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Abstract

We propose two distinct interpretations of extended probabilities which
are realistic for the physical world.

1 Introduction

Negative probabilities show up in physics when one tries to covariantly quantize
gauge theories (that is theories for massless particles with integer spin greater
than zero); also, they appeared in Wigners quasidistribution when he tried
to give a statistical meaning on phase space to the wave function. Recently,
an interpretation for probabilities falling in the range [−1, 1] was proposed in
[1] but alas this is insufficient, probabilities greater than one should also be
dealt with. The usual way to deal with this in quantum theory is to fix the
gauge and define physical states as states which satisfy the appropriate gauge
condition. Those physical states are then shown to define a Hilbert space and
as such the problem of negative probabilities doesn’t pose itself anymore. In
this note, we propose two interpretations, one is a no nonsense interpretation
and just says that all these negative numbers and numbers greater than one
are just mathematical expressions and do only indirectly determine a standard
probability interpretation which, of course, coincides with the usual one if you
start with a standard probability distribution from the beginning. The second
one is inspired by Dirac [1] who compared negative probability with negative
money, or a debt or shortage of some kind. Negative apples do also exist, it
just means there is an absence of apples. This interpretation extends the one
in [1] who made the error to compare the opposite of the measurement of a
particle with the measurement of an anti particle! Of course, some of these
interpretations allow you to surpass the Bell inequalities (it is well known that
extended probability theory allows you to do this, see [3]) given that they involve
a measurement inefficiency. In recent experiments however, one claims to have
closed as well the measurement efficiency and the communication loophole which
should only leave superdeterminism as a possible candidate.

2 The no nonsense interpretation.

Let H be some generalized Hilbert space with negative norm states. We define
an operator A on H to be a physical observable if and only if there exists a
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left basis1 of normalized eigenvectors ψα satisfying 〈ψα|ψβ〉 = εαδ(α− β), with
εα = ±1, corresponding to real eigenvalues. It is very well possible in Clifford
quantum mechanics that in finite dimensional spaces a continuum of eigenvalues
exist for a Hermitian operator as well as a set of non orthogonal eigenvectors. For
the sequel, it is useful to have a short introduction to Clifford and Quaternion
quantum mechanics.

2.1 Some results from Clifford and Quaternion Quantum
Mechanics.

Real quaternions Q are rather special since the form a division algebra, that is
every nonzero element has an inverse. Denote the quaternion basis over the real
numbers by i, j, k = ij satisfying i2 = j2 = k2 = −1 and ij + ji = 0. Next,
define the involution ã of a general quaternion a = a01 + ia1 + ja2 + ka3 by
ã = a01−ia1−ja2−ka3 then it is easy to verify that aã = ãa = a20+a21+a22+a23
which is always greater than zero unless a = 0. Take a Quaternion bimodule (a
vector space over the Quaternions with left and right multiplication) H, then it
is possible to define a scalar product on it satisfying

〈v|v〉 ≥ 0 and equality holds if and only if v = 0 (1)

〈v|w〉 ∈ Q (2)

〈v|w〉 = 〈̃w|v〉 (3)

〈v|wq〉 = 〈v|w〉qwhere q ∈ Q (4)

〈v|qw〉 = 〈q̃v|w〉. (5)

Let A be an operator on H, then the adjoint A† is defined in the usual way.
It is fairly easy to demonstrate that on finite dimensional bimodules any Her-
mitian operator has a complete set of (left) eigenvectors corresponding to real
eigenvalues (just real numbers since ã = a implies that a ∈ R). A vector v
is a left eigenvector of an operator A if and only if there exists a q ∈ Q such
that Av = vq. This result also holds in the infinite dimensional case. Also,
two commuting Hermitian operators are simultaniously diagonalizable. Quater-
nion quantum mechanics has no negative probabilities and doesn’t really deviate
much from standard quantum mechanics.

The situation is very different when one considers Clifford Quantum mechan-
ics. Take for example the complex Clifford Algebra generated by the standard
γ matrices, that is γµγν + γνγµ = 2ηµν where ηµν is a standard Minkowski
metric with signature (+ − −−). The involution we are interested in now, see
[2], is γ̃µ = γµ and c̃ is just the complex conjugate for c ∈ C. A general Clif-
ford element is now made up from 1, γµ, γ[µγν], γµγ5 and γ5 where the latter
equals γ5 = γ0γ1γ2γ3. These provide a basis for the complex 4 × 4 matrix
algebra. Notice now that ãa is not necessarily equal to aã and moreover, it is
in general not even a real number. The scalar part of ãa is not necessarily a
positive number since (γ1)2 = −1, hence the negative probabilities. Let now H
be a Clifford bi-module and define a scalar product as before except that now
〈v|v〉 is an element of the Clifford algebra with a real scalar part which might

