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Abstract

In 1997, Andrew Beal [I] announced the following conjecture : Let A, B,C,m,n,
and | be positive integers with m,n,l > 2. If A™ + B" = C* then A, B, and C have
a common factor. We begin to construct the polynomial P(z) = (z — A™)(z —
B™)(z + C') = 2® — pz + q with p, ¢ integers depending of A™, B" and C!. We
resolve 2 — pxr + ¢ = 0 and we obtain the three roots x1, 2,3 as functions of
p,q and a parameter 6. Since A™, B", —C' are the only roots of 23 — px + ¢ = 0,
we discuss the conditions that x1,xo, 3 are integers. Two numerical examples are
given.

Keywords: Prime numbers, divisibility, roots of polynomials of third degree.

O my Lord! Increase me further in knowledge.
(Holy Quran, Surah Ta Ha, 20:114.)

To my wife Wahida
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1 Introduction 2

1 Introduction

In 1997, Andrew Beal [I] announced the following conjecture :

Conjecture 1.1. Let A, B,C,m,n, and l be positive integers with m,n,l > 2. If:
A™ 4+ B" = ! (1.1)
then A, B, and C' have a common factor.

In this paper, we give a complete proof of the Beal Conjecture. Our idea is to
construct a polynomial P(x) of three order having as roots A™, B® and —C! with
the condition . The paper is organized as follows. In Section 2 of preliminaries,
we begin with the trivial case where A™ = B™. Then we consider the polynomial
P(z) = (x — A™)(z — B")(z + C') = 2® — pr + q. We express the three roots of
P(z) = 23 —px+q = 0 in function of two parameters p, § that depend of A™, B, C".

4
The Section 3 is the main part of the paper. We write that A?™ = Epcos2§. As

0 a
A?™ is an integer, it follows that cos®—~ must be written as — where a,b are two
positive coprime integers. We discuss the conditions of divisibility of p, a, b so that
the expression of A?™ is an integer. Depending on each individual case, we obtain
that A, B,C have or not a common factor. In the last Section, two numerical
examples are presented.

2 Preliminaries
We begin with the trivial case when A™ = B™. The equation (L.1)) becomes:
24™ = (! (2.1)

then 2|C! = 2|C = 3¢ € N*/ C = 2c, it follows 24A™ = 2/l = A™ = 2!-1cl
As [ > 2, then 2|A™ = 2|A = 2|B™ = 2|B. The conjecture ({1.1) is verified.

We suppose in the following that A™ > B™.

2.1 General Case
Let m,n,l € N* > 2 and A, B,C € N* such:

A™ 4+ B" =" (2.2)
We call:

P(x) = (‘T - Am)(x - Bn)(l’ + Cl) =73 — xQ(Am 4+ B" — Cl)
+a[ATB" — CH(A™ + B")] + C'A™B" (2.3)

Using the equation (2.2]), P(x) can be written:

’ P(.Z‘) =73 + a’,‘[AmB" _ (Am + B”)Q} + AmBn(Am —i—B")

(2.4)
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We introduce the notations:

p= (A" +B")? - A"B" (2.5)
q=A"B"(A™ + B") (2.6)

As A™ # B", we have :
p>(A™—B")?2 >0 (2.7)

Equation (2.4]) becomes:
P(z) =a2® —pr+q (2.8)

Using the equation (2.3), P(z) = 0 has three different real roots : A™, B® and —C'.

Now, let us resolve the equation:
Px)=2—pr+q=0 (2.9)

To resolve (2.9)) let:
rT=u+v (2.10)

Then P(z) = 0 gives:

P(z) = P(u+v) = (u+v)® —plu+v)+q=0= u*+0> + (u+v)Buv—p) +q¢=0

To determine u and v, we obtain the conditions: 210
0P =—q 2.12
w=p/3>0 2.13)
Then > and v3 are solutions of the second ordre equation:
X?+¢X +p*/271=0 (2.14)
Its discriminant A is written as :
A= q?—4p*)2T = 727‘122; W 2% (2.15)

Let:

A =27¢% — 4p® = 271(A™B"(A™ + B™))? — 4[(A™ + B")* — A™B")?
= 2TA*™ B> (A™ + B™)? — 4[(A™ + B™)? — A™B"]*  (2.16)

Noting :
a=A"B" >0 (2.17)
B=(A™+ B")? (2.18)
we can write (2.16) as: - [
A =278 —4(8 —a)? (2.19)

As a # 0, we can also rewrite (2.19) as :

A=a? (27§ —4 (g - 1>3> (2.20)
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We call ¢ the parameter :

B
== 2.21
t="= (2.21)
A becomes : o
A = a3 (27t — 4(t — 1)) (2.22)
Let us calling :
y=y(t) =27t —4(t —1)3 (2.23)

Since a > 0, the sign of A is also the sign of y(t). Let us study the sign of y. We
obtain y'(t):
y'(t) =y =3(1+2¢t)(5—2t) (2.24)

y =0=1t; = —1/2 and t2 = 5/2, then the table of variations of y is given below:

t ] 172 52 4 +c
1+2t - I_OI + ‘ +

52t + - o B

¥ - m + g

n
¥t \

Fig. 1: The table of variation

The table of the variations of the function y shows that y < 0 for ¢ > 4. In our case,
we are interested for ¢ > 0. For ¢ = 4 we obtain y(4) = 0 and for ¢ €]0,4[= y > 0.
As we have t = g > 4 because as A™ # B™:

(A™ -~ B")? > 0= = (A" + B")? > 4a = 4A™B" (2.25)

Then y < 0 = A < 0= A < 0. Then, the equation (2.14)) does not have real
solutions u® and v3. Let us find the solutions u and v with 2 = u + v is a positive
or a negative real and u.v = p/3.

2.2 Demonstration
Proof. The solutions of (2.14) are:

X, = % (2.26)
X=X, = ﬂ (2.27)
We may resolve:
ud = % (2.28)
o T4 iVoA (2.29)

2



2 Preliminaries 5
Writing X in the form: ‘
X, = pe® (2.30)
with:
V& —A _ pp
= = 2.31
p 5 3V3 (2.31)
vV-=A
and sin = —— >0 (2.32)
2p
cos) = —% <0 (2.33)
Then 0 [27] €] + g +l, let:
T T 0 7 1 0 V3
<0 Cli<o - <X 2.34
5 < <+7r:>6<3<3 5 <cosz < (2.34)
and:
1 20 3
- —<Z 2.
1 <cosTg <y (2.35)
hence the expression of Xs: _
Xy = pe™ ™ (2.36)
Let:
u=re? (2.37)
—141v3 x
and j = _;Z\[ =% (2.38)
x 1+1 _
2= = +2“/§ _; (2.39)

j is a complex cubic root of the unity <= j* = 1. Then, the solutions u and v are:

