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Abstract

In 1997, Andrew Beal [I] announced the following conjecture : Let A, B,C,m,n,
and | be positive integers with m,n,l > 2. If A™ + B" = C'! then A, B, and
C have a common factor. We begin to construct the polynomial P(x) = (z —
A™)(z — B")(z 4+ C') = 23 — pr + ¢ with p, ¢ integers depending of A™, B"
and C'. We resolve 2> — px 4+ ¢ = 0 and we obtain the three roots xy, 2,3
as functions of p, ¢ and a parameter . Since A™, B™, —C" are the only roots of
3 — pr + g = 0, we discuss the conditions that x;, 3,3 are integers. Three
numerical examples are given.
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O my Lord! Increase me further in knowledge.

(Holy Quran, Surah Ta Ha, 20:114.)

To my wife Wahida

1. Introduction
In 1997, Andrew Beal [I] announced the following conjecture :

Conjecture 1. Let A, B,C,m,n, andl be positive integers with m,n,l > 2. If:

A" 4 B =" (1)
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then A, B, and C' have a common factor.

In this paper, we give a complete proof of the Beal Conjecture. Our idea is to
construct a polynomial P(z) of three order having as roots A™, B® and —C'
with the condition . The paper is organized as follows. In Section 2 of
preliminaries, we begin with the trivial case where A™ = B". Then we consider
the polynomial P(z) = (z — A™)(z — B")(x + C') = 2% — pz + q. We express
the three roots of P(r) = 23 — pxr + ¢ = 0 in function of two parameters p,
that depend of A™, B",C'. The Section 3 is the main part of the paper. We
write that A?™ = 4—pcosQ§. As A?™ is an integer, it follows that 00522 must
be written as 7 where a,b are two positive coprime integers. We discuss the
conditions of divisibility of p,a,b so that the expression of A?™ is an integer.
Depending on each individual case, we obtain that A, B, C' have or not a common

factor. In the last Section, three numerical examples are presented. We finish

with the conclusion.

2. Preliminaries
We begin with the trivial case when A™ = B™. The equation becomes:
24™ = (! (2)

then 2|C! = 2|C = Jc € N*/ C = 2¢, it follows 2A™ = 2lc = A™ =
201l As 1 > 2, then 2|A™ = 2|A = 2|B™ = 2|B. The conjecture (?7) is

verified.

We suppose in the following that A™ > B™.

2.1. General Case

Let m,n,l € N* >2and A, B,C € N* such:

A™ 4 B" =" (3)



We call:

P(x) = (x — A™)(x = B")(w + C') = 2® — 2 (A" + B" = (')

+x[Am B — CYA™ + B")] + ClA™B" (4)

Using the equation (B)), P(z) can be written:

| P(z) = 2%+ 2[A™B" — (A™ + B")?] + A" B"(A" + B") | (5)

We introduce the notations:

p=(A"+B")> - A"B" (6)
g=A"B"(A™+ B") (7)
As A™ = B™, we have :
p>(Am—B")?>0 (8)
Equation becomes:
P(z)=2® —pr+q (9)

Using the equation , P(x) = 0 has three different real roots : A™, B™ and
—Ct.
Now, let us resolve the equation:

Plx)=a2%—pr+q=0 (10)

To resolve let:
r=u+v (11)

Then P(z) = 0 gives:

P(z) = P(u4v) = (u4v)> —p(u+v)+q = 0 = u* +0> + (u+0)(Buv—p)+¢ =0

(12)

To determine v and v, we obtain the conditions:
u? 4+ 0% = —¢q (13)
w=p/3>0 (14)



Then > and v? are solutions of the second ordre equation:
X2+ gX +p*/27=0

Its discriminant A is written as :

27¢% — 4p? A

Let:
A =27¢* — 4p® = 27(A™B"(A™ + B™))* — 4[(A™ + B")* — A™B"?
_ 27A2mBZn(Am + Bn)Z o 4[(Am + Bn)2 o AmBn]S
Noting :
a=A"B" >0
ﬂ — (Am + Bn)Q

we can write as:
A =270B —4( — a)?

As a #£ 0, we can also rewrite (20)) as :

3
A:a3<275—4(ﬁ—1)>
[0 Q

We call t the parameter :

™

A becomes :

A = a3 (27t — 4(t — 1))

Let us calling :

y=y(t) =27t — 4(t — 1)3

(17)

(24)

Since o > 0, the sign of A is also the sign of y(¢). Let us study the sign of .

We obtain y/'(t):
y'(t) =y =3(1+2t)(5—2t)

(25)



t - -1/2 52 4 +ec
1+2t - |T| + ‘ +
5-2t -
v(®)

+ T 0
- n + 0 -
te 54
w >
<

Figure 1: The table of variation

Y =0=t; = —1/2 and t2 = 5/2, then the table of variations of y is given
below:

The table of the variations of the function y shows that y < 0 for ¢ > 4. In
our case, we are interested for ¢ > 0. For t = 4 we obtain y(4) = 0 and for

t €]0,4[= y > 0. As we have ¢t = g > 4 because as A™ # B™:
(A™ —B™)? > 0= = (A™+ B")? > 4a = 4A™B" (26)

Then y < 0 = A < 0 = A < 0. Then, the equation (15) does not have
real solutions u® and v3. Let us find the solutions v and v with z = u 4+ v is a

positive or a negative real and u.v = p/3.

2.2. Demonstration

PROOF. The solutions of are:

_ i/ —A
X, — % (27)
—  —g—iV/=A
X, =X, = % (28)
We may resolve:
= 29
- (20)
—q—ivV—A
i (30)
2
Writing X5 in the form:
X, = pe'? (31)



with:

_ V-4 b
vV—-A

and sinl = —— >0
2p
cosf = — L <0
2p
0
Then 0 [27] €] + 5 +[, let:
s T 0 7« 1 0 V3
<0 S .} R
2< <—|—7r:6<3 3$2<cos<2
and:
1 - 50 < 3
- <cost- < =
4 3 4
hence the expression of Xo:
X2 — pe—ie
Let:
u=re"?
—1+iV3 2
and j = 5 =e'3
o gam 144V3
] =e3 —

(38)

(39)

(40)

j is a complex cubic root of the unity <= j3 = 1. Then, the solutions « and v

are:

up = ret¥t = S/ﬁei%
ug = ret¥? = \Vﬁjeig = Q/ﬁei

- 0+4m

:\3/562 3

~ o 6 . iam .8
Uz = re’“p?’ = \3/5‘72313 = \3/;)@Z 3 eti3

and similarly:

4 _;0
v =re W1 = pe '3
—i a—2 —if o gAm 6 __ am—o
vy =Te ZwQ:WJZQ '3 :W@ZSQ '3 :\‘7,561

vy =re ¥ = (’/ﬁjeﬂ'% = pe’

6427

3

3

27—
3

(41)
(42)

(43)



We may now choose ux and vy so that ux + vy will be real. In this case, we

have necessary :

V] = Uy (47)
Vo = Uy (48)
U3 = U3z (49)

We obtain as real solutions of the equation :

0
T =uU +v = 2\3/50055 >0 (50)
To = Uy + Vg = 2€/ﬁcosg+% =—¥p (cos% + \/gsm%) <0 (51)
T3 =uz+v3 = 2\3/,5005% =3p (fcos% + \/gsmg) >0 (52)

We compare the expressions of z; and z3, we obtain:
?

