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Abstract

In 1997, Andrew Beal [I] announced the following conjecture : Let A, B,C,m,n,
and | be positive integers with m,n,l > 2. If A™ + B" = C* then A, B, and C have
a common factor. We begin to construct the polynomial P(z) = (z — A™)(z —
B™)(x + C') = 23 — px + q with p, ¢ integers depending of A™, B" and C'. We
resolve 2% — pr + ¢ = 0 and we obtain the three roots x1, zs, 3 as functions of p, g
and a parameter #. Since A™, B™, —C'! are the only roots of 23 — pz + ¢ = 0, we
discuss the conditions that x,zo,x3 are integers. A numerical example is given.

Keywords: Prime numbers, divisibility, roots of polynomials of third degree.

O my Lord! Increase me further in knowledge.
(Holy Quran, Surah Ta Ha, 20:114.)

To my Wife Wahida

1 Introduction

In 1997, Andrew Beal [I] announced the following conjecture :

Conjecture 1.1. Let A, B,C,m,n, and l be positive integers with m,n,l > 2. If:
A™ 4 B" =" (1.1)
then A, B, and C' have a common factor.

In this paper, we give a complete proof of the Beal Conjecture. Our idea is to
construct a polynomial P(z) of three order having as roots A™, B® and —C! with
the condition . In the next section, we do some preliminaries calculus to give
the expressions of the three roots of P(z) = 0. The proof of the conjecture is
the subject of the section 3. At the end, a numerical example is presented.

We begin with the trivial case when A™ = B™. The equation (1.1)) becomes:

24™ = C! (1.2)
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then 2|C! = 2|C = Jc € N*/ C = 2, it follows 24A™ = 2/l = A™ = 2!~1cl,
As [ > 2, then 2|A™ = 2|A = 2|B™ = 2|B. The conjecture ({1.1)) is verified.

We suppose in the following that A™ > B™.

2 Preliminaries Calculs
Let m,n,l € N* >2and A, B,C € N* such:

A™+ B =(C! (2.1)
We call:

P(z) = (z — A™)(x — B")(z + C') = 23 — 22(A™ + B" — C)
+a[A™B" — C'(A™ + B")] + C' A" B" (2.2)

Using the equation (2.1)), P(x) can be written:

| P(x) = o +a[A"B" — (A" + B")?] + A" B"(A"™ + B") | (2.3)

We introduce the notations:

p=(A™+B")? - A™B" (2.4)
qg=A"B"(A™ 4+ B") (2.5)

As A™ # B™, we have :
p>(A™—B")? >0 (2.6)

Equation (2.3) becomes:
P(z) =2 —pxr +q (2.7)

Using the equation (2.2), P(z) = 0 has three different real roots : A™, B® and —C'.
Now, let us resolve the equation:

P(x)=2®—pr+q=0 (2.8)

To resolve ([2.8]) let:
rT=u+v (2.9)

Then P(x) = 0 gives:

P(z) = P(u+v) = (u+v)? —plut+v)+¢=0 = u*+0>+ (u+v)(Buv —p)+¢ =0

(2.10)

To determine u and v, we obtain the conditions:
u? +v* = —q (2.11)
uww =p/3 >0 (2.12)

Then 2 and v3 are solutions of the second ordre equation:

X2 4 gX +p*/27=0 (2.13)
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Its discriminant A is written as :
27 —4p® A

A=q*—4p3/27 = 5 =5

(2.14)

Let:
A =27¢° — 4p® = 27(A"B"(A™ + B"))? — 4[(A™ + B")* — A" B"]?
= 2TA*™B?™(A™ 4+ B™)? — 4[(A™ + B")? — A™B"]®  (2.15)

Noting :
a=A"B">0 (2.16)
B=(A™+ B™)? (2.17)
we can write (2.15)) as: -
A =270°8 —4(8 —a)? (2.18)

As a # 0, we can also rewrite (2.18)) as :

A=ad? (27§ —4 <§ - 1>3> (2.19)

We call ¢ the parameter :

s
- 2.2
b=~ (2:20)
A becomes : o
A = a3 (27t — 4(t — 1)) (2.21)
Let us calling :
y=y(t) =27t — 4(t — 1)3 (2.22)

Since a > 0, the sign of A is also the signe of y(t). Let us study the sign of y. We
obtain y’(t):
y'(t) =y =3(1+2t)(5—2t) (2.23)

y =0=1; = —1/2 and t2 = 5/2, then the table of variations of y is given below:

t ] 172 52 4 +c
1+2t - I_OI + ‘ +

52t + - o B

¥ - m + g

+ \ 54
MO) /

Fig. 1: The table of variation

The table of the variations of the function y shows that y < 0 for ¢ > 4. In
our case, we are interested for ¢ > 0. For ¢ = 4 we obtain y(4) = 0 and for
t €]0,4/= y > 0. As we have t = g > 4 because as A™ # B™:

(A™ -~ B")? > 0= = (A" + B")? > 4a = 4A™B" (2.24)
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Then y < 0 = A < 0= A < 0. Then, the equation 1) does not have real
solutions u? and v3. Let us find the solutions u and v with = u + v is a positive

or a negative real and u.v = p/3.

