 3|a :. Then:

cos2
θ

3
=
a

b
=

3a′

p
(135)

and:

A2m =
4p

3
.cos2

θ

3
=

4p

3
.
3a′

p
= 4a′ = (Am)2 (136)

∃a” ∈ N∗ / a′ = a”2 (137)

We calculate AmBn, hence:

AmBn = p.

√
3

3
sin

2θ

3
− 2a′

or AmBn + 2a′ = p.

√
3

3
sin

2θ

3
(138)
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The left member of (138) is an integer and p is also, then 2

√
3

3
sin

2θ

3
will be

written as :

2

√
3

3
sin

2θ

3
=
k1
k2

(139)

where k1, k2 are two coprime integers and k2|p =⇒ p = b = k2.k3, k3 ∈ N∗.

I. Case k3 6= 1:

We suppose that k3 6= 1. We obtain :

Am(Am + 2Bn) = k1.k3 (140)

Let us µ a prime integer with µ|k3, then µ|b and µ|Am(Am + 2Bn). Hence:

µ|Am or µ|(Am + 2Bn) (141)

I.1. Case µ|Am:

If µ|Am =⇒ µ|A and µ|A2m, but A2m = 4a′ =⇒ µ|4a′ =⇒ (µ = 2 but 2|a′) or

µ|a′. Then µ|a hence the contradiction with a, b coprime.

I.2. Case µ|(Am + 2Bn):

If µ|(Am + 2Bn) =⇒ µ - Am and µ - 2Bn then µ 6= 2 and µ - Bn. We write

µ|(Am + 2Bn) as:

Am + 2Bn = µ.t′ t′ ∈ N∗ (142)

It follows:

Am +Bn = µt′ −Bn =⇒ A2m +B2n + 2AmBn = µ2t′2 − 2t′µBn +B2n

Using the expression of p:

p = t′2µ2 − 2t′Bnµ+Bn(Bn −Am) (143)

Since p = b = k2.k3 and µ|k3 then µ|b =⇒ ∃µ′ ∈ N∗ and b = µµ′, so we can

write:

µ′µ = µ(µt′2 − 2t′Bn) +Bn(Bn −Am) (144)
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From the last equation, we get µ|Bn(Bn−Am) =⇒ µ|Bn or µ|(Bn −Am) .

I.2.1. Case µ|Bn:

If µ|Bn which is contradiction with µ - Bn.

I.2.2. Case µ|(Bn −Am):

If µ|(Bn −Am) and using µ|(Am + 2Bn), we arrive to:

µ|3Bn =⇒


µ|Bn

or

µ = 3

(145)

I.2.2.1. Case µ|Bn:

If µ|Bn which is contradiction with µ - B from I.2. Case µ|(Am + 2Bn).

I.2.2.2. Case µ = 3:

If µ = 3, then b = 3µ′, but 3|a then the contradiction with a, b coprime.

II. Case k3 = 1:

We assume now k3 = 1. Hence:

A2m + 2AmBn = k1 (146)

b = k2 (147)

2
√

3

3
sin

2θ

3
=
k1
b

(148)

Taking the square of the last equation, we obtain:

4

3
sin2

2θ

3
=
k21
b2

16

3
sin2

θ

3
cos2

θ

3
=
k21
b2

16

3
sin2

θ

3
.
3a′

b
=
k21
b2

Finally:

42a′(p− a) = k21 (149)
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but a′ = a”2 then p− a is a square. Let us:

λ2 = p− a (150)

The equation (149) becomes:

42a”2λ2 = k21 =⇒ k1 = 4a”λ (151)

taking the positive square root. Using (146), we get :

k1 = 4a”λ (152)

But k1 = Am(Am + 2Bn) = 2a”(Am + 2Bn), it follows:

Am + 2Bn = 2λ (153)

Let λ1 prime 6= 2, a divisor of λ (if not, λ1 = 2|λ =⇒ 2|λ2 =⇒ 2|(p − a) but a

is even, then 2|p =⇒ 2|b which is contradiction with a, b coprime).