; ;0
u = re'¥t = pe's
- 0+27

upy = e = Ypje’s = Ype!
us = ret¥s — \S/ﬁjaeig _ \s/ﬁei%’e-&-i% = ¥p

and similarly:

i 8

v, =re 1 = Ype '3

—in o 8 jar 0 ;

vy =re” ™t = YpjPeTts = Ype' T e = Ype!
i = il ;

vy = e~ = YpjeiS = Ypei®

3
- O+4m

pe' 3

27—6

Aw—6

3

(2.40)
(2.41)
(2.42)

(2.43)
(2.44)
(2.45)

We may now choose u; and vy, so that up + vy will be real. In this case, we have

necessary :
V1 = Uy
Vg = Uy
V3 = U3

(2.46)
(2.47)
(2.48)
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We obtain as real solutions of the equation ([2.11)):

0
T =ul v = 2\3/ﬁcos§ >0 (2.49)
To = Uy + Vg = 2{/50039"'% =—3p (cosg + \/gsing) <0 (2.50)
T3 = uz + vz = 2\3/5608”% = p (—cosg + \/gsmg) >0 (2.51)

We compare the expressions of 1 and z3, we obtain:
?
~ =~ .
2{‘/@005% > Yp (—cosg + \/gsm%)
?

3cos$”>"/3sin (2.52)

0 0 0
As 3 €]+ %,—l—g[, then sin§ and cosg are > (. Taking the square of the two
members of the last equation, we get:

50

1
7 <¢05°3 (2.53)

0
which is true since - €] + I,—FE[ then 1 > z3. As A™ B" and —C! are the

only real solutions of (2.9), we consider, as A™ is supposed great than B™, the
expressions:

0
A" =x1 =u +v1 = 2\3/50055

0+ 4
B™ =23 = u3 + v3 = 2y/pcos A

= p (—cosg + \/§sm§) (2.54)

21

0
—C! = 29 = uy + vg = 2Ypcos *

=—¥p <cos§ + \/gsmg)

3 Proof of the Main Theorem

Main Theorem: Let A, B,C,m,n, and l be positive integers with m,n,l > 2. If:
A™ 4+ B" = (C! (3.1)

then A, B, and C have a common factor.

0 0
Proof. A™ = 2\?//30035 is an integer = A%™ = 44/ p20082§ is an integer. But:

V=% (3.2)

Then: g 0 4 9
AP =4y p26082§ = 4%00525 = p.g.coszg (3.3)
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0
As A?™ is an integer, and p is an integer then cos2§ must be written in the form:

0 1 0 a
2 2

- == - = 4
cos"g =g or coso=o (3.4)

with b € N*| for the last condition ¢ € N* and a, b coprime.

0 1
3.1 Case cos’- = -
3 b
We obtain : A 9 A
A2 = 2 g2l = 2P .
p30083 ) (3.5)
1 0 3 1 1 3
As - AP RN 4 =1,2,3.
s4<c033<4=>4<b<4:>b< <3b=5b ;2,3

3.1.1 Caseb=1

b=1= 4 < 3 which is impossible.

3.1.2 Caseb=2

41 2.
b=2= A" =P35 = ?p = 3|p = p = 3p’ with p’ # 1 because 3 < p, and
b = 2, we obtain:

2
A2 = §p =2y (3.6)

1
B*C' = ¥/p? (3 - 4COSQZ> = g (3 — 4) = g _ ¥ =7 (3.7)

On the one hand:

But :

A2m _ (Am)Q _ 2pl = 2|p/ = p/ _ 2p772 = A2m _ 4p772
= A" =2p" = 2|A™ = 2|A

On the other hand:
BCl = p = 2p” = 2|B" or 2|CL. If 2| B" = 2|B. As C! = A™ + B" and 2|A
and 2|B, it follows 2|A™ and 2|B™ then 2|(A™ + B") = 2|C! & 2|C.

Then, we have : A,B and C solutions of (2.2) have a common factor. Also if 2|C!,
we obtain the same result : A,B and C solutions of (2.2]) have a common factor.

3.1.3 Caseb=3

41 4
sz:AQm:p.g.g = KP = 9p = p = 9p’ with p’ # 1 since 9 < p then
A?™ = 4p’ = p’ is not a prime. Let p a prime with ulp’ = u|A?™ = u|A.
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On the other hand: 0
B"C! = g (3 - 400523) =bp’

Then p|B™ or p|Cl. If u|B™ = u|B. As C' = A™+ B™ and u|A and pu|B, it follows
p|A™ and p|B™ then p|(A™ + B") = u|C! = u|C.

Then, we have : A,B and C solutions of (2.2)) have a common factor. Also if u|C?,
we obtain the same result : A,B and C solutions of (2.2)) have a common factor.

0 a
3.2 Casea>1, cos’s=-
3 b
That is to say:
0 a
= 3.8
cos”z = 3 (3.8)
4 0 4dpa
AP = p.—.cos’~ = 3.9
P33~ 30 (3.9)
and a, b verify one of the two conditions:
’{3\]) and b|4p}‘ 0r’{3|a and b|4p}‘ (3.10)

and using the equation (2.35]), we obtain a third condition:

b < 4a < 3b (3.11)

0
In these conditions, respectively, A?2™ = 43/ pZCOSQ% = 4%.00325 is an integer.

Let us study the conditions given by the equation (3.10]).

3.2.1 Hypothesis: {3|p and b/4p}

3.21.1. Case b=2and 3|p: 3|p = p = 3p’ with p’ # 1 because 3 < p, and
b =2, we obtain:

dp.a  4.3p'.a  4.p.a
AP = = = =2y 12
3b 3b 2 b (3.12)

As:
1 20 a a 3
qlwsg=g=5<Fa<2=a (3.13)

But a > 1 then the case b = 2 and 3|p is impossible.

3.2.1.2. Case b=4 and 3|p : We have 3|p = p = 3p’ with p’ € N*_ it follows:

dp.a  4.3p'.a
pqzm = P —p. 14
3 3xa P (3.14)
and: . 0 5
Z<0052§:%=%<Z:>1<a<3:>a:2 (3.15)

But a, b are coprime. Then the case b =4 and 3|p is impossible.
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3.2.1.3. Case: b#2,b#4, blp and 3|p: As 3|p then p = 3p’ and :

4p 0 4dpa 4x3pa 4pa
A = Zeosts = - = - = 3.16
3°°373b 3 b b (3.16)
We consider the case: blp’ = p’ = bp” and p” # 1 (if p” = 1, then p = 3b, see
sub-paragraph II. Case k’=1 of paragraph 3.2.1.8). Hence :
4b 2
A2 — 1; ¢ = dap” (3.17)

Let us calculate B*C!:

9 3b— 4
B ! = g (3 - 400523) _— (3 - 4%) = bp" ¢ p.(3b—4a)  (3.18)

Finally, we have the two equations:

4b ”
A2 = ’; ¢ = dap (3.19)
B"C' = p”.(3b — 4a) (3.20)

I. Case p” is prime:

From @ , p7|A?™ = p”|A™ = p”|A. From , p”|B™ or p”|C. If p”|B" =
p’|B, as C' = A™ + B" = p”|C! = p”|C. If p”|C! = p”|C, as B" = C' — A™ =
pw'Bn = p”|B.