2.1 Demonstration
Proof. The solutions of (2.13) are:

—q+ivV—A
P A

—  —q—iVA
Xp=Xp= =

We may resolve:

W — —q+ivV—A
n 2

B "1 iV-A
2

Writing X; in the form: ‘
Xl _ pew

with:

_ VA _pyp
TTTY T T
Nay

and sin = —— >0
2p

cost) = _a <0
2p

Then 0 [27] €] + g, +[, let:

71-<9<-i- $7T<6<7T=>1< 6)<\/§
= T==-<-<—-=>=-<cos- < —
2 6 3 3 2 3 2
and
1 < 50 < 3
- <cos - < —
4 3 4
hence the expression of Xs: ‘
X2 :pe—ze
Let:
u=re?
71+Z'\/§ i2n
and j = 5 =e'3
) an 1+iv3

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)



2 Preliminaries Calculs 5

j is a complex cubic root of the unity <= j2 = 1. Then, the solutions u and v are:

up = ettt = \B/[jei% (2.39)

. P o+2m
Uy = ret¥? — \3/5]'6% = \3/‘5@Z 3 (2.40)
uz = re'¥s = \SijZGi% = \Sfpei%‘eﬂ'% = Weiegh (2.41)

and similarly:

v = re—1 = \3/56—1‘2 (2.42)
vy =re” V2 = \3/5]'2677;% = \3/567;4%677;% = %eih{a (2.43)
vy = re s = \?’/ﬁje_i% = W@ih{G (2.44)

We may now choose ux and vy so that ug 4+ vy will be real. In this case, we have
necessary :

V] = U1 (245)
Vo = Uz (2.46)
V3 = U3 (2.47)

We obtain as real solutions of the equation ([2.10):

0
T =u; +v = 2\3/ﬁcos§ >0 (2.48)
Tog = Uy + Vg = 2{/50039"'% =—Yp (cosg + \/gsing) <0 (2.49)
T3 = U3 +vg = 2\3/5605”% = p (—cosg + \/gsing) >0 (2.50)

We compare the expressions of x1 and z3, we obtain:
?
~ =~ .
2{»/]3003% > ¥p (fcos% + \/gsmg)

2

AN
3008% > \/gsmg (2.51)

0 0 0
As 3 €]+ %,—l—%[, then sm§ and cos are > 0. Taking the square of the two

members of the last equation, we get:
1 50

7 <cos 3 (2.52)

0
which is true since 3 €]+
only real solutions of (2.8]),
expressions:

,—l—%[ then ©1 > z3. As A™,B" and —C" are the

e consider, as A™ is supposed great than B"™, the

e

0
A" =g =u; +v1 = 2\3/50085

0+4 0 0
B" = x5 = uz + v3 = 2¢/pcos +3 T_ p <cos3 + \/552713) (2.53)

0+2 0 0
—Cl'=xy=ug+vy = 2¢/pcos —; T_ —/p <0053 + \ﬁsm:%)
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3 Proof of the Main Theorem
Main Theorem: Let A, B,C,m,n, and l be positive integers with m,n,l > 2. If:
A™ 4+ B" = C! (3.1)

then A, B, and C' have a common factor.

0 0
Proof. A™ = 2\3/50055 is an integer = A% = 4/ p20052§ is an integer. But:

V=1t 3.2
=3 (3-2)

Then: g 0 A 0
AP =4 p26052§ = 4§.COSZ§ = p.g.coszg (3.3)

0
As A?™ is an integer, and p is an integer then cos®~ must be written in the form:
0 1 0

cos2§ =3 cos2§ = % (3.4)

with b € N*, for the last condition @ € N* and a, b co-primes.

0 1
3.1 Case cos’~ = —
3 b
we obtain : A 9 A
AP = p 2 cos?l = 2F 5
P399 3 = 3% (3:5)
1 50 3 1 1 3
AsZ<cos§<Z¢Z<E<Z:>b<4<3b¢bfl,2,3.

311 b=1

b =1= 4 < 3 which is impossible.

312 =2
om 41 2.p ;. ,
b=2= A :p.g.iz?:iﬂp@p:i’)p with p’ # 1 because 3 < p, and
b = 2, we obtain:
AP = %p =2y (3.6)

But :
0 1 3
Bl — 3/p2 (3400523)§<34>ppp/ (3.7)
On the one hand:

A2m _ (Am)Q _ 2p/ = 2|p/ = p/ — 2p772 = A2m — 4p772
= A" =2p" = 2[A" = 2|A
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On the other hand:
B"C! =p' =2p" = 2|B" or 2|C!. If 2|B" = 2|B. As C' = A™ + B™ and 2|4
and 2|B, it follows 2|A™ and 2|B™ then 2|(A™ + B") = 2|C! & 2|C.

Then, we have : A,B and C solutions of (2.1)) have a common factor. Also if 2|C!,
we obtain the same result : A,B and C solutions of (2.1) have a common factor.

313 =3

9 41 4p ;. , .
b=3:>Am:p.§.§:E:>9|p:>p=9p with p’ # 1 since 9 < p then
AP = 4p’ = p’ is not a prime. Let u a prime with ulp’ = u|A?™ = u|A.

On the other hand:

0
B"C! = g (3 - 400523) = bp’

Then p|B™ or p|Cl. If u|B™ = u|B. As C' = A™+ B™ and u|A and pu|B, it follows
p|A™ and p|B™ then p|(A™ + B") = u|C! = u|C.

Then, we have : A,B and C solutions of (2.1)) have a common factor. Also if u|C?,
we obtain the same result : A,B and C solutions of (2.1)) have a common factor.

0
3.2 Casea>1, cos2§ = %

That is to say:

cos?= = % (3.8)
4 0 4dpa
AP = p.— cos®= = .
p-3-cos”y 3b (3.9)
and a, b verify one of the two conditions:
’ {3|p and bldp} ‘ or ’ {3la and bldp} ‘ (3.10)

and using the equation (2.34]), we obtain a third condition:

b <4a < 3b (3.11)
0
In these conditions, respectively, A?™ = 43/ p20032g = 42.00525 is an integer.
Let us study the conditions given by the equation (3.10)).

3.2.1 Hypothesis: {3|p and bldp}

3.2.1.1. Case b =2 and 3|p : 3|p = p = 3p’ with p’ # 1 because 3 < p, and
b =2, we obtain:

dp.a  4.3p'.a  4p.a
AP = = = =27 3.12
30 3b 2 p-a (812)
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As:
1 20 a a 3
- 4270 2=a=1 1
g s g=p=5<,;>a<2=a (3.13)

But a > 1 then the case b = 2 and 3|p is impossible.

3.2.1.2. Case b=4 and 3|p : We have 3|p = p = 3p’ with p’ € N*_ it follows:

dp.a  4.3p.a
AP = = =p. 14
3 3x4 D¢ (3.14)

and: ) 9 3
9 a a
4<cos3 =117 <a<3=a (3.15)

But a,b are co-primes. Then the case b = 4 and 3|p is impossible.