25/]5603% > \?/]5 (—cosg + \/gsin%)

2

3coss”>"/3sing (53)

0 0 0
As 3 e+ %, —l—g[, then smg and cosy are > 0. Taking the square of the two

members of the last equation, we get:

1 0
1< cos2§ (54)

0
which is true since 3 el+ %,—i—%[ then x; > z3. As A™ B" and —C" are the

only real solutions of , we consider, as A™ is supposed great than B™, the

expressions:

0
A" =gz =u; +v1 = 2\3/50035

0+ 4 4 o
B" = x3 = uz + v3 = 2 pcos —g "= Vo (_0083 T \/gsm?)) (55)

0+ 2 0 0
—Cl=g9g=us+vy = 2/ pcos —; T _ —p (0083 + \/§sin3>




3. Proof of the Main Theorem

Main Theorem: Let A, B,C,m,n, and [ be positive integers with m,n,l >
2. If:
A™ 4+ B =C! (56)

then A, B, and C' have a common factor.
B 0 . . 2 3 2 0 . .
PrOOF. A™ = 2;’/,50055 is an integer = A*™ = 44/ p?cos 3 isan integer. But:

3p2

(57)

w3

Then:

0 4 0
2= =p.-.cos’= (58)

0
AP = 43 p260$2§ = 4%.003 3 3 3

0
22 must be written in the

As A?™ is an integer, and p is an integer then cos

form:

0 1 0
60825 =~ or cos?2="2 (59)

b 3 b

with b € N*, for the last condition a € N* and a, b coprime.

0
3.1. Case coszg = -

‘We obtain :

4 0
AP = p.g.coszg =

W
bS]

(60)

w
o

1 0 3 1 1 3
! 2 e <z 4 =b=1,23.
A54<0053<4:>4<b<4:>b< < 3b b ,2,3

3.1.1. Caseb=1

b=1= 4 < 3 which is impossible.



3.1.2. Caseb =2

41 2.
b:2:>A2m:p.§.§:?p = 3|p = p = 3p’ with p’ # 1 because 3 < p,
and b = 2, we obtain:
2
A2 — Ep =29 (61)

But :
1
B"Cl=W<3—4COSZ§>:§<3_4)Zzgj:?)p:p/ (62)

On the one hand:

A2m — (Am)Q — 2p/ = 2|p/ :>p/ — 2pw2 = A2m — 4p772

= A" =2p" = 2|A" = 2|A

On the other hand:
B"Cl =p' =2p"? = 2|B" or 2|C. If 2|B" = 2|B. As C! = A™ + B"™ and
2|A and 2|B, it follows 2|A™ and 2|B™ then 2|(A™ + B") = 2|C! & 2|C.

Then, we have : A,B and C solutions of (3) have a common factor. Also if 2|C!,

we obtain the same result : A,B and C solutions of have a common factor.

3.1.3. Caseb =3

41 4
b:3=>A2m:p.§.§ :§p=>9|p:>p:9p’ with p’ # 1 since 9 < p then
A*™ = 4p’ = p’ is not a prime. Let p a prime with u|p’ = u|A?™ = u|A.

On the other hand:

3 3
Then u|B™ or pu|C!. If u|B™ = p|B. As C' = A™ + B™ and p|A and pu|B, it
follows p1|A™ and p|B™ then p|(A™ + B") = p|C! = u|C.

0
Bl =2 (3 — 4cos2> = 5p/

Then, we have : A,B and C solutions of (3)) have a common factor. Also if u|C?,

we obtain the same result : A,B and C' solutions of have a common factor.



0 a
3.2. C 1 =
ase a > 1, cos 3 b

That is to say:

9 a
Z=2 63
cos’z = (63)
4 0 4dpa

A% = p — cos?= = 64
P33 = 3 (64)

and a, b verify one of the two conditions:
’ {3lp and bldp} ‘ or ’ {3la and bl4p} ‘ (65)

and using the equation (36]), we obtain a third condition:

b < 4a < 3b (66)

0
In these conditions, respectively, 42" = 43/ p%osQ% = 4§.cos2§ is an integer.

Let us study the conditions given by the equation (65)).

3.2.1. Hypothesis: {3|p and bldp}

3.2.1.1. Case b =2 and 3|p :. 3|p = p = 3p’ with p’ # 1 because 3 < p, and

b = 2, we obtain:

/

_4pa  43p'.a  4p.a ,

AP = = = =2p.
3b 3b 2 pa (67)
As:
1 20 a a 3
glcsg=r=5<,;=a<2=a (68)

But a > 1 then the case b = 2 and 3|p is impossible.

3.2.1.2. Caseb=4 and 3|p :. We have 3|p = p = 3p’ with p’ € N*, it follows:

4p.a  4.3p'.a
A2m = —_—— = I.
3 3x4 P (69)

and:

1 20 a a 3

But a,b are coprime. Then the case b = 4 and 3|p is impossible.

10



3.2.1.8. Case: b#2,b+# 4, blp and 3|p :. As 3|p then p = 3p’ and :

4p 0 4dpa 4x3pa 4pa
Azm = — 27 = — = = —_ = 71

3°°373b 3 b b )
We consider the case: blp’ = p’ = bp” and p” # 1 (if p” = 1, then p = 3b, see
sub-paragraph II. Case k’=1 of paragraph 3.2.1.8). Hence :

_ 4bpTa

A2m
b

= dap” (72)

Let us calculate B"C*:

nl_g o QQ ! 72_ 773b—4a_u _
B'C' =2 <3 Acos 3) =p (3 4b) = b’ = = p.(3b—4a) (73)
Finally, we have the two equations:
4b 99
AP = 1; &= dap” (74)
B"C' = p”.(3b — 4a) (75)

I. Case p” is prime:

From , p’|A?™" = p”|A™ = p”|A. From , p’|B" or p”|CL. If p’|B" =
p’|B,as C! = A"+ B" = p"|C! = p”|C. If p”|C' = p”|C,as B" = C' — A" =
7B = "B

Then A,B and C solutions of have a common factor.
II. Case p” is not prime:
Let A\ one prime divisor of p”. From , we have :
A A?™ = X\|A™ as \is prime then \|A (76)
From (75), as Alp” we have:
NB"C' = \|B" or \C! (77)
If A\|B™, X is prime A|B, and as C! = A™ + B™ then we have also :
A C!  as \is prime, then \|C (78)

11



By the same way, if A\|C!, we obtain \|B.
Then: A, B and C solutions of have a common factor.