Then A,B and C solutions of (2.2) have a common factor.

I1. Case p” is not prime:
Let A one prime divisor of p”. From (3.19)), we have :

AAZ™ = A\|[A™ as\is prime then \|A (3.21)
From (3.20), as A|p” we have:
AB"C' = A\|B" or \|C" (3.22)

If A\|B™, X is prime A|B, and as C' = A™ + B™ then we have also :
A C!  as\is prime, then \|C (3.23)
By the same way, if A|C!, we obtain \|B.
Then: A, B and C solutions of have a common factor.
Let us verify the condition given by:
b < 4a < 3b

In our case, the last equation becomes:

p<3A%™ <3p with p= A*™ 4+ B?" 4+ A™B" (3.24)
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The condition 34%™ < 3p = A?™ < p is verified.
If :
p < 3A%M — 24?™ — A™B" — B?" > ()

We put Q(Y) = 2Y?2 — B"Y — B?", the roots of Q(Y) = 0 are Y} = —BTn and
Yo=B". Q(Y)>0forY <Y, and Y > Y, = B™. In our case, we take Y = A™.
As A™ > B™ then p < 3A?™ is verified. Then the condition b < 4a < 3b is true.

In the following of the paper, we verify easily that the condition b < 4a < 3b implies
to verify A™ > B™ which is true.

3.2.1.4. Case b=3 and 3|p : As 3|p = p = 3p’ and we write :

4p 0 4pa 4x3p'a 4pa
A2m _ 27 _ i — = 3.25
3 cos 3 30 3 3 3 ( )

0
As A?™ is an integer and that @ and b are coprime and cos?~ can not be one in

reference to the equation (2.34), then we have necessary 3|p’ = p’ = 3p” with
p” # 1,if not p = 3p’ = 3x3p” = 9 but p = A>™+B?" + A™B" > 9, the hypothesis
p” =1 is impossible, then p” > 1. hence:

_4p'a 4 x3pTa

A2m = 4p” 3.26
3 3 p’a (3.26)
0 ”(9—4
Bt =2 (3 4c0s?2 ) =/ (3 - 49) _ 3O =4a) 9 sa) (327)
3 3 b 3
ASl<00829 a a<323<4a<92a 2asa>1. a =2, we obtain
— —_— - = - —_ = . = Wi .
4 3 b 3 4 ’
49’ 4 x 3p”
A2m — Z;)CL — =X 9P a 3p a_ 4p”a = 8p” (3.28)
npd _ P B QQ i 40 _ 3p"(9 —4a)
B"C —3(3 4cos 3>—p (3 4b)_73 =p (3.29)

The two last equations give that p” is not prime. Then we use the same methodology
described above for the case 3.2.1.3., and we have : A,B and C solutions of (2.2))
have a common factor.

3.2.1.5. Case 3jpand b=p: We have:

20 a a
cos“ s = - = —

3 b p

and : A s 4 A
m P, a a
AP = —cosPs = .~ = — 3.30
3373573 (3.30)
As A?™ is an integer, this implies that 3|a, but 3|p = 3|b. As a and b are coprime,
hence the contradiction. Then the case 3|p and b = p is impossible.
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3.2.1.6. Case 3jpand b=4p: 3|p = p = 3p’, p’ # 1 because 3 < p, hence
b=4p=12p'.

4p 0 4pa a
AP = Zeps?s = - = =3 3.31
33730 3 la (3:31)
because A?™ is an integer. But 3|p = 3| [(4p) = b], that is in contradiction with
the hypothesis a, b are coprime. Then the case b = 4p is impossible.

3.21.7. Case 3lpand b=2p: 3|p = p = 3p/, p’ # 1 because 3 < p, hence
b=2p=06p.

4p 0 4dpa 2a
A2m:— 2—:——: _— . 2
3053 =3} 3:>3\a (3.32)

because A*™ is an integer. But 3|p = 3|(2p) = 3|b, that is in contradiction
with the hypothesis a, b are coprime. Then the case b = 2p is impossible.

3.2.1.8. Case 3|p and b # 3 is a divisor of p : We have b = p’ # 3, and p is writ-

ten as:
p=kp with 3|k = k= 3K (3.33)
and : 4 0 4 4 x 3.k'p
Y P A A 4 34
305" 3 37 3 7 (3.34)
We calculate B"C":
Yall p 29 / /
B"C' = 3 3 —4cos 3)= k' (3p" — 4a) (3.35)

I. Case k' # 1:
We suppose k' # 1, we use the same methodology described for the case 3.1.2.3.,
and we obtain: A, B and C solutions of ([2.2]) have a common factor.

II. Case k' = 1:
We have k' =1 = p = 3b, then we have:
A?™ = 4q = a is even (3.36)
and :
6
A"B" = Q\fcosf f( smf - 0033> = % ng - 2a (3.37)
let:
2
A2m 4 2AM BT = p?:[ ng = 2b\[sm— (3.38)

20
The left member of (3.38]) is an integer and b also, then 2\/552‘71? can be written

in the form:

2
2v/3sin 0 :1 (3.39)
2

where ki, ko are two coprime integers and k2|b — b= ko.ks3.

I1.1. Case k3 # 1:
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We suppose k3 # 1. Hence:
AP L 2A™ BT = kg ky (3.40)

Let p is an prime integer such that u|ks. If 4 = 2 = 2|b, but 2|a that is contradiction
with a,b coprime. We suppose u # 2 and pulks, then:

| p|A™(A™ 4+ 2B") = pA™ or p|(A™ + 2B")] (3.41)

IL.1.1. Case pu|A™:
If ulA™ = p|A?™ = plda = pla. As plks = p|b and that a,b are coprime
hence the contradiction.