3.2.1.3. Case: b£2,b#4, blp and 3|p : As 3|p then p = 3p’ and :

4p 0 4dpa 4x3pa 4a
A2m = — 2 = —— = - = 1
3°°37 30 3 b b (3.16)

We consider the case: blp’ = p’ = bp” and p” # 1 (if p” = 1, then p = 3b, see
sub-paragraph 2°¢ sous-case equation (3.36))). Hence :
_4bpTa

AP = = dap” (3.17)

Let us calculate B*C!:

—4
B"C! = g (3 — 400522) =p (3 — 4%) = b.p”.gb 5 ¢ - p”.(3b —4a) (3.18)

Finally, we have the two equations:

_ 4bp”a
b
B"C' = p”.(3b — 4a) (3.20)

A2m

= 4ap” (3.19)

Sous-case 1: p" is prime. From ,p"|A2m = p”|A™ = p”|A. From 1)
p”|B" or p”|Cl. If p”|B" = p”|B, as C' = A™ + B" = p’|C' = p”|C. If
p’|Ct = p”|C, as B" = C' — A™ = p”|B" = p”|B.

Then A,B and C solutions of (2.1)) have a common factor.

Sous-case 2: p" is not prime. Let A one prime divisor of p”. From (3.19), we
have :

AAP™ = A\|A™ as\is prime then \|A (3.21)
From ({3.20), as A|p” we have:
AB"C' = \|B" or \|C" (3.22)
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If A\|B™, X is prime A|B, and as C' = A™ + B™ then we have also :
A C! as\is prime, then \|C (3.23)

By the same way, if A|C!, we obtain \|B.

Then: A, B and C solutions of (2.1)) have a common factor.

Let us verify the condition given by:
b <4a < 3b
In our case, the last equation becomes:
p < 3A%™ < 3p with p= A"+ B®" 4 AmB" (3.24)

The 3A%™ < 3p = A?™ < p is verified.
If :
p < 3APM = 24%™ — A™B" — B >

We put Q(Y) = 2Y?2 — B"Y — B?" the roots of Q(Y) = 0 are Y} = —32 and
Yo=B". QY)>0forY <Yy and Y > Yy = B™. In our case, we take Y = A™.

As A™ > B™ then p < 3A?™ is verified. Then the condition b < 4a < 3b is true.

n

In the following of the paper, we verify easily that the condition b < 4a < 3b
implies to verify A™ > B™ which is true.

3.2.1.4. Case b=3and 3|p: As 3|p= p=3p’ and we write :

4p 0 4dpa 4x3p'a 4pa
AQ’VV‘L: _ 2— = —_—— = —_ =
33773 3 3 3

(3.25)

0
As A?™ is an integer and that a and b are co-primes and cos®= can not be one in

reference to the equation (2.33)), then we have necessary 3|p’ = p’ = 3p” with
p” # 1, ifnot p=3p' =3x3p” =9 but p= A"+ B2+ A™B" > 9, the hypothesis
p” =1 is impossible, then p” > 1. hence:

dp'a 4 x 3p”a

AP = = = 4p” 3.26
3 3 p’a (3.26)
nel 2 . _ g _3])”(9-4@)_ ” _
B"C' = 3(3 4cos* >—p (3 46)_73 =p”.(9—4a) (3.27)
Asl<cosf g—7<3:>3<4:a<9:>a 2asa>1.
4 3 b 3 4 B
a = 2, we obtain:
4[ 4 ”
A2m = Zazixgpazﬁlp”a:@” (3.28)
0 a 3p” (9 — 4a)
Bret =2 (3-deos®s ) =p/ (3-47) = "N = (320
3( “T3) TP b 3 P (3:29)

The two last equations give that p” is not prime. Then we use the same methodology
described above for the case 3.2.1.3., and we have : A,B and C solutions of (2.1)
have a common factor.
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3.2.1.5. Case 3jpand b=p: We have :

cos?e =22
3 b p
and : A 0 4 A
m_ 4P 5 pa_4da
A= Popgl =222 20 3.30
33739 3 (3:30)

As A?™ is an integer, this implies that 3|a, but 3|p = 3|b. As a and b are
co-primes, hence the contradiction. Then the case 3|p and b = p is impossible.

3.2.1.6. Case 3jpand b =4p : 3|p = p = 3p’, p’ # 1 because 3 < p, hence
b=4p=12p'.

4p 0 dpa _a

AP = Zeosts = - =~ 31

3053 =33 323|a (3.31)

because A?™ is an integer. But 3|p = 3| [(4p) = b], that is in contradiction with

the hypothesis a, b are co-primes. Then the case b = 4p is impossible.

3.2.1.7. Case 3jpand b =2p: 3|p = p = 3p/, p’ # 1 because 3 < p, hence
b=2p=06p.
4p 0 4dpa 2a
AP = Zeosts = - = =3 3.32
33730 3 la (8:32)

because A*™ is an integer. But 3|p = 3|(2p) = 3|b, that is in contradiction
with the hypothesis a, b are co-primes. Then the case b = 2p is impossible.

3.2.1.8. Case 3|p and b # 3 is a divisor of p : We have b = p’ # 3, and p is

written as:

p=ky with 3lk—=>k =3k (3.33)
and 4 0 4 4 x 3.k'p
gqom 2P 2% 2P uﬁ_4k/ 3.34
39373 3 p (3.34)
We calculate B*C*:
, 0
B"C! = g (3 — 400323> =K' (3p’ — 4a) (3.35)

1% Sous-case: k' # 1, we use the same methodology described for the case
3.1.2.3., and we obtain: A, B and C solutions of (2.1)) have a common factor.