We consider λ1 6= 2 and :

λ1|λ =⇒ λ1|λ2 and λ1|(Am + 2Bn) (154)

λ1|(Am + 2Bn) =⇒ λ1 - Am if not λ1|2Bn (155)

But λ1 6= 2 hence λ1|Bn =⇒ λ1|B, it follows:

λ1|(p = b) and λ1|Am =⇒ λ1|2a” =⇒ λ1|a (156)

hence the contradiction with a, b coprime.

II.1. Case λ1 - Am and λ1|(Am + 2Bn):

We assume now λ1 - Am. λ1|(Am+2Bn) =⇒ λ1|(Am+2Bn)2 that is λ1|(A2m+

4AmBn + 4B2n), we write it as λ1|(p+ 3AmBn + 3B2n) =⇒ λ1|(p+ 3Bn(Am +

2Bn) − 3B2n). But λ1|(Am + 2Bn) =⇒ λ1|(p − 3B2n), as λ1|(p − a) hence by

difference, we obtain λ1|(a−3B2n) or λ1|(3a′−3B2n) =⇒ λ1|3(a′−B2n), Then:

λ1 = 3 or λ1|(a′ −B2n) (157)
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II.1.1. Case λ1 = 3:

If λ1 = 3 but 3|a, as λ1|(p − a) =⇒ 3|(p = b) hence the contradiction with a, b

coprime.

II.1.2. Case λ1|(a′ −B2n):

If λ1|(a′ −B2n) =⇒ λ1|(a”2 −B2n) =⇒ λ1|(a”−Bn)(a” +Bn) =⇒ λ1|(a” +

Bn) or λ1|(a” − Bn), because (a” − Bn) 6= 1, if not, we obtain a”2 − B2n =

a” + Bn =⇒ a”2 − a” = Bn − B2n. The left member is positive and the right

member is negative, then the contradiction.

II.1.2.1. Case λ1|(a”−Bn):

If λ1|(a”−Bn) =⇒ λ1|2(a”−Bn) =⇒ λ1|(Am−2Bn) but λ1|(Am+2Bn) hence

λ1|2Am =⇒ λ1|Am as λ1 6= 2, it follows λ1|Am hence the contradiction with

(155).

II.1.2.2. Case λ1|(a” +Bn):

If λ1|(a” + Bn) =⇒ λ1|2(a” + Bn) =⇒ λ1|(2a” + 2Bn)⇒ λ1|(Am + 2Bn). We

find the case II.1. that has solutions.

Then the case k3 = 1 is impossible.

3.2.2.4. Case b|p⇒ p = b.p′, p′ > 1, b 6= 2, b 6= 4 and 3|a :.

A2m =
4.p

3
.
a

b
=

4.b.p′.3.a′

3.b
= 4.p′a′ (158)

We calculate BnCl:

BnCl = 3
√
ρ2
(

3sin2
θ

3
− cos2 θ

3

)
= 3
√
ρ2
(

3− 4cos2
θ

3

)
(159)

But 3
√
ρ2 =

p

3
, hence using cos2

θ

3
=

3.a′

b
:

BnCl = 3
√
ρ2
(

3− 4cos2
θ

3

)
=
p

3

(
3− 4

3.a′

b

)
= p.

(
1− 4.a′

b

)
= p′(b− 4a′)

(160)
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As p = b.p′, and p′ > 1, we have then:

BnCl = p′(b− 4a′) (161)

and A2m = 4.p′.a′ (162)

I. Case λ a prime divisor of p′:

Let λ a prime divisor of p′ (we suppose p′ not prime ). From (162), we have:

λ|A2m ⇒ λ|Am asλ is a prime, then λ|A (163)

From (161), as λ|p′ we have:

λ|BnCl ⇒ λ|Bn or λ|Cl (164)

If λ|Bn, λ is a prime λ|B, but Cl = Am +Bn, then we have also :

λ|Cl asλ is a prime, then λ|C (165)

By the same way, if λ|Cl, we obtain λ|B. then : A,B and C solutions of (3)

have a common factor.

II. Case p′ is a prime number:

We suppose now that p′ is prime, from the equations (161) and (162), we obtain

that:

p′|A2m ⇒ p′|Am ⇒ p′|A (166)

and:

p′|BnCl ⇒ p′|Bn or p′|Cl (167)

If p′|Bn ⇒ p′|B (168)

As Cl = Am +Bn and that p′|A, p′|B ⇒ p′|Am, p′|Bn ⇒ p′|Cl

⇒ p′|C (169)

By the same way, if p′|Cl, we arrive to p′|B.