II.1.2. Case p|(A™ +2B™):
If u|[(A™ +2B") = p 1 A™ and p t 2B"™ then p # 2 and pt B™. p|(A™ + 2B"™),
we can write:

A™+2B" = put' t €N (3.42)
It follows:

A™ 4 B" = ut' — B" = A*™ 4 B* 4 2A™B" = 1*t"* — 2t'uB"™ + B*"
Using the expression of p, we obtain:
p=1t?u? —2t'B"u+ B"(B" — A™) (3.43)
As p = 3b = 3ka.k3 and plks hence ulp = p = pp’, so we have :
w' = p(ut’® —2t'B™) + B"(B™ — A™) (3.44)

then:

’u|B"(B” — A™) = u|B™ or u|(B™ — A™) ‘ (3.45)

11.1.2.1. Case pu|B™:
If u|B™ = p|B which is in contradiction with case I1.1.2. above.

I1.1.2.2. Case pu|(B™ — A™):
If p|(B™ — A™) and using u|(A™ + 2B"™), we obtain:

38" (3.46)

11.1.2.2.1. Case u|B™:
If u|B™, using the result above of I1.1.2.1. of this paragraph, it is impossible.

11.1.2.2.2. Case p = 3:
If u =3 = 3lks = ks = 3ki, and we have b = koks = 3kok%, it follows
p = 3b = 9kok} then 9|p, but p = (A™ — B")2 + 3A™B" then :

Ykokl — 3A™B™ = (A™ — B")?

we write it as :

3(3kokly — A™B") = (A™ — B")? (3.47)
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hence :

| 3|(3koky — A™B") = 3|A™B" — 3|A™ or 3B" | (3.48)

I1.1.2.2.2.1. Case 3|A™:
If 3]JA™ = 3|A and we have also 3|A?™ but A*™ = 4a = 3|4a = 3|a. As
b = 3kok% then 3|b, but a,b are coprime hence the contradiction. Then 3t A.

I1.1.2.2.2.2. Case 3|B™:
If 3| B" = 3|B, but the (3.47) gives 3|(A™ — B")? = 3|(A™ — B") = 3|A™ —
3|(A?™ = 4a) = 3|a. As 3|b then the contradiction with a, b coprime.

Then the hypothesis k3 # 1 is impossible.

III. Case k3 = 1:
Now we suppose that k3 =1 = b = k9 and p = 3b = 3k2. We have then:

20k
2\/§sin§ = ?1 (3.49)

with k1,b coprime. We write (3.49)) as :

0 % kq
4 1 — - = =
\/gSZTL 3 CcoS 3 b

0
Taking the square of the two members and replacing cosQ§ by %, we obtain:

3x4%a(b—a)=k? (3.50)

which implies that :

]3\a or 3|(b—a)\ (3.51)

II1.1. Case 3|a:

If 3|a, as A?™ = 4a = 3|A?™ = 3|A and 3|a. But p = (A™ — B")? + 34A™B"
and that 3|p = 3|(A™ — B")? = 3|(A™ — B"). But 3|4 hence 3|B" = 3|B, as
m > 3 = 3?|p, it follows 3|b then the contradiction with a,b coprime.

II1.2. Case 3|(b— a):
Considering now that 3|(b — a). As k; = A™(A™ + 2B™) by the equation (3.40)
and that 3|ky = 3|A™(A™ 4 2B") = |3|A™ or 3|(A™ +2B") |

II1.2.1. Case 3|A™:
If 3|]A™ = 3|A = 3|A?™ then 3|4a = 3|a. But 3|(b — a) = 3|b hence the
contradiction with a,b are coprime.

II1.2.2. Case 3|(A™ +2B"):
If:
3|(A™ 4 2B") = 3|(A™ — B") (3.52)

But p = A2™ + B2 4 A™B" = (A™ — B")? + 3A™B" then p — 3A™B" = (A™ —
B™)? = 9|(p— 3A™B") or 9|(3b — 3A™B"), then 3|(b — A™B™) but 3|(b —a) =
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3l(a — A™B™). As A?™ = 4q = (A™)? = Ja’ € N* and a = a’? = A™ = 2d.
We arrive to:

| 3(a” —2a'B") = 3la/(a’ —2B") = 3la’ or 3|(a' —2B")] (3.53)

II1.2.2.1. Case 3|a’:
If 3|a’ = 3|a’® = 3|a, but 3|(b—a) = 3|b, then the contradiction with a, b coprime.

II1.2.2.2. Case 3|(a’ —2B"):
Now if 3|(a’ —2B™) = 3|(2¢’ —4B™) = 3|(A™ —4B") = 3|(A™— B"), we refind the
case II1.2.2., equation (3.52)), that has a solution given by the case 2.2.1. above.

Then, the study of the case 3.2.1.8. is finished.

3.2.1.9 Case 3|p and b|4p: As 3|p = p = 3p’ and bldp = Tk, € N* and 4p =
12p/ = klb

I. Case ky = 1:

If k;, = 1, then b = 12p', (p’ # 1 if not p = 3 <« A?™ + B?" + A™B"). But
4 6 129 4p’.

A?m = §.0052§ = 3p % = 1];; = % = 3|a because A*™ is an integer, then the

contradiction with a,b coprime.

II. Case k; = 3:

4 .
If k; = 3, then b = 4p’ and A?™ = 5 cos' g = ne_
Let us calculate A™B™:

" n 0 3 . 20 a
A™B 2[0057 f( smf — cos 3) = Ts 33 (3.54)
Let:
A2 g Am B — 21’[ ? oy 351’7% (3.55)

20
The left member of the equation (3.55)) is an integer and also p’, then 2\/58’”13

can be written as :

20k
2V3sin=- = =2 (3.56)
3 ks

where ko, k3 are two coprime integers and:
kslp' = Fky e N* and p' = ks.kg (3.57)

I1.1. Case k4 # 1:
We suppose that k4 # 1, then:

AP L 2AM B = ky ky (3.58)

Let p one prime integer with:
1|k (3.59)

Then :

U] AT (A™ 4 2B") = p[A™ or  p|(A™ +2B")] (3.60)
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II.1.1. Case u|A™:
If p|A™ = p|A?™ = pla. As ulky = plp’ = p|(4p’ = b). But a,b are coprime
then the contradiction.

I1.1.2. Case p|(A™ +2B"):
If u|(A™+2B™) = 1 A™ and p t 2B™ then p # 2 and p 1 B™. p|(A™ + 2B"),
we can write:

A™+2B" = pt’ t e N (3.61)

It follows:
A™ 4 B" = ut' — B" = A*™ 4 B> 4 2A™B" = i*t"* — 2t'uB" + B*"
Using the expression of p, we obtain:
p=t?p* —2¢/B"u+ B"(B" — A™) (3.62)

As p=3p" and ulp’ = u|(3p") = p|p, we can write :3p’ € N* and p = pp/, then we
obtain :
= p(ut’ — 2t/ B™) + B"(B™ — A™) (3.63)

and:

| u|B(B" — A™) = pB"  or  p|(B" — A™)] (3.64)

1I.1.2.1. Case u|B™:
If 4|B™ = p|B which is in contradiction with the case IL.1.2. above.

I1.1.2.2. Case p|(B™ — A™):
If p|(B™ — A™) and using u|(A™ + 2B"™), we obtain:

3B (3.65)
11.1.2.2.1. Case pu|B™:

If u|B™ it is impossible, see the case I1.1.2.1. above.