2"d sous-case:

K =1= p=3b (3.36)
then we have:
A?™ =4a = a is even (3.37)
and :
0 20
A"B" = Q\fcosf \[( sznf - 0053> = p\?)/gsmg —2a (3.38)
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let:
AP L 2AM BT = 2}“[ = =2bV3sin— (3.39)

20
The left member of (3.39) is an integer and b also, then Qﬁsmg can be written

in the form:

2
2v/3sin=- 9 _h (3.40)
Tk

where k1, ko are two co-primes integers and ks |b = b = ko k3.
& - We suppose ks # 1. Hence:
AP L 2A™ B = kg.ky (3.41)
Let  is an prime integer such that p|ks. If 4 = 2 = 2|b but 2|a that is contradiction
with a, b co-primes. We suppose u # 2 and p|ks, then p|A™(A™ + 2B™) = u|A™
or p|(A™ 4 2B™).

*A-1- If p|A™ = p|A*™ = plda = pla. As plks = plb and that a,b are
co-primes hence the contradiction.

*A-2- If p|(A™ +2B") = 1 A™ and pt 2B™ then p # 2 and pt B™. pl(A™ +
2B™), we can write:

A" +2B" = pt’ ' e N* (3.42)
It follows:

A™ 4 B" = ut' — B" = A*™ 4 B> 4 2A™B" = i*t"* — 2t'uB"™ + B*"
Using the expression of p, we obtain:
p=1t?u? —2'B"u+ B"(B" — A™) (3.43)

As p = 3b = 3ky.ks and plks hence ulp = p = pp’, so we have :

W= p(pt — 2t B™) + B"(B" — A™) (3.44)
and p|B™(B™ — A™) = p|B"™ or p|(B™ — A™).
*A-2-1- If 4| B = u|B which is in contradiction with *A-2.
*A-2-2- If pu|(B™ — A™) and using u|(A™ + 2B™), we obtain:

w|B™ = u|B which is impossible
p|3B™ = ¢ or (3.45)
p=3

*A-2-2-1- If 4 = 3 = 3|ks = k3 = 3k}, and we have b = koks = 3kokj, it follows
p = 3b = 9kok} then 9|p, but p = (A™ — B")2 + 3A™B" then :

Okskl, — 3A™B" = (A™ — B")?
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we write it as :

3(3kgky — A™B") = (A™ — B")? (3.46)
hence 3|(3kok} — A" B") = 3|A™B" = 3|A™ or 3|B™.

*A-2-2-1-1- If 3|A™ = 3] A and we have also 3|A*™, but A?™ = 4a = 3|4a =
3la. As b = 3kok% then 3|b, but a,b are co-primes hence the contradiction. Then
31 A

*A-2-2-1-2- If 3| B® = 3|B, but the (3.46)) gives 3|(A™—B")?> = 3|(A™—-B") =
3|A™ — 3|A. But using the result of the last paragraph *A-2-2-1-1, we obtain
31 A. Then the hypothesis k3 # 1 is impossible.

- Now we suppose that k3 =1 = b = ky and p = 3b = 3ky. We have then:
20 Kk
2V3sin=- = L (3.47)
3 b
with k1, b co-primes. We write (3.47)) as :

.0 0 ki
4\/§sm§cos§ =3

0
Taking the square of the two members and replacing coszg by %, we obtain:

3x4%a(b—a)=k? (3.48)
which implies that :
3la or 3|(b—a)

*B-1- If 3|a, as A>™ = 4a = 3|A*™ = 3|A. But p = (A™ — B")? + 3A™B"
and that 3|p = 3|(A™ — B")? = 3|(A™ — B"). But 3|4 hence 3|B" = 3|B, it
follows 3|C! = 3|C.

We obtain: A,B and C solutions of (2.1)) have a common factor.

*B-2- Considering now that 3|(b — a). As k1 = A™(A™ + 2B™) by the equation
(3.41) and that 3|ky = 3|A™(A™ 4 2B™) = 3|A™ or 3|(A™ + 2B™).

*B-2-1- If 3|A™ = 3|A = 3|A?™ then 3|4a = 3|a. But 3|(b — a) = 3|b hence
the contradiction with a, b are co-primes.

*B-2-2- If:

3[(A™ +2B") = 3|(A™ — B") (3.49)
But p = A?™ + B 4+ A™B" = (A™ — B")? + 3A™B" then p — 3A™B" =
(Am — B")?2 = 9|(p — 3A™B") or 9|(3b — 3A™B"), then 3|(b — A™B") but
3|(b—a) = 3|(a — AmB"™). As A>™ = 4a = (A™)? = Jd’ € N* and a =
a’? = A™ = 2a’. We arrive to 3|(a’? — 2a’ B") = 3|a’(a’ — 2B™).

*B-2-2-1-If 3|a’ = 3|A™ = 3|4, but 3|(A™+2B") = 3|2B" = 3|B" = 3| B,
it follows 3|C.
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Hence A,B and C solutions of ([2.1)) have a common factor.

*B-2-2-2- Now if 3|(a' —2B") = 3|(2¢/ —4B") = 3|(A™ —4B") = 3|(A™— B"),
we refind the hypothesis (3.49)) above.

The study of the case 3.2.1.8. is finished.

3.2.1.9 Case 3|p and bl4p: As 3|p = p = 3p’ and bldp = Tk; € N* and
4p = 12p' = kqb.

*_ then b = 12p/, (p' # 1 if not p = 3 < A>™ 4+ B2" + A™B"). But
4 0 12 4 8
azm = 2P 27 12p'a pba_9a_, 3|a because A?™ is an integer, then the
3 373 b 12 3

contradiction with a,b co-primes.

4 0 k.
**—, then b = 4p’ and A?™ = Ep.(:ong = 1?& = a.

Let us calculate A™B™:

mon 6\ pVv3 20 a
A™B" = 23/pcos— f( sm—0083> = TS 33 (3.50)
let:
AP 4 9Am B = 2p§f e =2 3sin¥ (3.51)

20
The left member of the equation (3.51) is an integer and also p’, then 2\/§sin§

can be written as :

20 ko
2v/3sin T (3.52)

where ks, k3 are two co-primes integers and ks|p’ = p’ = k3.k4.

{ - We suppose that , then:
AP L 2AM B = ky ky (3.53)
Let p one prime integer with u|ks. Then u|A™(A™ 4+ 2B™) = p|A™ or u|(A™ +

2B").