Hence: A ,B and C solutions of (3) have a common factor.
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3.2.2.5. Case b = 2p and 3|a :. We have:

cos2
θ

3
=
a

b
=

3a′

2p
=⇒ A2m =

4p.a

3b
=

4p

3
.
3a′

2p
= 2a′ =⇒ 2|Am =⇒ 2|a =⇒ 2|a′

Then 2|a and 2|b which is contradiction with a, b coprime.

3.2.2.6. Case b = 4p and 3|a :. We have :

cos2
θ

3
=
a

b
=

3a′

4p
=⇒ A2m =

4p.a

3b
=

4p

3
.
3a′

4p
= a′

Calculate AmBn, we obtain:

AmBn =
p
√

3

3
.sin

2θ

3
− 2p

3
cos2

θ

3
=
p
√

3

3
.sin

2θ

3
− a′

2
=⇒

AmBn +
A2m

2
=
p
√

3

3
.sin

2θ

3
(170)

let:

A2m + 2AmBn =
2p
√

3

3
sin

2θ

3
(171)

The left member of (171) is an integer and p is an integer, then
2
√

3

3
sin

2θ

3
will

be written:
2
√

3

3
sin

2θ

3
=
k1
k2

(172)

where k1, k2 are two coprime integers and k2|p =⇒ p = k2.k3.

I. Case k3 6= 1:

Firstly, we suppose that k3 6= 1. Hence:

A2m + 2AmBn = k3.k1 (173)

Let µ a prime integer and µ|k3, then µ|Am(Am+2Bn) =⇒ µ|Am or µ|(Am + 2Bn) .

I.1. Case µ|Am:

If µ|Am =⇒ µ|(A2m = a′)⇒ µ|(3a′ = a). As µ|k3 =⇒ µ|p⇒ µ|(4p = b). Then

the contradiction with a, b coprime.
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I.2. Case µ|(Am + 2Bn):

If µ|(Am + 2Bn) =⇒ µ - Am and µ - 2Bn then:

µ 6= 2 and µ - Bn (174)

µ|(Am + 2Bn), we write:

Am + 2Bn = µ.t′ t′ ∈ N∗ (175)

Then :

Am +Bn = µt′ −Bn =⇒ A2m +B2n + 2AmBn = µ2t′2 − 2t′µBn +B2n

=⇒ p = t′2µ2 − 2t′Bnµ+Bn(Bn −Am) (176)

As b = 4p = 4k2.k3 and µ|k3 then µ|b =⇒ ∃µ′ ∈ N∗ that b = µµ′, we obtain:

µ′µ = µ(4µt′2 − 8t′Bn) + 4Bn(Bn −Am) (177)

The last equation implies µ|4Bn(Bn−Am), but µ 6= 2 then µ|Bn or µ|(Bn −Am) .

I.2.1. Case µ|Bn:

If µ|Bn then the contradiction with (174).

I.2.2. Case µ|(Bn −Am):

If µ|(Bn −Am) and using µ|(Am + 2Bn), we obtain:

µ|3Bn =⇒ µ|Bn or µ = 3 (178)

I.2.2.1. Case µ|Bn:

If µ|Bn it is contradiction with (174).

I.2.2.2. Case µ = 3:

If µ = 3, then b = 3µ′, but 3|a which is contradiction with a, b coprime.

II. Case k3 = 1:
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We assume now k3 = 1. Hence:

A2m + 2AmBn = k1 (179)

p = k2 (180)

2
√

3

3
sin

2θ

3
=
k1
p

(181)

Taking the square of the last equation, we obtain:

4

3
sin2

2θ

3
=
k21
p2

16

3
sin2

θ

3
cos2

θ

3
=
k21
p2

16

3
sin2

θ

3
.
3a′

b
=
k21
p2

Finally:

a′(4p− 3a′) = k21 (182)

but a′ = a”2 then 4p− 3a′ is a square. Let us:

λ2 = 4p− 3a′ = 4p− a = b− a (183)

The equation (182) becomes:

a”2λ2 = k21 =⇒ k1 = a”λ (184)

taking the positive square root. Using (179), we get :

k1 = a”λ (185)

But k1 = Am(Am + 2Bn) = a”(Am + 2Bn), it follows:

(Am + 2Bn) = λ (186)

Let λ1 prime 6= 2, a divisor of λ (if not λ1 = 2|λ =⇒ 2|λ2. As 2|(b = 4p) =⇒

2|(a = 3a′) which is contradiction with a, b coprime).