11.1.2.2.2 Case p = 3:
If w =3 = 3lky = kg = 3k}, and we obtain p’ = ksks = 3kzk), it follows
p = 3p’ = 9ksk) then 9|p, but p = (A™ — B")? + 3A™B", then:

9k4k:r) —3A™MB"™ = (Am _ Bn)Z

that we write :
3(3kskt — A™B") = (A™ — B™)? (3.66)

then 3|(3kyk} — A™B") = 3|A™B" = [3]A™ or 3|B"|

I1.1.2.2.2.1. Case 3|A™:
If 3|A™ = 3|A?™ = 3|a, but 3|p’ = 3|(4p’) = 3|b, then the contradiction with
a,b coprime. Then 31 A.

11.1.2.2.2.2. Case 3|B":
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If 3|B™ and using (3.61)), we have A™ = ut’ — 2B™ = 3t' — 2B" = 3|A™ =
3|A?™ = 3a, but 3|p’ = 3|(4p’) = 3|b, then the contradiction with a,b coprime.

Then the hypothesis k4 # 1 is impossible.

I1.2. Case k4 = 1:

We suppose that :> p' = ksky = k3. Then we obtain:

20k
2\/§sin§ = p% (3.67)
with ko, p’ coprime, we write (3.67)) as :
0 0 k
4\/§sin§cosg = i
. . 20 a ,
Taking the square of the two members and replacing cos 3 by 3 and b = 4p’, we
obtain:
3.a(b—a) = k3 (3.68)
that implies:
8la or 3[(b-0a)] (3.69)

I1.2.1. Case 3|a:

If 3la = 3|A*™ = 3|4, as p = (A™ — B")? + 3A™B" and that 3|p = 3|(4A™ —
B")? = 9|(A™ — B")2. But (A™ — B")? = p — 3A™B" = 3b — 3A"B" —>
3|(b— A™B™). As 3|A™ = 3|b = the contradiction with a,b coprime.

I1.2.2. Case 3|(b—a):
We consider that 3|(b —a). As ks = A™(A™ + 2B™) given by the equation (3.58))
and that 3|ky = 3|A™(A™ 4 2B") = [3[A™ or 3|(A™ +2B")|

I1.2.2.1. Case 3|A™:
If 3|A™ = 3|A?™ = 3|a, but 3|(b — a) = 3|b then the contradiction with a,b
coprime.

II.2.2.2. Case 3|(A™ + 2B"):
If:

3|(A™ + 2B™) = 3|(A™ — B") (3.70)
but p = A2 4 B2 4+ AmMB" = (A™ — B")2 4 3A™B" then p — 3A™B" =
(Am — B")?2 = 9|(p — 3A™B") or 9|(3p’ — 3A™B"), then 3|(p' — A™B") =
34(p' — 4A™B™) = 3|(b— 4A™B™) but 3|(b— a) = 3|(a — A™B"). As 3|(A%™ —
4A7rLBn) = ’ 3|A'rn(Am _ 4Bn)

I1.2.2.2.1. Case 3|A™:
If 3|A™ = 3|A?™ = 3|a, but 3|(b — a) = 3|b then the contradiction with a,b
coprime.

I1.2.2.2.2. Case 3|(A™ — 4B"):
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Now if 3|(A™ — 4B™) = 3|(A™ — B™), we refind the hypothesis of the beginning
(13.70) above, that has a solution I1.2.2.2.1..

III1. Case k; # 3 and 3|k;:
We suppose k1 # 3 and 3|k; = k1 = 3k'1 with &} # 1. We have 4p = 12p" = k1b =
3kib = 4p’ = kib. A®™ can be written as :

dp L0 3Kba
A2 = 360823 = 31 E = k;a (371)
and B"C":
AN
BC! = ]gj <3 - 400523> = =L(3b—4a) (3.72)

As B"C! is an integer, we must have ’ 4)(3b —4a) or 4|k}

II1.1. Case 4/|(3b — 4a):

b—4
We suppose that 4|(3b — 4a) = 5 1 Y-ce N*, and we obtain:
AP =Ka
B"C' = ke

II1.1.1. Case k] is prime:
If k} is prime, then kf|A*™ = k}|A and k{|B"C! = k}|B" or k;|C'. If ky|B" =
k|| B, then k;|C' = K;|C. With the same method if k}|C!, we arrive to k}|B.

We obtain: A,B and C solutions of (2.2)) have a common factor.

II1.1.2. Case k] not a prime:
We suppose kf not a prime. Let p a prime divisor of k{, as described in ITI.1.1.
above, we obtain : A,B and C solutions of (2.2)) have a common factor.

II1.2. Case 4|k}:
Now, we suppose that 4|k].

II1.2.1. Case k} = 4:
We suppose &k} = 4, then A?™ = 4a and B"C' = 4c, It is easy to verify that 2 is a
common factor of A, B,C.

We obtain: A,B and C solutions of (2.2)) have a common factor.

II1.2.2. Case k} = 4k”y:
If ki = 4k”; with k”; > 1. Then, we have:

AP = 4k a (3.73)
B"C' = k”1(3b — 4a) (3.74)
I11.2.2.1. Case k”; prime:
If k7 is prime, then k”;|A*™ = k”1|A and k”,|B"C' = k”1|B™ or k",|C". If
k”1|B™ = k”1|B, then k”1|C' = k”;|C. With the same method if k”;|C", we ar-
rive to k”1|B.
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We obtain: A,B and C solutions of (2.2)) have a common factor.

I11.2.2.2. Case k”; not a prime:

If k71 not a prime. Let u a prime divisor of k”1, as described in case II1.2.2.1.

above, we obtain : A,B and C solutions of (2.2) have a common factor.

3.2.2 Hypothesis : {3|a and bl4p}
We have :

3la = 3a' e N* / a =3d

3.2.2.1. Case b =2 and 3|a : A?*™ is written as :

4p 0 4pa 4dpa 2.p.a
AP = Lo - = 2 - = 2 =
33730 327 3
Using the equation (3.75)), A>™ becomes:
2.p.3a
Azm = 2P 3a = 2.p.d’
3
0 3a’
But 00525 = % = 7(1 > 1 which is impossible, then b # 2.
3.2.2.2. Case b =4 and 3|a : A?™ is written as :
AP = 4%]900529 = 47279 = 4—‘@3 e p-3a’ =Dp.a
3 3 3 b 3 4 3 3
2
0 a 3.d V3 3
d == — ] == <1
and cos b 4<(2) 4:>a<
which is impossible.
Then the case b = 4 is impossible.
3.2.2.3. Case b=p and 3|a : Then:
cosQQ _a_3d
3 b p

and:

4 0 4p 3d

AP — gp.coszg = gpi =4a’ = (A™)?
p

Ja” € N* / a/ — a772

We calculate A™B™, hence:

or A™B" 4 2d = p.?sin%ﬁ)

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)
(3.82)

(3.83)
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20
The left member of (3.83) is an integer and p is also, then 2?51’71? will be written

as
V3 20 K

2 %ginT = 1 84

3 i3 s (3.84)

where ki, ko are two coprime integers and ko|p = p = b = ko.k3, k3 € N*.