FA-1- If p|A™ = p|A*™ = pla. As plks = plp’ = pl(4p’ = b). But a,b are
co-primes then the contradiction.

*A-2- If p|(A™ +2B") = 1 A™ and pt 2B™ then p # 2 and p 1 B™. pl(A™ +
2B™), we can write:
A™ 4+ 2B" = put' t € N (3.54)

It follows:
Am+Bn :‘ut/ 7Bn :>A2m +an+2AmBn :ﬂ2t12 72t’,uB"+BQ"
Using the expression of p, we obtain:

=t?u? —2¢/B"u + B"(B™ — A™) (3.55)



3 Proof of the Main Theorem 14

As p=3p’ and plp’ = u|(3p') = p|p, we can write :3p’ € N* and p = pp’/, then we
obtain :
= p(ut’ — 2t/ B") + B"(B™ — A™) (3.56)

and p|B™(B™ — A™) = p|B"™ or p|(B™ — A™).
*A-2-1- If 4| B = p|B which is in contradiction with *A-2.
*A-2-2- If p|(B™ — A™) and using pu|(A™ + 2B™), we obtain:
p|B™ = p|B which is impossible
w|3B" = { ou (3.57)
p=3

*A-2-2-1- If o= 3 = 3|l€4 — k4 = 3]{5:17 and we obtain p/ = k3k4 = 3]€3k':1, it
follows p = 3p’ = 9ksk} then 9|p, but p = (A™ — B")2 + 3A™B", then:

kKl — 3A™B™ = (A™ — B")?

that we write :
3(3k4kl — A™B") = (A™ — B™)? (3.58)

then 3|(3ksk} — AMB") = 3|A™B" = 3|A™ or 3|B".

*A-2-2-1-1- If 3|A™ = 3|A%™ = 3|a, but 3|p’ = 3|(4p’) = 3|b, then the contra-
diction with a, b co-primes. Then 3t A.

*A-2-2-1-2- If 3|B™ but A™ = ut’ — 2B™ = 3t — 2B™ = 3|A™, which is in con-
tradiction. Then the hypothesis k4 # 1 is impossible.

- We suppose that :> p' = ksky = k3. Then we obtain:

20k
2\/§sm§ = p—f (3.59)
with ko, p’ co-primes, we write (3.59)) as :
0 6 k
4\/§sin§cosg = i

0
Taking the square of the two members and replacing 00325 by % and b = 4p’, we

obtain:
3.a(b—a) = k3 (3.60)

that implicate :
3la or 3|(b—a)

*B-1- If 3ja = 3|A2™ = 3|4, as p = (A" — B")?+3A™B" and that 3|p = 3|(A™—
B")2 = 3|(A™ — B"). But 3|A, then 3|B" = 3|B, it follows 3|C! = 3|C.

We obtain : A,B and C solutions of (2.1)) have a common factor.
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*B-2- We consider that 3|(b — a). As kg = A™(A™ + 2B"™) given by the equation
(3-53) and that 3|ke = 3|A™(A™ + 2B™) = 3|A™ or 3|(A™ + 2B™).

*B-2-1- If 3|A™ = 3|A?™ = 3|a, but 3|(b — a) = 3|b then the contradiction
with a, b co-primes.

*B-2-2- If:

3|/(A™ 4 2B") = 3|(A™ — B") (3.61)
but p = A?™ 4+ B?" + A™B" = (A™ — B")? + 3A™B" then p — 3A™B" =
(A™ — B")? = 9|(p — 3A™B") or 9|(3p’ — 3A™B"), then 3|(p’ — A™B") =
3l4(p’ —4A™B™) = 3|(b—4A™B™) but 3|(b — a) = 3|(a — A™B"). As 3|(A?™ —
4A™B™) = 3|A™(A™ — 4B™).

*B-2-2-1- If 3|A™ = 3|A?™ = 3|a, but 3|(b — a) => 3|b then the contradiction
with a, b co-primes.

*B-2-2-2- Now if 3|(A™ — 4B™) = 3|(A™ — B"), we find the hypothesis of the
beginning (3.61)) above.

**_ We suppose k; # 3 and 3lk; = |k; = 3K'1| with k] # 1. we have 4p =

12p’ = k1b = 3k} b = 4p’ = kib. A®™ can be writen as :

m 4p 6 3kiba
A2 = §COS2§ = 31 E = k'/la (362)
and B"C":
Bt =P (3 4e0s20) =Pz 4 3.63
=3 (3 deos”3 ) = Z( —4a) (3.63)

As B"C! is an integer, we must have 4|(3b — 4a) or 4|k}.

b—4
%k We suppose that 4/(3b — 4a) = 5 _ce N*, and we obtain:
AP = Ka
B"C' = ke

C-1- If k) is prime, then k}|A?™ = k||A and k}|B"C' = k}|B™ or Kj|C'. If
k||B™ = k}|B, then k|C' = k{|C. With the same method if k{|C', we arrive to
ki |B.

We obtain: A,B and C solutions of (2.1]) have a common factor.

C-2- k7 not a prime. Let p a prime divisor of ki, as described in C-1- above, we
obtain : A,B and C solutions of (2.1]) have a common factor.

**% We suppose that 4|k].

C-3- kf = 4 but this case is discussed in the second sous-case of the paragraph
(3.2.1.8).
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C-4- k| = 4k”y with k71 > 1. Then, we have:

A?™ = 4k71a (3.64)
B"C' = k”1(3b — 4a) (3.65)

C-4-1- If k7, is prime, then k”1|A%™ = k”1|A and k”;|B"C' = k”1|B™ or k"|C".
If k”1|B™ = k”1|B, then k”;|C! = k”;|C. With the same method if k”;|C’, we
arrive to k”1|B.

We obtain: A,B and C solutions of (2.1)) have a common factor.

C-4-2- k71 not a prime. Let u a prime divisor of k”1, as described in C-4-1 above,
we obtain : A,B and C solutions of (2.1]) have a common factor.