Let us verify the condition given by:
b<4a < 3b
In our case, the last equation becomes:
p < 3A%™ < 3p with p= A"+ B?*" + A™B" (79)

The condition 34%™ < 3p = A?™ < p is verified.
If :
p < 3ATM — 24%™ _ A™B" — B?" > ()

n

We put Q(Y) = 2Y2 — B"Y — B?", the roots of Q(Y) = 0 are V; = —&
and Yo = B". QY) >0forY <Yy and Y > Y, = B". In our case, we
take Y = A™. As A™ > B™ then p < 3A?™ is verified. Then the condition

b < 4a < 3b is true.

In the following of the paper, we verify easily that the condition b < 4a < 3b

implies to verify A™ > B™ which is true.

3.2.1.4. Caseb=3 and 3|p :. As 3|p = p = 3p’ and we write :

4p 0 4dpa 4x3pa 4a
A2m: 27 _ A - = — 80
3 cos 3 3D 3 3 3 (80)

As A?™ is an integer and that a and b are coprime and cos2€ can not be one in
reference to the equation (35), then we have necessary 3|p’ = p’ = 3p” with
p” # 1,ifnot p=3p’ =3 x3p” =9 but p=A?" + B?" + AMB" > 9, the
hypothesis p” = 1 is impossible, then p” > 1. hence:

_4p'a 4 x3p’a

AZm 5 = 3 =4p’a (81)

0 a 3p” (9 — 4a)
B ZZE —4 27 ) — — ) = —— 7 — 9, —4 2
C 3 (3 cos 3) P (3 b) 3 p”.(9 a) (82)

12



1 0
ASZ<0052§:%:§<z:>3<4a<9:>a:238a>1.a:2,we
obtain:

4/ 4 b
A2 — ];, “:L;’p ¢ gpra=8p (83)
p 20\ . Ly 3579 da)
B"C! =7 (3 —4dcos®; | = (3—4—)= =p" 84
3( 3) o (348 )

The two last equations give that p” is not prime. Then we use the same method-
ology described above for the case 3.2.1.3., and we have : A,B and C solutions
of have a common factor.

3.2.1.5. Case 3|p and b=p :. We have :

cos?e =219
3 b p
and :
4p 0 4p a 4da
AP = ZcosPs = - = — 85
3053 » 3 (85)

As A?™ is an integer, this implies that 3|a, but 3|p = 3|b. As a and b are

coprime, hence the contradiction. Then the case 3|p and b = p is impossible.

3.2.1.6. Case 3|lp andb=4p :. 3|p = p = 3p’, p’ # 1 because 3 < p, hence
b=4p=12p'.

4p 0 4pa a
AQm — 27 = —— = — $3 86
3 cos 3 3% 3 |a (86)

because A%™ is an integer. But 3|p = 3|[(4p) = b], that is in contradiction

with the hypothesis a, b are coprime. Then the case b = 4p is impossible.

3.2.1.7. Case 3|p andb=2p :. 3|p = p = 3p’, p’ # 1 because 3 < p, hence
b=2p=06p.

4p 0 4dpa 2a
AP = Ccos’s = o = =3 87
393735 3 la (87)
because A*™ is an integer. But 3|p = 3|(2p) = 3|b, that is in contradiction

with the hypothesis a, b are coprime. Then the case b = 2p is impossible.

13



3.2.1.8. Case 3|p and b # 3 is a divisor of p :. We have b = p’ # 3, and p is

written as:
p="kp with 3|k = k=3K (88)
and :
4p 0 4pa 4x3kp a
AP = Lps?= = 2.2 = 7—_416’ 89
3373 3 p (89)
We calculate B*C*:
n ~l p 29 / /
B"C =3 3 —4cos 3 =k'(3p’ — 4a) (90)

I. Case k' # 1:
We suppose k' # 1, we use the same methodology described for the case 3.1.2.3.,

and we obtain: A, B and C solutions of have a common factor.

II. Case k' = 1:
We have k' = 1 = p = 3b, then we have:

AP =4q = a is even (91)
and :
AMB"™ = 2/pcos— \f( smf — cos g) = pgszné—g —2a (92)
let:
A2 4 9A™ BN = 2p;/§sin% - 2b\/§sm¥ (93)

20
The left member of is an integer and b also, then 2\/§5an can be written

in the form:

2
2v/3sin 9 _k (94)
ke

where k1, ko are two coprime integers and kqo|b => b = ko.k3.

I1.1. Case k3 # 1:
We suppose k3 # 1. Hence:

AP L 2AM B = ks ky (95)

14



Let p is an prime integer such that ulks. If 4 = 2 = 2|b, but 2|a that is
contradiction with a,b coprime. We suppose p # 2 and p|ks, then:

| WA™(A™ 4 2B™) = p|A™ or p|(A™ + 2B™)] (96)

I1.1.1. Case pu|A™:
If p|A™ = p|A?™ = plda = pla. As plks = p|b and that a, b are coprime

hence the contradiction.

I1.1.2. Case p|(A™ + 2B™):
If pl(A™+42B") = put A™ and p 1 2B™ then p # 2 and p{ B™. p|(A™+2B"),
we can write:

A™ 4+ 2B" = pt’ t' e N* (97)
It follows:
A™ 4+ B" = ut' — B" = A*™ + B*" 1 2A™B" = 1*t"* — 2t uB" + B*"
Using the expression of p, we obtain:
p=1t?u*—2t'B"u+ B"(B" — A™) (98)
As p = 3b = 3ks.ks and plks hence plp = p = up’, so we have :
W= p(pt” —2t'B") + B"(B" — A™) (99)

then:

B (B" — A™) = p|B" or pu|(B" — A™)] (100)

I1.1.2.1. Case u|B™:

If u|B™ = p|B which is in contradiction with case I1.1.2. above.

I1.1.2.2. Case u|(B™ — A™):

15



If p|(B™ — A™) and using p|(A™ + 2B™), we obtain:
w|3B™ (101)
I1.1.2.2.1. Case u|B™:

If u|B™, using the result above of I1.1.2.1. of this paragraph, it is impossible.