I. Case k3 # 1:
We suppose that k3 # 1. We obtain :

A™(A™ + 2B") = ky ks (3.85)

Let us p a prime integer with u|ks, then plb and u|A™(A™ + 2B™). Hence:

]u|Am or /J\(A”"“&-QB")‘ (3.86)

I.1. Case p|A™:
If u|A™ = p|A and p|A?™, but A?™ = 4a’ = plda’ = (u = 2 but 2|a’) or ula’.
Then pla hence the contradiction with a,b coprime.

1.2. Case u|(A™ + 2B"™):
If pu|(A™ +2B™) = p t A™ and p t 2B™ then u # 2 and p { B™. We write
w|(A™ + 2B™) as:

A™+2B" = put' t €N (3.87)

It follows:
A™ 4 B" = ut' — B" = A*™ 4 B> 4 2A™B" = i*t"* — 2t'uB"™ + B*"
Using the expression of p:
p=t?u? —2'B"u+ B"(B" — A™) (3.88)
Since p = b = ko.ks and plks then p|b = I’ € N* and b = pyp/, so we can write:

W= p(ut — 2t B™) + B"(B" — A™) (3.89)

From the last equation, we get u|B"(B™ — A™) = ’ u|B™ or p|(B™—A™) ‘

1.2.1. Case pu|B™:
If 4| B™ which is contradiction with p{ B™.

1.2.2. Case u|(B™ — A™):
If p|(B™ — A™) and using p|(A™ + 2B™), we arrive to:

wl3B" = ¢ or (3.90)

1.2.2.1. Case u|B™:

If u|B™ which is contradiction with p{ B from I1.2. Case p|(A™ + 2B™).



3 Proof of the Main Theorem 20

1.2.2.2. Case p = 3:
If 4 = 3, then b = 3y, but 3|a then the contradiction with a,b coprime.

II. Case k3 = 1:
We assume now k3 = 1. Hence:

AP 4 2A™ B = ky (3.91)
b= ko (3.92)

2 20k
fsmg = ?1 (3.93)

Taking the square of the last equation, we obtain:

4 20 k3
—sin? = = L

3 3 B2

Finally:
4%d (p —a) = k? (3.94)

but @’ = a”? then p — a is a square. Let us:
N=p-—a (3.95)
The equation becomes:
4207\ = ki = ky = 4a”\ (3.96)
taking the positive square root. Using , we get :
k1 = 4a”\ (3.97)
But ky = A™(A™ + 2B™) = 2a”(A™ + 2B"), it follows:
A™ +2B™ =2\ (3.98)

Let \; prime # 2, a divisor of A (if not, \; = 2|\ = 2|A\? = 2|(p — a) but a is
even, then 2|p => 2|b which is contradiction with a,b coprime).

We consider \; # 2 and :

MIA = M|N\? and M\ |(A™ +2B") (3.99)
M[(A™ 4 2B") = A\ t A™  if not A\[2B" (3.100)

But A1 # 2 hence A\{|B™ = \{|B, it follows:
Ml(p=10) and X\|A™ = \1]2a” = Ai]a (3.101)

hence the contradiction with a, b coprime.
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II.1. Case A\; 1t A™ and A\{|(A™ + 2B"™):

We assume now A\; § A™. A\i|(A™ + 2B") = \1|(A™ + 2B™)? that is A\;|(A*™ +
4A™B"™ 4+ 4B?"), we write it as A|(p + 3A™B" + 3B?") = \{|(p + 3B"(A™ +
2B™) — 3B?"). But \{|(A™ + 2B") = \|(p — 3B?"), as \i|(p — a) hence by
difference, we obtain A1|(a — 3B?") or \|(3a’ — 3B*") = \{|3(a’ — B*"), Then:

M=3 or M@ — B (3.102)

II.1.1. Case A\ = 3:
If Ay = 3 but 3|a, as Ai|(p — a) = 3|(p = b) hence the contradiction with a,b
coprime.

I1.1.2. Case )\|(a’ — B*"):

If \i|(a’ — B?") = \|(a”? — B?") = ’ A1|(a” — B™)(a” + B™) | = A\|(a” 4+ B™)
or A\1|(a” — B™), because (a” — B™) # 1, if not, we obtain a”? — B*" = a” 4+ B" =
a”? —qa” = B" — B?". The left member is positive and the right member is negative,
then the contradiction.

I1.1.2.1. Case A\|(a” — B"):
If \i|(a” — B™) = M\|2(a” — B™) = \|(A™ — 2B™) but \|(A™ + 2B™) hence
A12A™ = A\1|A™ as A # 2, it follows \1|A™ hence the contradiction with ((3.100)).

I1.1.2.2. Case \{|(a” + B"™):
If M|(a” + B") = M [2(a” + B") = Ay|(2a” + 2B™) = Ay|(A™ + 2B"). We find

the case I1.1. that has solutions.

Then the case ks = 1 is impossible.

3.22.4. Caseblp= p=bp,p>1,b#2,b#4 and 3|a :

=" —49d (3.103)
We calculate B"C":

B"C! = 3/ p? (35zn2§ — 00329) = v/p? (3 — 40082§> (3.104)

3

) 0 .a'

But v/p? = B, hence using cos®— = 3a.

3 3 b
0 3.a’ 4.a/
B"C' = {/p? (3 - 460523) = g <3 —4 ba > =p. (1 - b“ > =/ (b— 4d')
(3.105)
As p=0bp', and p’ > 1, we have then:

B"C' = p/(b—4d) (3.106)
and A*™ =49 .d (3.107)

I. Case )\ a prime divisor of p’:
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Let A\ a prime divisor of p’ (we suppose p’ not prime ). From (3.107)), we have:

A A?™ = A\|A™ as\is a prime, then A (3.108)
From (3.106)), as A|p’ we have:
AB"C' = \|B" or A\|C! (3.109)

If A\|B™, ) is a prime \|B, but C' = A™ + B"™, then we have also :
A|C! as \is a prime, then A|C (3.110)

By the same way, if \|C!, we obtain A|B. then : A, B and C solutions of (2.2 have
a common factor.

II. Case p’ is a prime number:
We suppose now that p’ is prime, from the equations (3.106)) and ([3.107)), we obtain
that:

p|AZ" = p/|A™ = p/|A (3.111)
and:
p'|B"C! = p/'|B™ or p/|C! (3.112)
If p'|B™=9p'|B (3.113)
As C'=A™+ B" and that p'|A,p'|B = p/|A™,p'|B" = p/|C!
= p|C (3.114)

By the same way, if p’|C!, we arrive to p'|B.
Hence: A ,B and C solutions of (2.2)) have a common factor.