3.2.2 Hypothesis : {3|a and b/4p}

We have :
3la = Ja’ eN* / a = 3d (3.66)

3.2.2.1. Case b=2 and 3Ja : A?™ is written as :

4p 0 4pa 4dpa 2.pa
AP = o8t = = = 3.67
3°°37 30 32 3 (3.67)
Using the equation (3.66)), A>™ becomes:
2.p.3a’
A2 — p3 L —opd (3.68)
00 a 3d
But cos 3539 > 1 which is impossible, then b # 2.
3.2.2.2. Case b =4 and 3|a : A?™ is written as :
4.p 0 4pa 4pa pa p3d
qom AP 20 Apa _dpa_pa = pad 3.69
373730 33 g P (3.69)
2
0 a V3 3
2 /
and cos" s =+ 4 (2) =;=0a< (3.70)
which is impossible.
Then the case b = 4 is impossible.
3.2.2.3. Case b=p and 3|a : Then:
0 3a’
c032§ = % = Til (3.71)

and:

4p 0 4p 3d
2m __ 27 _ — I m\2
AP = 5o = Y 4a’ = (A™) (3.72)

Ja” € N* / a' =a (3.73)
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We calculate A™B™, hence:

3 .20
A"B" = p%smg —2d’
20
or A™B"+2d = pgsmg (3.74)

20
The left member of ((3.74)) is an integer and p is also, then 2?51’71? will be written

as :
\/3 260 kq
2¥ 2 sin = = L .
3 SN s (3.75)

where k1, ko are two co-primes integers and ks|p = p = b = ko.k3, k3 € N*.

& - We suppose that ks # 1. We obtain :
A™(A™ +2B") = ky k3 (3.76)
Let us p a prime integer with p|ks, then ulb and u|A™(A™ 4 2B™) = u|A™ or
p|(A™ +2B™).

*If u|A™ = p|A and p|A?™, but A*™ = 4’ = pldd’ = (u = 2 but 2|a’)
or (ula"). Then ula hence the contradiction with a, b co-primes.

*If p|(A™ + 2B™) = pt A™ and p {1 2B™ then p # 2 and pt B®. We write
w|(A™ + 2B™) as:
A™+2B" = put’ t e N (3.77)

It follows:
A™ 4+ B" = ut' — B" = A*™ 4 B®" 4 2A™B" = 1*t"* — 2t uB" + B*"
Using the expression of p:
p=1t?u* - 2B "+ B"(B" — A™) (3.78)
Since p = b = ko.k3 and p|ks then ulb = Jp’ € N* and b = pp’, so we can write:
W= p(ut’? —2t'B™) + B"(B™ — A™) (3.79)

From the last equation, we get u|B™(B™ — A™) = p|B™ or p|(B™ — A™). If u|B"™
which is contradiction with pt B™. If p|(B™ — A™) and using u|(A™ 4 2B™), on
arrive to:

wu|B™ = which is contradiction

ul3B" = ¢ or (3.80)
p=3
Si p = 3, then 3|b, but 3|a thus the contradiction with a,b co-primes.

{ - We assume now k3 = 1. Hence:
AP 4 2A™ B = ky (3.81)
b= ko (3.82)

23 .20 Ik
SIN— = —
3 3 b
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Taking the square of the last equation, we obtain:
4 5,20 K}
3 T
16 0 Kk}
?S“’ﬂgCOSZE bfé
16,05 K
3 37 b b2
Finally:
420/ (p—a) = k? (3.84)
but @’ = a”? then p — a is a square. Let us:
N=p-a (3.85)
The equation (3.84]) becomes:
4207\ =k} = ky = 4a” ) (3.86)
taking the positive square root. Using ([3.81)), we get :
k1 =4a” X (3.87)
But kg = A™(A™ + 2B™) = 2a”(A™ + 2B"), it follows:
A™ +2B™ =2\ (3.88)
Let Ay prime # 2, a divisor of A (if not A\; = 2|\ = 2|A\? = 2|(p — a) but a is
even, then 2|p == 2|b which is contradiction with a, b co-primes).
We consider Ay # 2 and :
MIA = M|\? and M\ |(A™ +2B") (3.89)
/\1|(Am + 23”) = )\ fAm Zf not /\1|2Bn 90)
But A1 # 2 hence A\;|B™ = \{|B, it follows:
Allp=0b) and M|A™ = M\|2¢" = Ai|a (3.91)

hence the contradiction with a, b co-primes.

We assume now A; f A™. A\|(A™+2B") = \|(A™+2B")? that is \;|(A*™ +
4A™B™ + 4B?"), we write it as A\{|(p + 3A™B" + 3B?") = \{|(p + 3B"(A™ +
2B™) — 3B*"). But A1[(A™ + 2B™) = A\i|(p — 3B?"), as A1|(p — a) hence by dif-
ference, we obtain A;|(a — 3B?") or \|(3a' — 3B?") = \{|3(a’ — B?") =\, =3

or \i|(a’ — B®").

*A-1- If Ay = 3 but 3Ja = 3|(p = b) hence the contradiction with a,b co-

primes.

*A-2- If M\|(a' — B*™) = M\ |(a™® — B?") = \|(a” — B")(a” + B") =
A1](a” + B™) or \i|(a” — B™), because (a” — B") # 1 if not we obtain a2 — B?>" =
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a’” + B" = a"® — a” = B" — B?". The left member is positive and the right
member is negative, then the contradiction.

*A-2-1-Tf A\1|(a”—B") = A\|2(a”—B") = \1|(A™—2B") but A |(A™+2B")
hence A\|24™ = A\ |A™, A1 # 2, it follows A1|A™ hence the contradiction with
(3.90).

*A-2-2- If \|(a” + B™) = A\1]2(a” + B™) <= \1|(A™ + 2B"™). We refind the
condition ([3.89).