I1.1.2.2.2. Case p = 3:
If p =3 = 3lks = ks = 3kj, and we have b = koks = 3kaks, it follows
p = 3b = 9kok} then 9|p, but p = (A™ — B")? + 3A™B" then :

okl — 3A™B™ = (A™ — B™)?

we write it as :

3(3koky — A™B™) = (A™ — B™)? (102)
hence :
| 3|(3kokf — A"B") = 3|A™B" — 3|A™ or 3|B" | (103)
I1.1.2.2.2.1. Case 3|A™:

If 3|A™ = 3|A and we have also 3|4%™, but A’ = 4a = 3|4a = 3|a. As

b = 3kok% then 3|b, but a,b are coprime hence the contradiction. Then 3 t A.

I1.1.2.2.2.2. Case 3|B":
If 3|B" = 3|B, but the (102) gives 3|(A™ — B")? = 3|(A™ — B") =
3|A™ = 3|(A?™ = 4a) = 3|a. As 3|b then the contradiction with a, b coprime.

Then the hypothesis k3 # 1 is impossible.

III1. Case k3 = 1:
Now we suppose that ks =1 = b = ko and p = 3b = 3ks. We have then:

2
2\/§sin§9 = %1 (104)

16



with k1, b coprime. We write (104) as :
0 0 k
4v3sin-cos— = —
V3 sinzcosy 2
. . 2 0 a .
Taking the square of the two members and replacing cos 3 by 7 we obtain:

3x4%.a(b—a) =k (105)

which implies that :

’3|a or 3|(b—a)‘ (106)

ITI.1. Case 3|a:
If 3|a, as A?™ = 4a = 3|A*™ = 3|A and 3|a. But p = (A™ — B")? +3A™B"
and that 3[p = 3|(4A™ — B")? = 3|(A™ — B"). But 3|A hence 3|B" = 3|B,

as m > 3 = 32|p, it follows 3|b then the contradiction with a, b coprime.

IT1.2. Case 3|(b—a):
Considering now that 3|(b — a). As ky = A™(A™ + 2B"™) by the equation
and that 3[k; = 3|A™(A™ + 2B") = |3|A™ or 3|(A™ + 2B") |

IT1.2.1. Case 3|A™:
If 3|A™ = 3|A = 3|A?™ then 3|4a = 3|a. But 3|(b — a) = 3|b hence the

contradiction with a, b are coprime.

IT1.2.2. Case 3|(A™ + 2B™):
If:
3|(A™ + 2B™) = 3|(A™ — B") (107)

But p = A2™ 4 B2 { AmB" = (A™ — B™)? + 3A™B" then p — 3A™B" =
(A™ — B")?2 = 9|(p — 3A™B") or 9|(3b — 3A™B"), then 3|(b — A™B") but
3/(b—a) = 3|(a — A™B"). As A’ = 4a = (A™)? = 3Ja’ € N* and

a=a?= A™ = 2a’. We arrive to:

’ 3|(a” —2a’B") = 3|a/(a’ — 2B") = 3|a’ or 3|(a’ —2B™) (108)

17



IT1.2.2.1. Case 3|a’:
If 3la’ = 3|a” = 3|a, but 3|(b — a) = 3|b, then the contradiction with a,b

coprime.

I11.2.2.2. Case 3|(a’ —2B"):
Now if 3|(a’ —2B"™) = 3|(2a’ —4B"™) = 3|(A™ —4B") = 3|(A™ — B"), we refind
the case II1.2.2., equation (107)), that has a solution given by the case 2.2.1.

above.

Then, the study of the case 3.2.1.8. is finished.

3.2.1.9 Case 3|p and b|4p:. As 3|p = p = 3p’ and bldp = Jk; € N* and
4p = 12p" = k1 b.

I. Case k| = 1:

If ky = 1, then b = 12p/, (p' # 1 if not p = 3 < A*™ + B?" + A™B"). But
4 0 12 4p’.

A2 = §.00523 = 3p % = 1];p? = % = 3|a because A?™ is an integer, then

the contradiction with a, b coprime.

I1. Case k1 = 3:
4
If k1 = 3, then b = 4p’ and A?™ = g.cos — =

3~ 3 ¢
Let us calculate A™B™:
0 0 0 3 .20
A"B" = 2\3/50055.\3/5 (\/382113 - cos3> = Z)\Tfsmj - g (109)
Let:
2pv3 . 20 20
A2m 4 2AM BT = pT\fsmg = 2p'V/Bsin (110)

20
The left member of the equation 1p is an integer and also p’, then 2\/§sin§

can be written as :

20 ko
2v3stin— = — 111
Vasing = = (111)
where ko, k3 are two coprime integers and:

/453|p’ = dky, € N* and p' = k3.ky (112)
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I1.1. Case k4 # 1:
We suppose that k4 # 1, then:

AP L 2A™B™ = KoKy (113)

Let p one prime integer with:

M|k4 (114)

Then :

| u[A™ (A" 4 2B") = p[A™ or  p|(A™ +2B")] (115)

I1.1.1. Case p|A™:
If ulA™ = p|A?™ = pla. As plky = plp’ = pl(4p’ = b). But a,b are

coprime then the contradiction.

I1.1.2. Case p|(A™ + 2B™):
If ul(Am™42B™) = ut A™ and p t 2B™ then p # 2 and pt B™. p|(A™+2B"),
we can write:

A" +2B" = pt’ t' € N* (116)
It follows:
A™ 4 B" = ut' — B" = A?™ 4+ B?" £ 2A™B" = /*t"? — 2t/ uB" + B*"
Using the expression of p, we obtain:
p=t?u?—2t'B"u+ B"(B" — A™) (117)

As p =3p’ and ulp’ = u|(3p’) = u|p, we can write :3p’ € N* and p = pp’, then
we obtain :

W= p(ut’® —2t'B™) + B"(B™ — A™) (118)

and:

[ulB"(B" — A™) = u|B" or ul(B" — A™) (119)
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I1.1.2.1. Case pu|B™:
If u|B™ = p|B which is in contradiction with the case I1.1.2. above.

I1.1.2.2. Case u|(B™ — A™):
If p|(B™ — A™) and using u|(A™ + 2B™), we obtain:

20

I1.1.2.2.1. Case u|B™:

If u|B™ it is impossible, see the case I1.1.2.1. above.

I1.1.2.2.2 Case p = 3:
If p =3 = 3lky = k4 = 3k}, and we obtain p’ = ksks = 3ksk}, it follows
p = 3p’ = 9k3k/, then 9|p, but p = (A™ — B™)2 + 3A™B", then:

9kykl — 3A™B™ = (A™ — B")?

that we write :

3(3kykl — A™B") = (A™ — B")? (121)

then 3|(3ksk} — A B") = 3|A™B" = |3|A™ or 3|B"|

I1.1.2.2.2.1. Case 3|A™:

If 3|A™ = 3|A?™ = 3|a, but 3|p’ = 3|(4p’) = 3|b, then the contradiction with
a,b coprime. Then 31 A.