32



We consider λ1 6= 2 and :

λ1|λ =⇒ λ1|(Am + 2Bn) (187)

=⇒ λ1 - Am if not λ1|2Bn (188)

But λ1 6= 2 hence λ1|Bn =⇒ λ1|B, it follows:

λ1|(b = 4p) and λ1|Am =⇒ λ1|2a” =⇒ λ1|a (189)

hence the contradiction with a, b coprime.

II.1. Case λ1 - Am, λ1 - Bn and λ1|(Am + 2Bn):

We assume now λ1 - Am, λ1 - Bn. λ1|(Am + 2Bn) =⇒ λ1|(Am + 2Bn)2 that is

λ1|(A2m + 4AmBn + 4B2n), we write it as λ1|(p+ 3AmBn + 3B2n) =⇒ λ1|(p+

3Bn(Am+ 2Bn)−3B2n). But λ1|(Am+ 2Bn) =⇒ λ1|(p−3B2n), as λ1|(4p−a)

hence by difference, we obtain λ1|(a− 3(B2n + p)) or λ1|(3a′ − 3(B2n + p)) =⇒

λ1|3(a′ −B2n − p) =⇒ λ1 = 3 or λ1|(a′ − (B2n + p)) .

II.1.1. Case λ1 = 3:

If λ1 = 3|λ⇒ 3|λ2 ⇒ 3|b−a but 3|a =⇒ 3|(p = b) hence the contradiction with

a, b coprime.

II.1.2. Case λ1|(a′ − (B2n + p)):

If λ1 6= 3 and λ1|(a′−B2n−p) =⇒ λ1|(AmBn+B2n) =⇒ λ1|Bn(Am+2Bn) =⇒

λ1|Bn or λ1|(Am + 2Bn) .

II.1.2.1. Case λ1|Bn:

If λ1|Bn that is in contradiction with the hypothesis λ1 - B cited above case II.1.

II.1.2.2. Case λ1|(An + 2Bn):

If λ1|(An + 2Bn). We refind this condition in the case II.1.

Then the case k3 = 1 is impossible.

33



3.2.2.7. Case 3|a and b = 2p′ b 6= 2 with p′|p :. 3|a =⇒ a = 3a′, b = 2p′ with

p = k.p′, hence:

A2m =
4.p

3
.
a

b
=

4.k.p′.3.a′

6p′
= 2.k.a′ (190)

Calculate BnCl:

BnCl = 3
√
ρ2
(

3sin2
θ

3
− cos2 θ

3

)
= 3
√
ρ2
(

3− 4cos2
θ

3

)
(191)

But 3
√
ρ2 =

p

3
hence en using cos2 θ3 =

3.a′

b
:

BnCl = 3
√
ρ2
(

3− 4cos2
θ

3

)
=
p

3

(
3− 4

3.a′

b

)
= p.

(
1− 4.a′

b

)
= k(p′ − 2a′)

(192)

As p = b.p′, and p′ > 1, we have then:

BnCl = k(p′ − 2a′) (193)

and A2m = 2k.a′ (194)

I. Case λ is a prime divisor of k:

We suppose that λ is a prime divisor of k (we suppose k not a prime ). From

(194), we have:

λ|A2m ⇒ λ|Am asλ is prime then λ|A (195)

From (193), as λ|k, we have:

λ|BnCl ⇒ λ|Bn or λ|Cl (196)

If λ|Bn, λ is prime λ|B, and as Cl = Am +Bn then we have also:

λ|Cl asλ is prime then λ|C (197)

By the same way, if λ|Cl, we obtain λ|B. Then : A,B and C solutions of (3)

have a common factor.