1Let H be a bimodule over some ring R, then vα form a left basis if and only if every
element v can uniquely be written as v = vαrα with rα ∈ R.
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be vanishing even if v 6= 0 (take for example v = w(γ0 + γ1) where 〈w|w〉 = 1).
Supposing that the scalar product is nonsigular, meaning that there exists an
orthogonal basis vi satisfying 〈vi|vj〉 = δij , then one can define the adjoint A†

of an operator A in the usual way. Now, it is fairly easy to see that a Hermitian
operator doesn’t need to have real eigenvalues, nor does it need to have a basis
of left eigenvectors, examples can be found in [2]. It isn’t even necessary that
ã = a for an eigenvalue a! Therefore, we define an operator A to be physical if
and only if there exists a left orthonormal basis of eigenvectors corresponding
to a set of real eigenvalues (which are obviously unique); obviously physical
observables are Hermitian. Given two commuting physical observables A and
B, it is not necessary that they have a common left eigenbasis corresponding to
real eigenvalues. For example consider an orthonormal left basis |0〉 and |1〉 and
A|0〉 = |0〉λ, A|1〉 = |1〉µ with µ, λ ∈ R. Define the action of B on this basis to be
B|0〉 = |0〉γ0 and B|1〉 = −|1〉γ0; we now show that B is a physical observable.
Consider the orthonormal left basis given by |3〉 = 1

2

(
|0〉(1 + γ0) + |1〉(1− γ0)

)
and |4〉 = 1

2

(
|0〉(1− γ0) + |1〉(1 + γ0)

)
then2 the action of B on this basis is

given by B|3〉 = |3〉 and B|4〉 = −|4〉 which is what we needed to show. Notice
that B has two eigenbasises corresponding to different pairs of eigenvalues. Since
we agree that only real eigenvalues are to be measured, we call two commuting
physical operators compatible if and only they have a mutual left orthonormal
basis of eigenvectors corresponding to real eigenvalues. Given that the above
counterexample is rather special, we conjecture that generically two commuting
physical observables are compatible.

2.2 Negative probabilities?

The dynamics on these “Hilbert spaces” is then unitary in a generalized sense
but it can be for some state |φ〉 that the scalar part of

φλ = 〈φ|Pλ|φ〉

equals a number greater than one or less than zero where Pλ is the Hermitian
projection operator on the eigenspace of eigenvalue λ. For example, if the |ψβ〉
span this eigenspace then

Pλ =
∑

εβ |ψβ〉〈ψβ |.

The attitude we can take now is that these numbers do not directly define
probabilities but probabilities can be derived from any sequence of numbers as
follows

P (φ, λ) =
|φλ|∑
µ |φµ|

provided the sum in the denominator converges and |φλ| denotes the absolute
value of the scalar part of φλ

3. Obviously, this coincides with the standard in-
terpretation if all φα ≥ 0 and therefore we have a standard interpretation for all

2The reader easily checks that |3〉, |4〉 form a left basis since if |3〉z + |4〉w = 0 then
z + w = z − w = 0 since γ0 is invertible. Hence, z = w = 0; orthonormality follows form
(1± γ0)(1± γ0) = 2± 2γ0 and (1− γ0)(1 + γ0) = 0.

3In Clifford (but not in quaternion) quantum mechanics, it is possible that φλ is not a real
number.
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these numbers outside the range [0, 1]. There is nothing mysterious about it, it
is plain and simple; you just tell to the dynamics that it is not unitary in a stan-
dard way and renormalize4. The reader should remark that the measurement
axiom gets a strange twist; suppose you have two compatible measurements
made at spacelike locations and that one observable A determines Hermitian
projection operators Pj and the other B determines projection operators Qk
where the Pj and Qk are all mutually commuting. Moreover, let us agree that
a measurement of A on a state |ψ〉 results in a state Pk|ψ〉 if the corresponding
eigenvalue has been measured. Then, what does one mean with causality or
with “one measurement cannot affect the other one”? Certainly, if it means
that measuring the values of A and B leaves the system in the same state ir-
respective in which order they have been performed then causality is respected
since the projection operators commute. However, if it would also mean that
the statistics of the mutual events should be independent of the order in which
one measures then our definition would fail in contrast to the standard treat-
ment. Indeed, in the latter the probability of Pi to be detected before Qj would
be

〈ψ|PiQjPi|ψ〉 = 〈ψ|PiQj |ψ〉

which is clearly symmetric under exchange of Pi and Qj . In our case however,
it would be

|〈ψ|PiQjPi|ψ〉|∑
k |〈ψ|PiQkPi|ψ〉|

|〈ψ|Pi|ψ〉|∑
k |〈ψ|Pk|ψ〉|

which is not symmetric under the exchange of Pi and Qj . Of course, when
one assumes that A and B will be measured first each with a probability of
one half, then this expression becomes symmetric again (but here we don’t
need the commutativity of both operators)5. Note however that for product
states |ψ〉⊗ |φ〉 the individual statistics remain invariant and the joint statistics
does not depend upon the order in which has been measured since the previous
formula reduces to

|〈ψ|Qj |ψ〉|∑
k |〈ψ|Qk|ψ〉|

|〈φ|Pj |φ〉|∑
k |〈φ|Pk|φ〉|

so in ordinary life we don’t see such effects6. We therefore assume that causality
simply means our first statement that the outcome of both experiments does
not depend upon the order in which they were performed (if this were not

4Note that this interpretation behaves covariantly under generalized unitary transforma-
tions since the φλ remain invariant, hence there is no problem with Lorentz covariance.