Then the case k3 = 1 is impossible.
3.2.24. Case blp= p=0byp',p) >1,b#2,b#4 and 3|a :
=4.p'd (3.92)
We calculate B"C':
nel 3 0 20 3 20
B"C"' = {/p? | 3sin g cosz )= v p? | 3 —4cos 3 (3.93)

3.a"
p

But v/p? = g hence using coszg =

!/ !/
B"C' = {/p? (3 - 400322) = g <3 — 43; ) =Dp. (1 - 4; ) =p'(b—4d’)

(3.94)

Asp=10.p', and p’ > 1, we have then:
B"C' = p/(b— 4d) (3.95)
and A®™ =4.p.d (3.96)

A - Let X a prime divisor of p’ (we suppose p’ not prime ). From , we have:
A A?™ = A\|A™ as\is a prime, then A (3.97)
From , as Alp’ we have:
AB"C! = \|B" or \|C! (3.98)
If A\|B™, ) is a prime A|B, but C' = A™ + B", then we have also :
A C! as\is a prime, then A|C (3.99)

By the same way, if A|C', we obtain A\|B. then : A, B and C solutions of (2.1) have

a common factor.

B - We suppose now that p’ is prime, from the equations (3.95) and (3.96), we
obtain then:

plAZ" = p/|A™ = p/|A (3.100)
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and:
p'|B"C' = p/|B* or p/|C! (3.101)
If p'|B"=p'|B (3.102)
As C'=A™ 4+ B" and that p'|A,p'|B = p/|A™,p'|B" = p/|C!
= p/|C (3.103)

By the same way, if p’|C!, we arrive to p’|B.
Hence: A ,B and C solutions of (2.1)) have a common factor.

3.2.2.5. Case b =2p and 3|a : We have:

0 a 3d dp.a  4p 3d’
2 2m / A /
€os 3 b 2p 3b 3 2p “ | la ja

Then 2|a and 2|b which is contradiction with a,b co-primes.

3.2.2.6. Case b =4p and 3|a : We have :

0 a 3d dp.a  4p 3d’
cos’= = - = T . R

3°0 4 3 3 4p

Calculate A™B™, we obtain:

mn  PV3 20 2p L0 pV3 20 d
A"B" = —— sin— — — - =——.8in— — —
3 3 3 3 3 3 2
A2m 3 20
A"B" 4 e = p\Tf.smg (3.104)
let:
2 20
A2m o Ampn — pT‘/gsmg (3.105)
2 20
The left member of (3.105) is an integer and p is an integer, then gsmg will
be written: /3
243 20 k1
—sin— = — 3.106
3 sin 3 s ( )
where k1, ko are two co-primes integers and ks|p = p = ko.k3.
& - Firstly, we suppose that k3 # 1. Hence:
AP L 2AMBY = k3.ky (3.107)

Let p a prime integer and p|ks, then u|A™(A™ 4+ 2B™) = u|A™ or p|(A™ +2B").

*If p|A™ = p|A. As plks = plp and that p = A*™+B?"+ AMB" = u|B*"
then yu|B, it follows p|C?, hence A, B and C solutions of (2.1)) have a common factor.

*If p|(A™ +2B"™) = pt A™ and p{ 2B™ then:
w#2 and ptB" (3.108)
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wu|(A™ +2B™), we write:
A™ 4 2B" = put’ t' €N* (3.109)
Then :
A™ 4 B" = ut' — B" = A*™ 4+ B> 4 2A™B" = i*t"* — 2t'uB" + B*"
= p=t?u? - 2t'B"u+ B"(B" — A™) (3.110)
As b =4p = 4ky k3 and plks then p|b = Jp’ € N* that b = pp’, we obtain:
W= (4t — 8¢ B™) +4B™(B™ — A™) (3.111)

The last equation implies p|4B™(B™ — A™), but u # 2 then u|B™ or u|(B"—A™). If
u|B™ = it is contradiction with (3.108). If u|(B™ — A™) and using p|(A™ +2B"),

we have:
p|B™ it is contradiction with [3.10§]

w|3B" = ¢ or (3.112)
w=3
If 1 = 3, then 3], but 3|a which is contradiction with a,b co-primes.

{ - We assume now k3 = 1. Hence:

A% L 2AMB" = Ky (3.113)
p =k (3.114)
2 2
2V 20k (3.115)
3 3 P

Taking the square of the last equation, we obtain:

Finally:
a'(4p — 3a’) = k? (3.116)

but @’ = a”? then 4p — 3¢’ is a square. Let us:
N =4p—3d =4p—-a=b—a (3.117)
The equation becomes:
N =k =k =a’\ (3.118)
taking the positive square root. Using , we get :

ki =a’\ (3.119)
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But k; = A™(A™ + 2B™) = a”(A™ + 2B"), it follows:
(A™ +2B") = A (3.120)
Let A; prime # 2, a divisor of A (if not Ay = 2|\ = 2|A%. As 2|(b = 4p) = 2|(a =
3a’) which is contradiction with a,b co-primes).
We consider Ay # 2 and :
)\1|)\ — )\1|(Am + 2Bn) (3.121)
— MTA™ if not M\|2B" (3.122)
But A1 # 2 hence A\;|B™ = \{|B, it follows:
Al(b=4p) and M|A™ = A\|2¢" = Aila (3.123)
hence the contradiction with a, b co-primes.
We assume now A; f A™. A\ |(A™+2B") = \|(A™+2B")? that is A\;|(A*™ +
4A™MB"+4B%), we write it as A1 |(p+3A™ B"+3B*") = \|(p+3B"(A™+2B")—
3B?"). But A\1|(A™+2B") = \1|(p—3B?"), as A\1|(4p—a) hence by difference, we

obtain A |(a—3(B* +p)) or A\1](3a’ —3(B*"+p)) = \1|3(¢/ = B*"—p) = \; =3
or A\i|(a’ — (B*" + p)).

*A-1- If \; = 3|\ = 3|A? = 3|b — a but 3|a = 3|(p = b) hence the contradic-
tion with a, b co-primes.

*A-2- If A1 7é 3 and )\1|(CLI — B? — p) — >\1|(AmBn + BQn) — )\1|Bn(Am +
2B™) = A\1|B™ or A\1|(A™ + 2B"™). The case A1|B™ was studied above.

*A-2-1- If \|(A™ + 2B™). We refind the condition (3.121)).
Then the case ks = 1 is impossible.