I1.1.2.2.2.2. Case 3|B":

If 3|B™ and using (L16), we have A™ = ut’ — 2B™ = 3t' — 2B" = 3|A™ =
3|A%2™ = 3|a, but 3|p’ = 3|(4p’) = 3|b, then the contradiction with a, b coprime.

Then the hypothesis k4 # 1 is impossible.

I1.2. Case k4 = 1:

20



We suppose that :> p' = ksks = k3. Then we obtain:
20
2\/§sin§ =2 (122)

with ko, p’ coprime, we write (122)) as :

0 0 ko

4V 3sin-cos- = —

V/3sin 30083 ;
. . 2 0 a ,
Taking the square of the two members and replacing cos 3 by 7 and b = 4p’,

we obtain:

3.a(b—a) = k3 (123)

that implies:

’3|a or 3|(b—a)‘ (124)

I1.2.1. Case 3|a:

If 3la = 3|A?™ = 3|A, as p = (A™ — B")? + 3A™B™ and that 3|p = 3|(4™ —
B")? = 9|(A™ — B")2. But (A™ — B")? = p—3A™B" = 3b — 3A™B" =
3|(b— A™B™). As 3|A™ = 3|b = the contradiction with a,b coprime.

I1.2.2. Case 3|(b—a):
We consider that 3|(b—a). As ky = A™(A™ 4 2B™) given by the equation ((113))
and that 3|k, = 3|A™(A™ + 2B") = [3|A™ or 3|(A™ +2B")),

I1.2.2.1. Case 3|A™:
If 3|A™ = 3|A?™ = 3|a, but 3|(b — a) = 3|b then the contradiction with

a,b coprime.

I1.2.2.2. Case 3|(A™ + 2B"):
If:

3|[(A™ +2B") = 3|(A™ — B") (125)
but p = A*™ 4+ B + AmB" = (A™ — B")? + 3A™B" then p — 3A™B" =
(A™ — B")? = 9|(p — 34™B") or 9|(3p’ — 3A™B"), then 3|(p’ — A™B") =
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3|4(p’ — 4A™B™) = 3|(b — 4A™B") but 3|(b — a) = 3|(a — A™B"). As
3|(A2™ — 44™ B) = | 3| A™(A™ — 4B") |

I1.2.2.2.1. Case 3|A™:
If 3|]A™ = 3|A*" = 3|a, but 3|(b — a) = 3|b then the contradiction with

a,b coprime.

I1.2.2.2.2. Case 3|(A™ — 4B"):
Now if 3|(A™ —4B") = 3|(A™ — B™), we refind the hypothesis of the beginning
(125]) above, that has a solution I1.2.2.2.1..

ITI. Case k1 # 3 and 3|k;:
We suppose ki # 3 and 3|k = k1 = 3k'1 with k7 # 1. We have 4p = 12p' =
kib = 3kib = 4p’ = k}b. A?™ can be written as :

dp 50 3kiba

AP = 508 3 3 5" Kia (126)

and B"C":
Bret =P (3 ac0s2?) = P4 127
g\ T r0s g —?( — 4a) (127)

As B"C! is an integer, we must have ’ 4/(3b—4a) or 4|k}

ITI.1. Case 4|(3b — 4a):

3b—4
We suppose that 4|(3b — 4a) = 1 C=ce N*, and we obtain:
AP = kla
B"C' = k¢

IT1.1.1. Case ki is prime:

If k) is prime, then k{|A?™ = k}|A and k}|B"C' = k{|B™ or kj|C'. If
kj|B™ = k}|B, then k}|C' = k}|C. With the same method if ¥}|C!, we ar-
rive to ki|B.
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We obtain: A,B and C solutions of have a common factor.

II1.1.2. Case k| not a prime:
We suppose kf not a prime. Let p a prime divisor of k], as described in II1.1.1.

above, we obtain : A,B and C solutions of have a common factor.

ITI.2. Case 4|k}:
Now, we suppose that 4|k].

IT1.2.1. Case ki = 4:
We suppose k; = 4, then A?™ = 4a and B"C! = 4c, It is easy to verify that 2

is a common factor of A, B, C.
We obtain: A,B and C solutions of have a common factor.

IT1.2.2. Case Kk} = 4k”;:
If k] = 4k”1 with k71 > 1. Then, we have:

A% = 4k7a (128)
B"C! = k7 1(3b — 4a) (129)

111.2.2.1. Case k”; prime:
If k7 is prime, then k”1|A%™ = k”;|A and k”1|B"C' = k”1|B™ or k"|C!. If
k”1|B™ = k”1|B, then k”{|C' = k”1|C. With the same method if k”1|C?, we

arrive to k" 1|B.
We obtain: A,B and C solutions of have a common factor.
111.2.2.2. Case k"1 not a prime:

If £”1 not a prime. Let u a prime divisor of k"1, as described in case IT11.2.2.1.

above, we obtain : A,B and C solutions of have a common factor.
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3.2.2. Hypothesis : {3|la and bldp}

‘We have :

3la=3a' € N* | a=3d

3.2.2.1. Case b=2 and 3|a :. A?™ is written as :

4p 0 4pa 4pa 2.pa
A2m:— 27:—_7:—.7:
3°°37 3 32 3
Using the equation (130]), A%2™ becomes:
2m 2.p.3a oy d
3
20 a 3d
But cos 3533 > 1 which is impossible, then b # 2.
3.2.2.2. Case b=4 and 3|a :. A?™ is written as :
4.p 0 4pa 4pa pa p.3a’
A2m:7 27:77 _r [ :'I
3°°3° 3% 34 3 b
2
and cos2€ < (\[> §:> a <1
3 2
which is impossible.
Then the case b = 4 is impossible.
3.2.2.8. Case b=p and 3|a :. Then:
w2 a3
3 b p
and:
4 0 4p 3
A2m:£ 2 p.i:4/ (Am)

We calculate A™ B™, hence:

3 260
AMB™ = p%sm? —2a’
3 20
or A™B" 4+ 2d =p. %smg
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20
The left member of 1D is an integer and p is also, then Q?Sing will be
written as :
V3 20k

2Y % ginC = = 139
35m3 s (139)

where k1, ko are two coprime integers and ko|p => p = b = ko.k3, ks € N*.