II. Case k is prime:
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Now, we suppose now that k is prime, from the equations (193) and (194), we

obtain:

k|A2m ⇒ k|Am ⇒ k|A (198)

and:

k|BnCl ⇒ k|Bn or k|Cl (199)

if k|Bn ⇒ k|B (200)

as Cl = Am +Bn and that k|A, k|B ⇒ k|Am, k|Bn ⇒ k|Cl

⇒ k|C (201)

By the same way, if k|Cl, we arrive to k|B.

Hence: A ,B and C solutions of (3) have a common factor.

3.2.2.8. Case 3|a and b = 4p′ b 6= 2 with p′|p :. 3|a =⇒ a = 3a′, b = 4p′ with

p = k.p′, k 6= 1, if not, b = 4p a case that has been studied (paragraph 3.2.2.6),

then we have :

A2m =
4.p

3
.
a

b
=

4.k.p′.3.a′

12p′
= k.a′ (202)

Writing BnCl:

BnCl = 3
√
ρ2
(

3sin2
θ

3
− cos2 θ

3

)
= 3
√
ρ2
(

3− 4cos2
θ

3

)
(203)

But 3
√
ρ2 =

p

3
, hence en using cos2

θ

3
=

3.a′

b
:

BnCl = 3
√
ρ2
(

3− 4cos2
θ

3

)
=
p

3

(
3− 4

3.a′

b

)
= p.

(
1− 4.a′

b

)
= k(p′ − a′)

(204)

As p = b.p′, and p′ > 1, we have:

BnCl = k(p′ − 2a′) (205)

and A2m = 2k.a′ (206)

I. Case λ a prime divisor of k:
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Let λ a prime divisor of k (we suppose k not a prime). From (206), we have:

λ|A2m ⇒ λ|Am asλ is prime then λ|A (207)

From (205), as λ|k we obtain:

λ|BnCl ⇒ λ|Bn or λ|Cl (208)

I.1 Case λ|Bn or λ|Cn:

If λ|Bn, λ is a prime, then λ|B, and as λ|A ⇒ λ|(Am + Bn = Cl) ⇒ λ|C. By

the same way if λ|Cl, we obtain λ|B. Then : A,B and C solutions of (3) have

a common factor.

II. Case k is prime:

We suppose now that k is prime, from the equations (205) and (206), we have:

k|A2m ⇒ k|Am ⇒ k|A (209)

and:

k|BnCl ⇒ k|Bn or k|Cl (210)

if k|Bn ⇒ k|B (211)

as Cl = Am +Bn and that k|A, k|B ⇒ k|Am, k|Bn ⇒ k|Cl

⇒ k|C (212)

By the same way if k|Cl, we arrive to k|B.

Hence: A ,B and C solutions of (3) have a common factor.

3.2.2.9. Case 3|a and b|4p :. a = 3a′ and 4p = k1b with k1 ∈ N∗. As A2m =

4p

3
cos2

θ

3
=

4p

3

3a′

b
= k1a

′ and BnCl:

BnCl = 3
√
ρ2
(

3sin2
θ

3
− cos2 θ

3

)
=
p

3

(
3− 4cos2

θ

3

)
=
p

3

(
3− 4

3a′

b

)
=
k1
4

(b−4a′)

(213)

As BnCl is an integer, we must have 4|k1 or 4|(b− 4a′) .
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I. Case k1 = 1:

If k1 = 1⇒ b = 4p : it is the case (3.2.2.6) above.

II. Case k1 = 4:

If k1 = 4⇒ p = b : it is the case (3.2.2.3) above.

III. Case 4|k1:

We suppose that 4|k1 with k1 > 4⇒ k1 = 4k′1, then we have:

A2m = 4k′1a
′

BnCl = k′1(b− 4a′)

By discussing k′1 is a prime integer or not, we arrive easily to: A ,B and C

solutions of (3) have a common factor.

III.1. Case 4 - (b− 4a′) and 4 - k′1:

If 4 - (b− 4a′) and 4 - k′1 it is impossible.

III.2. Case 4|(b− 4a′):

If 4|(b− 4a′)⇒ (b− 4a′) = 4c, with c ∈ N∗, then we obtain:

A2m = k1a
′

BnCl = k1c

By discussing k1 is a prime integer or not, we arrive easily to: A ,B and C

solutions of (3) have a common factor.

The main theorem is proved.