3.2.2.5. Case b =2p and 3|a : We have:

0 3a’ 4p. 4p 3a’
LN N N W P
3 b 2p 3b 3 2p

Then 2|a and 2|b which is contradiction with a,b coprime.

3.2.2.6. Case b =4p and 3|a : We have :

20 a  3d om _ 4p.a 4p 3d'
cos°— = - = — == =—.
3 b 4p 3b 3 4p
Calculate A™B™, we obtain:

!/
AMB" = p—\g/g.si 202,520 = p—\/g.sinzo a4

n— — —cos - — =
3 373773 32
Azm 3 .20
A"B" 4 o = ]%.smg (3.115)
let:
2 20
A2™ 4 2AM BT = pT‘/gsmg (3.116)
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2v/3 . 20
The left member of (3.116) is an integer and p is an integer, then T\[smg will
be written: /3
2v3 20 Kk
—sin— = — 3.117
3 sin 3 T ( )
where ki, ko are two coprime integers and kqo|p = p = ko .ks.
I. Case k3 # 1:
Firstly, we suppose that k3 # 1. Hence:
AP L 2A™ B = k3. ky (3.118)

Let 44 a prime integer and p|ks, then u|A™(A™+2B") = ’ wA™  or  p|(A™ +2B™) ‘

I.1. Case u|A™:
If p|A™ = u|(A?™ = d’) = p|(3a’ = a). As plks = plp = u|(4p = b). Then the
contradiction with a, b coprime.

1.2. Case u|(A™ + 2B"):
If u|(A™ +2B") = put A™ and p 1 2B™ then:

w#2 and ptB" (3.119)
u|(A™ +2B™), we write:
A™+2B" = pt’ t € N (3.120)
Then :
A™ 4 B" = ut' — B" = A*™ 4 B> 4 2A™B" = i*t"* — 2t'uB"™ + B*"
= p=t?u? - 2t'B"u+ B"(B" — A™) (3.121)
As b =4p = 4ky k3 and plks then p|b = Jp’ € N* that b = pp’, we obtain:

W = p(4pt’ — 8t'B™) + 4B™(B™ — A™) (3.122)

The last equation implies p|4B™(B™—A™), but u # 2 then’ p|B™ or p|(B™— A™) ‘

1.2.1. Case u|B":
If 4| B™ then the contradiction with (3.119).

1.2.2. Case u|(B™ — A™):
If p|(B™ — A™) and using p|(A™ + 2B™), we obtain:

’M|3B” — u|B" or pu=3 (3.123)

1.2.2.1. Case u|B™:
If 4|B™ it is contradiction with ((3.119)).

1.2.2.2. Case pu=3:
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If 4 = 3, then b = 3y, but 3|a which is contradiction with a,b coprime.

II. Case k3 = 1:
We assume now k3 = 1. Hence:

A2m + 2AMB" — kl

p= ks
2B %k
3 sm3 _p

Taking the square of the last equation, we obtain:

Finally:
a'(4p — 3a’) = k?

but @’ = a”? then 4p — 3¢’ is a square. Let us:
N=4p—3d =4p—a=b—a
The equation becomes:
a”?\ =k =k =a’\
taking the positive square root. Using , we get :
kr=a’\
But ky = A™(A™ 4+ 2B™) = a”(A™ + 2B"), it follows:

(A™ 4+ 2B™) = A

(3.124)
(3.125)

(3.126)

(3.127)

(3.128)

(3.129)

(3.130)

(3.131)

Let A\; prime # 2, a divisor of A (if not Ay = 2|\ = 2|A%. As 2|(b = 4p) = 2|(a =

3a’) which is contradiction with a,b coprime).

We consider A; # 2 and :

AN = A |(A™ + 2B™)

But A1 # 2 hence A\;|B™ = \{|B, it follows:
Al(b=4p) and M|A™ = A\|2¢" = Aila

hence the contradiction with a, b coprime.

(3.132)
(3.133)

(3.134)
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II.1. Case A1 f A™, \; 1 B" and \|(A™ + 2B™):

We assume now Ay f A™, Ay § B \|(A™ + 2B") = A\ |(A™ + 2B")? that is
A1|(A%™ 4+ 4A™B™ + 4B%"), we write it as A|(p + 3A™B™ + 3B?") = \|(p +
3B"(A™ + 2B™) — 3B?"). But \i[(A™ + 2B") = \{|(p — 3B?"), as \1|(4p — a)
hence by difference, we obtain A1|(a — 3(B?" + p)) or A\|(3a’ — 3(B*" + p)) =

Mf3(a’ — B2 —p) = [\ =3 or M|(a’ — (B +p))|

II.1.1. Case A\ = 3:
If Ay = 3|]A = 3|]A\? = 3|b — a but 3la = 3|(p = b) hence the contradiction with
a,b coprime.

I1.1.2. Case )\|(a’ — (B®" +p)):
If A # 3 and Aj|(a/ — B2 — p) = Ai|(A™B" + B®) = A, |B"(A™ 1 2B") —
(M[B" or M[(A™ +2B7) |

I1.1.2.1. Case \|B™:
If A1|B™ that is in contradiction with the hypothesis A\; { B cited above case II.1.

I1.1.2.2. Case A\|(A™ +2B"):
If \1|(A™ + 2B™). We refind this condition in the case IL.1.

Then the case k3 = 1 is impossible.

3.22.7. Case 3laand b=2p' b#A2 withp'|[p: 3la = a = 3d/, b = 2p’ with
p = k.p’, hence:

4.k.p'.3.a'

42m 4.p
6p’

=2.k.d (3.135)

a_
5=
Calculate B*C":

B"C' = {/p? <3sm2§ - 00329) = /p? (3 - 4cos2§> (3.136)

3

3.a"
;o

But /p? = g hence en using coszg =

, 0 D 3.a' 4.a/
noil = 3 2 — 2— = — — = — = - /
B"C'=/p (3 4cos 3) 5 (3 4 5 ) p. (1 5 > k(p' — 2a’)

(3.137)

Asp=10.p, and p’ > 1, we have then:
B"C' = k(p' —2d’) (3.138)
and A?™ = 2k.d’ (3.139)

I. Case )\ is a prime divisor of k:
We suppose that A is a prime divisor of k (we suppose k not a prime ). From

(13.139)), we have:
A A?™ = \|A™ as\is prime then \|A (3.140)
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From , as Ak, we have:
AB"C! = \|B" or \C! (3.141)
If \|B™, X is prime \|B, and as C' = A™ + B™ then we have also:
MC! as\is prime then \|C (3.142)

By the same way, if A|C!, we obtain A|B. Then : A, B and C solutions of (2.2)

have a common factor.