I. Case k3 # 1:
We suppose that k3 # 1. We obtain :

AM(A™ 4+ 2B™) = ky ks (140)

Let us p a prime integer with u|ks, then plb and p|A™(A™ + 2B™). Hence:

ulA™ or  pl(A™ +2B™)] (141)

I.1. Case p|A™:
If u|A™ = p|A and p|A?™, but A*™ = 4a’ = plda’ = (u = 2 but 2|a’) or

p|a’. Then pla hence the contradiction with a,b coprime.

I.2. Case p|(A™ +2B"):
If p|(A™ +2B") = ut A™ and p t 2B™ then p # 2 and p t B™. We write
w|(A™ + 2B"™) as:

A™ 4+ 2B" = pt’ t' e N* (142)

It follows:
A™ 4 B" = ut' — B" = A*™ 4 B*™ 4 2A™B" = 4*t"* — 2t'uB"™ + B*"
Using the expression of p:
p=1t?u*—2t'B"u+ B"(B" — A™) (143)

Since p = b = ko.k3 and ulks then plb = 3p’ € N* and b = ', so we can
write:

W= p(ut’® —2t'B") + B"(B™ — A™) (144)
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From the last equation, we get u|B™(B" — A™) = ’ w|B™ or p|(B™—A™)

1.2.1. Case u|B™:
If u|B™ which is contradiction with pt B™.

1.2.2. Case pu|(B™ — A™):
If p|(B™ — A™) and using p|(A™ + 2B™), we arrive to:

ul3B" = { o (145)
=
1.2.2.1. Case pu|B™:
If u|B™ which is contradiction with p{ B from I.2. Case p|(A™ + 2B™).

I1.2.2.2. Case = 3:
If 4 = 3, then b = 3/, but 3|a then the contradiction with a,b coprime.

I1. Case k3 = 1:

We assume now k3 = 1. Hence:

AP 4L 2AM BT =k (146)
b=k (147)
%ﬁszn%e = % (148)

Taking the square of the last equation, we obtain:

4,20 K}
3 3 b2

Finally:
42/ (p —a) = k? (149)



but a’ = a”? then p — a is a square. Let us:
N=p—a
The equation becomes:
42072\ = k¥ = ky = 4a” X
taking the positive square root. Using , we get :
k1 =4a” X
But k1 = A™(A™ + 2B™) = 2a” (A™ 4 2B"), it follows:

A™ 4+ 2B" = 2)

(150)

(151)

(152)

(153)

Let A1 prime # 2, a divisor of A (if not, \; = 2]\ = 2|A\? = 2|(p — a) but a

is even, then 2|p = 2|b which is contradiction with a,b coprime).

We consider Ay # 2 and :

)\1‘)\:>/\1|>\2 and )\1|(Am+23n)

AM|(A™ +2B™) = A t A™ if not A|2B"
But Ay # 2 hence A\|B™ = \|B, it follows:
Allp=0) and M|A™ = A\|2¢” = M|a

hence the contradiction with a,b coprime.

I1.1. Case A\; t A™ and A\;|(A™ + 2B"):

(154)

(155)

(156)

We assume now Ay { A™. A\1[(A™+2B") = \{|(A™ +2B™)? that is A\ |(A%™ +
4A™B"™ 4+ 4B?"), we write it as \{|(p + 3A™B" + 3B?") = \|(p+ 3B"(A™ +
2B™) — 3B?"). But A\1|(A™ 4 2B™) = \1|(p — 3B?*"), as A\1|(p — a) hence by
difference, we obtain A;|(a—3B2") or \;|(3a’ —3B?*") = \;|3(a’ — B®"), Then:

’)\1 =3 or M\l(a - B*)
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II.1.1. Case \{ = 3:
If Ay = 3 but 3la, as A\|(p — a) = 3|(p = b) hence the contradiction with a,b

coprime.

I1.1.2. Case \|(a’ — B?"):
If (o) = B2") = \i[(a”% = B*) = | \i[(a” — B")(a” + B") | = \i[(a” +
B"™) or \i|(a” — B"), because (a” — B") # 1, if not, we obtain a”? — B?" =

a’ + B" = a"? — a” = B" — B?". The left member is positive and the right

member is negative, then the contradiction.

I1.1.2.1. Case A{|(a” — B™):

If \i|(a” — B") = A1|2(a” — B") = A|(A™ — 2B™) but A;|(A™ +2B") hence
A2A™ = A\ |A™ as A1 # 2, it follows A1|A™ hence the contradiction with
(1155)).

I1.1.2.2. Case X\|(a” + B"™):
If A|(a” + B™) = M\|2(a” + B") = A\1|(2a” + 2B™) = A\ |(A™ + 2B™). We
find the case II.1. that has solutions.

Then the case k3 = 1 is impossible.

3.2.2.4. Caseblp= p=0bp',p) >1,b#2,b#4 and 3|a .

=——"=4pd (158)
We calculate B"C:

0 0 4
B*C' = ¥/p? <35in2 - 6082> =/ <3 - 400323> (159)

3 3

0
But W = g, hence using 00325 = -

, a’ 4.a’
B"C! = /p? (3—4c052§) = g (3—43; ) = p. (1 - ba ) =p'(b—4d)
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As p=0bp', and p’ > 1, we have then:

B"C' = p/(b—4d’) (161)

and A* =4.p .d (162)

I. Case )\ a prime divisor of p’:

Let A a prime divisor of p’ (we suppose p’ not prime ). From , we have:
A A?™ = X\|A™ as\is a prime, then \|A (163)
From (161)), as A[p’ we have:
NB"C! = \|B™ or \|C! (164)
If \|B™, \ is a prime A|B, but C' = A™ + B", then we have also :
AC! as\is a prime, then A\|C (165)
By the same way, if A\|C!, we obtain A|B. then : A, B and C solutions of

have a common factor.

II. Case p’ is a prime number:
We suppose now that p’ is prime, from the equations (161)) and (162]), we obtain
that:

p|AP = pl|A™ = p|A (166)

and:
p'|B"C' = p/|B™ or p/|C (167)
If p'|B"=p'|B (168)

As C'=A™+ B" and that p/|A,p/|B = p'|A™, p'|B" = p'|C!

=p'|C (169)

By the same way, if p'|C!, we arrive to p'|B.

Hence: A ,B and C solutions of have a common factor.
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3.2.2.5. Case b =2p and 3|a :. We have:

0 a 3d 4dp.a  4p 3d

2 2m / m /
— == —— = A" = —— = — — =24 = 2|A™" — 2]|a = 2
cos" s =+ o o 32 a | la la

Then 2|a and 2|b which is contradiction with a, b coprime.