4. Numerical Examples

4.1. Example 1:

We consider the example:

63 + 33 = 35 (214)
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with Am = 63, Bn = 33 and Cl = 35. With the notations used in the paper, we

obtain:

p = 36 × 73, (215)

q = 8× 311, (216)

∆̄ = 4× 318(37 × 42 − 733) < 0, (217)

ρ =
p
√
p

3
√

3
=

38 × 73
√

73

3
, (218)

cosθ = −4× 33 ×
√

3

73
√

73
(219)

As A2m =
4p

3
.cos2

θ

3
=⇒ cos2

θ

3
=

3A2m

4p
=

3× 24

73
=
a

b
=⇒ a = 3× 24, b = 73;

then:

cos
θ

3
=

4
√

3√
73

(220)

p = 36b (221)

Let us verify the equation (219) using the equation (220):

cosθ = cos3(θ/3) = 4cos3
θ

3
− 3cos

θ

3
= 4

(
4
√

3√
73

)3

− 3
4
√

3√
73

= −4× 33 ×
√

3

73
√

73

(222)

That’s OK. For this example, we can use the two conditions of (65) as 3|p ,b|4p

and 3|a. The cases 3.2.1.3 and 3.2.2.4 are respectively used. We find for both

cases that Am, Bn and Cl of the equation (214) have a common prime factor

which is true.

4.2. Example 2:

Let the second example:

74 + 73 = 143 ⇒ 2401 + 343 = 2744 (223)

With the notations of the paper, we take:

Am = 74 (224)

Bn = 73 (225)

Cl = 143 (226)
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We obtain:

p = 57× 76 = 3× 19× 76 (227)

q = 8× 710 (228)

∆ = 27q2 − 4p3 = 27× 4× 718(16× 49− 193)

= −27× 4× 718 × 6075 < 0 (229)

ρ =
p
√
p

3
√
3

= 19× 79 ×
√

19 (230)

cosθ =
−q
2ρ

= − 4× 7

19
√

19
(231)

As A2m =
4p

3
.cos2

θ

3
=⇒ cos2

θ

3
=

3A2m

4p
=

72

4× 19
=
a

b
=⇒ a = 72, b = 4× 19;

then:

cos
θ

3
=

7

2
√

19
(232)

3|p and b|(4p) (233)

Let us verify the equation (231) using the equation (232):

cosθ = cos3(θ/3) = 4cos3
θ

3
−3cos

θ

3
= 4

(
7

2
√

19

)3

−3
7

2
√

19
= − 4× 7

19
√

19
(234)

It is the same value of (231)!

Now, from (233), we have 3|p ⇒ p = 3p′, b|(4p) with b 6= 2, 4 then 12p′ =

k1b = 3 × 76b. It concerns the paragraph 3.2.1.9. of the first hypothesis. As

k1 = 3×76 = 3k′1 with k′1 = 76 6= 1. It is the case III., with the two conditions:

4|(3b− 4a) or 4|k′1. We take 4|(3b− 4a). Let us calculate 3b− 4a:

3b− 4a = 3× 4× 19− 4× 72 = 32 =⇒ 4|(3b− 4a) (235)

Then it is the sous-case III.1. with A2m = 78 = 76 × 72 = k′1.a with k′1 not

a prime, we find the sous-case III.1.2 with the result that A,B and C have a

common factor namely the prime number 7 a divisor of k′1 = 76!.

4.3. Example 3:

Let the third example:

72 + 25 = 34 (236)
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with:

Am = 72;Bn = 25;Cl = 34

We obtain:

p = 4999 a primenumber (237)

q = 25 × 72 × 34 = 127008� p (238)

As q � p, we find that :

∆ = 27q2 − 4p3 > 0 (239)

Then we cannot use the results of our proof because in this example, m = 2 < 3.

We remark that in all the proof, we don’t encountered that m,n or l must be

great than 2. Then the condition that m,n, l > 2 is important in (1).

5. Conclusion

As seen above, the examples confirm the results of the proof. In conclusion,

we can announce the theorem:

Theorem 1. (A. Ben Hadj Salem, A. Beal, 2016): Let A,B,C,m, n, and

l be positive integers with m,n, l > 2. If:

Am +Bn = Cl (240)

then A,B, and C have a common factor.
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