3.2.2.7. Case 3Ja and b = 2p' b # 2 with p'|[p : 3la = a = 3d/, b = 2p’ with
p = k.p’, hence:
4.k.p' 3.4/

A2m 4p
6p’

% = = 2.k.d (3.124)

Calculate B*C*:

B"C' = {/p? <3sm2§ - 00529) = V/p? (3 - 40032§> (3.125)

3
/
But W = g hence en using cos2g = 3: :
0 3.a' 4.0’
B"C!' = 3/ p? <3—4cos23> = g (3—4 ba > =p. (1— ba ) = k(p' —2d')

(3.126)

Asp=10.p', and p’ > 1, we have then:
B"C' = k(p' — 2d") (3.127)
and A?™ = 2k.d’ (3.128)
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A - Soit A a prime divisor of k (we suppose k not a prime ). From (3.128)), we have:

AAP™ = A\|A™ as\is prime then \|A (3.129)
From (3.127)), as Alk, we have:
AB"C!' = \|B" or \C' (3.130)

If A|B™, X is prime \|B, and as C' = A™ + B™ then we have also:
A C!  as\is prime then \|C (3.131)

By the same way, if A|C!, we obtain A|B. Then : A, B and C solutions of (2.1)
have a common factor.

B - We suppose now that k is prime, from the equations (3.127) and (3.128)), we
obtain:

k|A*™ = k|A™ = k|A (3.132)
and:
k|B"C! = k|B™ or k|C" (3.133)
if k|B™=k|B (3.134)
as C!'=A™+ B" and that k|A, k|B = k|A™, k|B" = k|C"
= k|C (3.135)

By the same way, if k|C?, we arrive to k|B.

Hence: A ,B and C solutions of (2.1)) have a common factor.

3.2.2.8. Case 3ja and b = 4p' b # 2 with p'|[p : 3la = a = 3d/, b = 4p’ with
p=kp', k#1if not b= 4p a case has been studied (paragraph 3.2.2.6), then we

have :

4p a 4.kp .3.d
A= 2 = TE T kg 1
3 b 12p/ “ (3.136)

Writing B"C":

0 0 0
B"C' = {/p? (351'112 - 00523) = v/ p? (3 - 460523> (3.137)

3
3 P , 0 3.0
But /p? = 3 hence en using cos”3 = -
0 .a 4.0’
B"C' = 3/p? (3400523> = g (343; ) =p. (1 — ba ) =k(p —d)
(3.138)
As p=10.p', and p’ > 1, we have:
B"C' = k(p' — 2d") (3.139)

and A?™ = 2k.d’ (3.140)
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A - Let X a prime divisor of k (we suppose k not a prime). From (3.140), we have:

A A?™ = \|A™ as\is prime then \|A (3.141)
From ([3.139)), as Alk we obtain:
AB"C! = \|B" or A\|C! (3.142)

If A\|B™, X is a prime A\|B, and as C' = A™ + B", then we have:
AC! as Ais prime, then \|C (3.143)

By the same way if A|C!, we obtain A|B. Then : A, B and C solutions of (2.1]) have
a common factor.

B - We suppose now that k is prime, from the equations (3.139)) and (3.140), we
have:

k|A?™ = k|A™ = k|A (3.144)
and:
k|B"C! = k|B™ or k|C! (3.145)
if k|B"= kB (3.146)
as Cl=A™+ B" and that k|A,k|B = k|A™, k|B" = k|C!
— kO (3.147)

By the same way if k|C!, we arrive to k|B.
Hence: A ,B and C solutions of (2.1) have a common factor.

3.2.2.9. Case 3|a and b|dp : a = 3a’ and 4p = kb with k; € N*. As A?™ =
4—pco 20 4p3d

e / nl.
3 33 3 kia' and B™C":
!/
B"C! = 3/p? (3sin2§ - cosQZ> = g (3 — 46082§> = g (3 - 43;;> = %(b—éla’)

As B"C! is an integer, we must have 4|k, or 4|(b — 4a’).
*¥$.1-If ky =1 = b=4p: it is the case (3.2.2.6) above.
*¥*.2-1f ky =4 = p=">:it is the case (3.2.2.3) above.
**_3- We suppose that 4|k with k; > 4 = k; = 4k{, then we have:
AP = 4kld
B"C' = k(b — 4d’)
By discussing k] is a prime integer or not, we arrive easily to: A ,B and C' solutions
of (2.1)) have a common factor.

** 4-1f 41|(b—4d’) and 4t K] it is impossible. If 4|(b — 4a’) = (b — 4a’) = 4c,
with ¢ € N*, then we obtain:

A2m = kla'
B"C' = kic
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By discussing k; is a prime integer or not, we arrive easily to: A ,B and C solutions
of (2.1) have a common factor.

O
The main theorem is proved.
4 A Numerical Example
We consider the example:
6% +3%=3° (4.1)

with A™ = 63, B" = 3% and C! = 3°5. With the notations used in the paper, we
obtain:

p=3%x 73, (4.2)
q=8x 3", (4.3)
A=4x3"(3°x4>-73% <0, (4.4)
8
p:p\/ﬁ:?) ><73\/ﬁ7 (4.5)
3V3 3
3
cost = —M (4.6)
7373
4p 0 0 3Am 3 x 24 a
As A = = cos? = - = = = - =3x2% b=73;
thS 3 cos 3 —> COS 3 4p 73 b - a X s H
en:
6 43
coS— = —— 4.7
37 3 (4.7)
p=3% (4.8)

Let us verify the equation (4.6 using the equation (4.7)):

3
4 4 4x 3
cos = cos3(0/3) = 4cos3€ - 3COSQ =4 ( \/§> -3 V3 o AxSx V3
3 V73 V73 7373

3
That’s OK. For this example, we can use the two conditions of (3.10]) as 3|p,bl4p
and 3|a. The cases 3.2.1.3 and 3.2.2.4 are respectively used. We find for both
cases that A™, B™ and C! of the equation (4.1)) have a common prime factor which
is true.

(4.9)
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