3.2.2.6. Case b= 4p and 3|a :. We have :

50

3a’
cos’— = - = m —

a
37 b 4p 3b 3 4p
Calculate A™B™, we obtain:

pV3 20 2p L0 pVv3 20 d
T.SZTL* — —CO0§8 - = 7.87,71? — 5

ATB" = 3 3973773

A%m 3 20
A"B" + = :P\Tf.smg (170)
let:
w3 20
AP 92 Am B — p?:fsmg (171)

2v/3 . 20
The left member of 1) is an integer and p is an integer, then T\[szng will

be written:
2V3 20 Kk
2V ogin=— = 2= 172
3 sin 3 s (172)
where k1, ko are two coprime integers and ko|p = p = ka.ks.
I. Case k3 # 1:
Firstly, we suppose that ks # 1. Hence:
AP L 2AM BT = ks ky (173)

Let p a prime integer and plks, then p|A™(A™+2B") = ’ ulA™  or pl(A™ 4 2B™)

I.1. Case pu|A™:
If u|A™ = p|(A*™ =d) = p|(3d’ = a). As pulks = plp = p|(4p = b). Then

the contradiction with a,b coprime.

30



I.2. Case pu|(A™ + 2B"):
If u|(A™ +2B™) = ut A™ and p{ 2B™ then:

w#2 and ptB" (174)
p|(A™ + 2B"™), we write:
A"+ 2B = pt’ t' e N* (175)
Then :
A™ 4+ B" = ut' — B" = A?™ 4+ B?" 4 2A™B" = 1°t"* — 2t'uB" + B*"
= p=1t?u? - 2¢'B"u+ B"(B" — A™) (176)
As b =4p = 4ky.ks and plks then p|b = Ju’ € N* that b = py’, we obtain:

Wy = p(4ut’ — 8t'B™) + 4B"(B" — A™) (177)

The last equation implies p|4B™(B"—A™), but x # 2 then ’ w|B™ or u|(B™— A™) ‘

I.2.1. Case pu|B":
If u|B™ then the contradiction with (174)).

I.2.2. Case p|(B" — A™):
If p|(B™ — A™) and using u|(A™ + 2B"™), we obtain:

’u|3B" = u|B™ or pu=3 (178)

1.2.2.1. Case pu|B™:
If u|B™ it is contradiction with (174)).

I1.2.2.2. Case = 3:
If 4 = 3, then b = 3y, but 3|a which is contradiction with a,b coprime.

I1. Case k3 = 1:
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We assume now k3 = 1. Hence:

AP 4 2A™B™ = ky

p =k
—2\/§sm2—9 = ﬁ
3 3 p

Taking the square of the last equation, we obtain:

Finally:

but @’ = a”? then 4p — 3a’ is a square. Let us:
N=4p—-3d =4p—-a=b—a
The equation becomes:
A\ =k} =k =a"\
taking the positive square root. Using 7 we get :
ki =a’\
But ky = A™(A™ + 2B") = o” (A™ + 2B"), it follows:

(A™ +2B™) = A

Let \; prime # 2, a divisor of A (if not \; = 2|\ = 2|\2. As 2|(b =

2|(a = 3a’) which is contradiction with a,b coprime).
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We consider A\; # 2 and :
A A= M [(A™ +2B") (187)
= M {1 A" if not M\|2B" (188)
But A; # 2 hence \|B™ = \1|B, it follows:
A|(b=4p) and M|A™ = A\]2¢” = M\a (189)

hence the contradiction with a,b coprime.

IL.1. Case A1 1 A™, A\; 1 B™ and A\ |(A™ 4 2B™):

We assume now A\; { A™, A { B™". A\1|(A™ + 2B™) = \1|(A™ + 2B™)? that is
Ap|(A%M 4+ 4A™B" + 4B?"), we write it as A\1|(p + 3A™B"™ + 3B?") = \{|(p +
3B™(A™ +2B™) — 3B%"). But Aj|(A™ +2B") = A\ |(p — 3B2"), as \|(dp —a)
hence by difference, we obtain A;|(a — 3(B?" +p)) or A\{|(3a’ — 3(B*" +p)) =
M\ |3(a’ — B — p) = ’ A =3 or A\i|(a’ — (B* +p)) ‘

I1.1.1. Case \| = 3:
If \; = 3|\ = 3|\ = 3|b—a but 3Ja => 3|(p = b) hence the contradiction with

a,b coprime.

I1.1.2. Case \{|(a’ — (B®" +p)):
If A # 3 and Ay [(d/ — B —p) = A |(A™B" + B?") = A\, |B"(A™ +2B") =
(M[B™ or M|(A™+2B7)]

I1.1.2.1. Case \|B™:
If A1|B™ that is in contradiction with the hypothesis A1 1 B cited above case I1.1.

I1.1.2.2. Case \|(A™ +2B"):
If A1|(A™ +2B™). We refind this condition in the case II.1.

Then the case k3 = 1 is impossible.
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3.2.2.7. Case 3|la and b =2p’ b # 2 with p'|p :. 3la = a = 3a’, b = 2p’ with

p = k.p’, hence:
4. 4.k.p'.3.d
pzm AP @ ARV (190)

Calculate B"C":

B"C' = /p? <3$in22 - 00528> =/ <3 - 400523) (191)

3

3.a'
But /p? = g hence en using coszg = :

, a Ad
B"C!l = {/p? (3 —40082§> = g (3 —43; ) =Dp. (1 - ba ) = k(p' - 2d’)

(192)

As p=0b.p/, and p’ > 1, we have then:
B"C!' = k(p' —2d) (193)
and A®™ = 2k.d/ (194)

I. Case ) is a prime divisor of k:

We suppose that A is a prime divisor of k& (we suppose k not a prime ). From

(194), we have:
AA?™ = \|A™ as \is prime then \|A (195)
From , as Ak, we have:
AB"C! = \|B" or \C! (196)
If A\|B™, X is prime A|B, and as C' = A™ + B™ then we have also:
A C!  asAis prime then A|C (197)

By the same way, if A|C!, we obtain A|B. Then : A, B and C solutions of

have a common factor.

II. Case k is prime:
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Now, we suppose now that k is prime, from the equations (193] and ( -, we

obtain:
E|AP™ = k|A™ = k|A (198)
and:
k|B"C' = k|B™ or k|C" (199)
if kB = k|B (200)

as COl'=A™ 4 B" and that k|A, k|B = k|A™, k|B" = k|C"
= k|C (201)

By the same way, if k|C?, we arrive to k|B.

Hence: A ,B and C solutions of have a common factor.