I1. Case k is prime:
Now, we suppose now that k is prime, from the equations (3.138)) and (3.139)), we
obtain:

k|A2™ = E|A™ = k|A (3.143)
and:
k|B"C' = k|B™ or k|C! (3.144)
if k|B™=k|B (3.145)
as Cl=A™+4 B™ and that k|A,k|B = k|A™, k|B" = k|C!
= k|C (3.146)

By the same way, if k|C', we arrive to k|B.

Hence: A ,B and C solutions of (2.2)) have a common factor.

3.2.28. Case 3laand b=4p' b£A2 with p'|[p: 3|la = a = 3d/, b = 4p’ with
p=kp', k#1,if not, b = 4p a case that has been studied (paragraph 3.2.2.6),
then we have :

4p a 4.kp.3.d
A= 2 = PR kel .14
3D 129/ ¢ (3.147)

Writing B"C':

B"C! = 3/p? (3szn2§ — 00522) = /p? (3 — 40052§> (3.148)

0 3.4
But /p? = g, hence en using 0032§ = ba :
0 3.a 4.a'
B"C' = {/p? (3—400323> = g (3—4 : ) =p. (1— ; ) =k(p' —d)
(3.149)
Asp=0bp, and p’ > 1, we have:
B"C' = k(p' — 2d’) (3.150)
and A?™ = 2k.d’ (3.151)

I. Case )\ a prime divisor of k:
Let A a prime divisor of k (we suppose k not a prime). From (3.151)), we have:

AAP™ = A\|A™ as\is prime then \|A (3.152)
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From ([3.150)), as Alk we obtain:

B C! = \B" or AC!] (3.153)

1.1 Case A|B™ or A|C™:

If \|B", X is a prime, then A\|B, and as A|A = A|(A™ + B" = C') = \|C. By
the same way if A|C!, we obtain A|B. Then : A, B and C solutions of have a
common factor.

I1. Case k is prime:
We suppose now that & is prime, from the equations (3.150) and (3.151]), we have:

E|A™ = k|A™ = k|A (3.154)
and:
k|B"C' = k|B" or k|C" (3.155)
if k|B"= kB (3.156)
as Cl= A™ 4+ B" and that k|A, k|B = k|A™, k|B™ = k|C"
= k|C (3.157)

By the same way if k|C!, we arrive to k| B.

Hence: A ,B and C solutions of (2.2)) have a common factor.

3.2.2.9. Case 3|a and b|4p: a = 3a’ and 4p = kb with k; € N*. As A?™ =
dp 20 _ 4p3d

J0S g = = k1a’ and B*Ct:
!
B"C' = 3/p? (382’7122 — 0032§> = g (3 — 40082§> = g (3 — 432> = %(b—4a’)
(3.158)

As B"C' is an integer, we must have ’ 4dlky  or 4|(b—4d)|
I. Case k; = 1:

If ky = 1= b=4p: it is the case (3.2.2.6) above.

I1. Case ki = 4:
If ki =4 = p=": it is the case (3.2.2.3) above.

II1. Case 4|k;:
We suppose that 4|k; with k1 > 4 = ky = 4k, then we have:

AP = 4kld
B"C' = K (b—4d)

By discussing k] is a prime integer or not, we arrive easily to: A ,B and C' solutions
of (2.2)) have a common factor.

II1.1. Case 41 (b —4d’) and 41 k}:
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If 44 (b—4d') and 4 1 k] it is impossible.

II1.2. Case 4|(b—4d’):
If 4|/(b — 4a’) = (b — 4a’) = 4c, with ¢ € N*, then we obtain:

A2m _ kla'
B”Cl = klc

By discussing k7 is a prime integer or not, we arrive easily to: A ,B and C solutions
of (2.2) have a common factor.

O
The main theorem is proved.
4 Numerical Examples
4.1 Example 1:
We consider the example:
6%+ 3% =3° (4.1)

with A™ = 63, B® = 3% and C! = 3°. With the notations used in the paper, we
obtain:

p=35x73, (4.2)
g=8x 3117 (43)
A =4x3"(3% x 42 —73%) <0, (4.4)
8
p:p\/ﬁ:3 ><73\/ﬁ7 (4.5)
33 3
3
cost = —M (4.6)
7373
dp 9 347  3x2' q
As A2m — ZE 27 27 _ — = = =3x2* b=1713:
ths 3 cos 3 —> cos 3 1 = b = a X 2%, ;
en
0 43
coS— = — 4.7
3= 75 (4.7)
p= 35y (4'8)

Let us verify the equation (4.6 using the equation (4.7)):

3 3
cost = cos3(0/3) = dcos® S — 3cost = 4 <4¢§> VB 4x3x V8
3 VT3 V73 73v/73

3
That’s OK. For this example, we can use the two conditions of (3.10]) as 3|p,b|4p
and 3|a. The cases 3.2.1.3 and 3.2.2.4 are respectively used. We find for both
cases that A™, B™ and C'! of the equation (4.1)) have a common prime factor which
is true.

(4.9)
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4.2 Example 2:

Let the second example:

7+ 73 =143 = 2401 + 343 = 2744 (4.10)
With the notations of the paper, we take:
A =174 (4.11)
B"=1° (4.12)
Ccl=14? (4.13)
We obtain:
p=57Tx75=3x19x 76 (4.14)
g=28xT710 (4.15)
A =27¢% — 4p® = 27 x 4 x T'8(16 x 49 — 19%)
=—27Tx4x7®x6075<0 (4.16)
_ P _ 9
p_37§_19><7 X /19 (4.17)
—q 4x7
cos) = — = — 4.18
2p 19v/19 (4.18)
m D 2 20 _ 347" 7 a 2
As A?™ = &, - - = = = - = b=4x19;
S 30053:0053 e %19 b:>a 7, x 19;
then
0 7
05— = —— 4.19
3 2V19 (4.19)
3lp and bl(4p) (4.20)
Let us verify the equation (4.18)) using the equation (4.19)):
0 0 7 \° 7 4x7
cost) = cos3(0/3) = 4cos® = — 3cos— =4 —— ] —3 =— 4.21
©/3) 3~ deosg (gm) 2o 1oy MY

It is the same value of (4.18)!

Now, from , we have 3|p = p = 3p/, b|(4p) with b # 2,4 then 12p' =
kib = 3 x 7%. It concerns the paragraph 3.2.1.9. of the first hypothesis. As
k1 = 3 x 75 = 3k} with k] = 7° # 1. Tt is the case III., with the two conditions:
4|(3b — 4a) or 4|k}. We take 4|(3b — 4a). Let us calculate 3b — 4a:

3b—4a=3x4x19—4x 7% =32 = 4/(3b— 4a) (4.22)

Then it is the sous-case ITI.1. with A?™ = 78 = 76 x 72 = k{.a with k] not a prime,
we find the sous-case I11.1.2 with the result that A, B and C have a common factor
namely the prime number 7 a divisor of k] = 75!.
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