3.2.2.8. Case 3|la and b =4p’ b # 2 with p'|p :. 3la = a = 3a’, b = 4p’ with
p=kp', k#1,if not, b = 4p a case that has been studied (paragraph 3.2.2.6),

then we have :

4.p a 4.kp.3.d
A= 28 D= P ke 202
3D 12/ “ (202)

Writing B"C!:

B"C' = /p? (332’7122 - 0082§> =/p? (3 - 46082§> (203)

3.a’
But /p —, hence en using cos :

20 _
3
B"C! = {/p? (3 Acos? ) — g (3 e

) —p. <1 - 4'b“/> =k —d)

(204)

As p=10.p/, and p’ > 1, we have:
B"C' = k(p/ —2d) (205)
and A?™ =2k.d/ (206)

I. Case \ a prime divisor of k:
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Let A a prime divisor of k& (we suppose k not a prime). From (206)), we have:
A A?™ = \|A™ as \is prime then \|A (207)

From (205)), as Alk we obtain:

ABrC! = |AB" or A|C!] (208)

I.1 Case A\|B™ or A\|C™:
If A\|B", X is a prime, then A\|B, and as A|A = \|(A™ + B" = C!) = \|C. By
the same way if A\|C!, we obtain A\|B. Then : A, B and C solutions of (3| have

a common factor.

II. Case k is prime:

We suppose now that k is prime, from the equations (205)) and (206]), we have:

k|AP™ = k|A™ = k|A (209)

and:
k|B"C! = k|B"™ or k|C! (210)
if k|B"™= k|B (211)

as O!'=A™+4 B" and that k|A, k|B = k|A™, k|B" = k|C"

= k|C (212)

By the same way if k|C!, we arrive to k|B.

Hence: A ,B and C solutions of have a common factor.

3.2.2.9. Case 3la and bldp :. a = 3a’ and 4p = k1b with k; € N*. As A?™ =
4p . 20  4p3d

3 CoS g = ST = kla/ and B”Cl:
0 0 0 ! k
B"C' = {/p? <35in23 - 00523> = ‘g (3 - 400523) = g <3 - 43;)1) = Kl(bféla’)
(213)

As B"C! is an integer, we must have ’ 4|k; or 4|(b—4a)
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I. Case k1 = 1:
If by =1 = b=4p: it is the case (3.2.2.6) above.

I1. Case k; = 4:
If ky =4 = p=>:it is the case (3.2.2.3) above.

ITI. Case 4|k;:
We suppose that 4|k; with k1 > 4 = ky = 4k], then we have:

A*™ = 4kl d
B"C' = K (b— 4d')

By discussing &} is a prime integer or not, we arrive easily to: A ,B and C

solutions of have a common factor.

ITI.1. Case 41 (b—4d') and 41 ki:
If 44 (b —4a’) and 4 1 k7 it is impossible.

IT1.2. Case 4|(b—4d'):
If 4/(b — 4a') = (b — 4d’) = 4c, with ¢ € N*, then we obtain:

A2m — k‘1CI,,
B"C' = kyc

By discussing k; is a prime integer or not, we arrive easily to: A ;B and C

solutions of have a common factor.

The main theorem is proved.

4. Numerical Examples

4.1. Example 1:

We consider the example:

6% + 3% =3° (214)
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with A™ = 63, B® = 3% and C! = 3°. With the notations used in the paper, we

obtain:
p=35%x73, (215)
q=8x 3", (216)
A =4x3"8(3"x4%-73%) <0, (217)
8
p:p\/f):i% ><73\/ﬁ’ (218)
3V3 3
3
cost = —M (219)
73VT3
4 0 6 3A42m 3 x 24
ASA2m=§p.COSQ§:>COS2§= 1 = >7<3 :%:>a:3><24, b=173;
then:
4
cos— = ﬁ (220)
3 V73
p=3% (221)

Let us verify the equation (219)) using the equation (220)):

3
3
cost = cos3(0/3) = 4@053Q — 3cos€ —4 4v3 _ 34\/§ _ _4x37x V3
3 3 VT3 VT3 73V73

(222)
That’s OK. For this example, we can use the two conditions of as 3|p,bldp
and 3|a. The cases 3.2.1.3 and 3.2.2.4 are respectively used. We find for both
cases that A™, B" and C! of the equation have a common prime factor

which is true.

4.2. Example 2:

Let the second example:
74473 =143 = 2401 + 343 = 2744 (223)

With the notations of the paper, we take:

A™ =174 (224)
B" =13 (225)
Cl =143 (226)
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‘We obtain:
p=57TxT0=3x19x 75 (227)
g=8xT710 (228)

A =27q% —4p® = 27 x 4 x T18(16 x 49 — 193)

= 27 x4 x 78 % 6075 < 0 (229)
p="20E =19 x 70 x V19 (230)
—q 4x7
cos) = — = ——= 231
2p 19419 (231)
4p 0 6 342m 72 a
As A% = = cos?2 22 = = = - =7, b=4x1Y;
S 30053:>cos3 1 119 b:>a 7, b x 19;
then:
0 7
0sl — 232
3 2V19 252
3lp and b|(4p) (233)

Let us verify the equation (231]) using the equation (232):

0 0 7\’ 7 4x7
0 = cos3(0/3) = 4cos®~ —3cos = 4 -3 =— 234
cost = cos3(0/3) = 4cos 3~ Scos3 (2\/@) Wit TV (234)

It is the same value of (231))!

Now, from (233), we have 3|p = p = 3p/, b|(4p) with b # 2,4 then 12p’ =
kib = 3 x 75b. It concerns the paragraph 3.2.1.9. of the first hypothesis. As
k1 = 3 x 7% = 3k} with k} = 7% # 1. Tt is the case III., with the two conditions:
4)(3b — 4a) or 4|k}. We take 4|(3b — 4a). Let us calculate 3b — 4a:

3b—4a=3x4x19—4x 7% =32 = 4/(3b — 4a) (235)

Then it is the sous-case ITL.1. with A*™ = 78 = 76 x 72 = k{.a with k] not
a prime, we find the sous-case II1.1.2 with the result that A, B and C' have a

common factor namely the prime number 7 a divisor of k} = 7°!.

4.3. Erxample 3:
Let the third example:
7 425 = 3¢ (236)
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with:
A™ — 727Bn — 25;Cl _ 34

We obtain:
p=4999 aprimenumber (237)
g=2°xT7%x3*=127008 > p (238)
As g > p, we find that :
A=27¢*—4p> >0 (239)

Then we cannot use the results of our proof because in this example, m = 2 < 3.
We remark that in all the proof, we don’t encountered that m,n or [ must be
great than 2. Then the condition that m,n,l > 2 is important in .

5. Conclusion

As seen above, the examples confirm the results of the proof. In conclusion,

we can announce the theorem:

Theorem 1. (A. Ben Hadj Salem, A. Beal, 2016): Let A, B,C,m,n, and

l be positive integers with m,n,l > 2. If:
A™ 4+ B" = C! (240)

then A, B, and C' have a common factor.
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