5The local statistics for A remain the same since summing the previous expression over

all Qj leaves just
|〈ψ|Pi|ψ〉|∑
j |〈ψ|Pj |ψ〉|

but the local statistics for B doesn’t! If one were to take the

“same” observables (we assume a time translation symmetry here) over many pairs of spatially
separated regions, and repeat the same experiment, then this could be detected. But this is
not a violation of local causality of course.

6The local commutativity statement in quantum field theory seems more important for
sake of having a Lorentz invariant scattering matrix (as Weinberg seems to suggest [4]) than
as a statement of compatible observables since a local field is not a realistic observable at all (it
doesn’t even have eigenstates with a definite particle number)! Indeed, realistic experiments
satisfy more stringent criteria than compatibility; it is moreover assumed that there exists a
basis of one particle states such that if a state is measured by one apparatus, it cannot be
mesured by the other one (this is the axiom of seperable systems). Field theory is more like
a hidden variables programme which merely serves to facilitate computations which do not
explicitely depend upon them (such as is the case for the S-matrix which only depends upon
the Hamiltonian).
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true, then it would be possible to send a signal between both events). Note
however, that the inertial frame at hand (which determines how the collapse of
the wavefunction takes place) has an influence on the probabilities of joint events
(if we would repeat a Bell experiment a sufficient number of times). However,
this is natural from the point of view of semiclassical quantum gravity since
a measurement is also going to change the evolution of the gravitational field
which is in principle something which can be measured, see [2] for more on this.
Obviously, this interpretation does not allow one to surpass the Bell or CHSH
inequalities.

3 A more subtle interpretation.

This interpretation is more subtle and therefore open to more scrutiny; we want
to take Dirac’s idea about negative money to the real physical world. One
therefore reinstates Dirac’s hole interpretation (and generalizes it to bosons)
but this time not referring to the hole as the anti particle. That is, we launch
the idea that for every pair consisting of an elementary particle and detector,
there exists a color n ∈ Z indicating the detector’s response to that particle.
Suppose you have a detector who has a ground state zero and where state n > 0
indicates absorbing n particles and −n the absence of n particles relative to the
detector’s ground state. An event is simply such a measurement and therefore
one particle can have an infinite number of detector responses; for example,
an electron arriving at a screen might by absorbed by the screen and release
another few electrons from their atomic bounds while those empty places are
filled in with electrons from the environment (measurement +n) or it might
reflect and knock out a few other electrons (measurement −n). Notice therefore
that a single particle state might not in some circumstances be distinghuishable
from a multi particle state experimentally which is well known since detectors
give classical signals and do not directly adress the number of particles involved.
Actually, standard quantum field theory already allows for this by looking for
observables which are not diagonal in the particle basis (but here a two particle
state is possibly distinghuished7 from a single particle state by means of statistics
of detector responses). Then, the probability for an electron to be absorbed by
the screen might be defined as

P (a) =
∑

eventsα

1

N
colorα

where N is the number of independent single particles you shoot at the screen.
Realistically, if you could distinguish those states, you interpret the state of
affairs of course in terms of positive probabilities

P (n) =
Nn
N

where Nn equals the number of measurements of state n for n ∈ Z which means
the theory would have lost predictivity which was also the case in the interpre-
tation of [1] (you may of course suggest that limN→∞ P (n) does not exist but

7This doesn’t need to be so, it might very well be that the statistics is the same albeit the
wave functions of the two particles are different.
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that would be very nontrivial from a physicist’s point of view). Suppose now
that you as observer would not be able to distinguish those states and consider
them all equal except for zero which means the detector remained in its ground
state then all you could see is P (0) or equivalently 1 − P (0), which is then
interpreted as the probability of absorption. In that case the negative probabil-
ity theory just gives as much information as your observations do, albeit based
upon more detailed assumptions (of course, the negative probability theory does
not contain those elements about the measurement apparatus). You might even
be willing to refute the theory based on this mismatch between 1 − P (0) and
P (a) or you might want to construct more sensitive detectors in which case you
might want to conclude that you need a more predictive theory (if it exists).
Such loss of information was to be expected since having 1000 euro to buy stuff
with tomorrow is the same as having 1200 euro now with an instantaneous debt
of 200 euro to be paid off today. This is not a very satisfactory state of affairs
but perhaps it works like that; actually such information loss occurs all the
time when we make interpretations about the physical world. For example, this
might be so even for the double slit experiment where we count black dots on
a white background; it is by no means certain that one black dot corresponds
to the absorption of a single particle there, it might be multiple particles or
the extensiveness of the dot might be due to a particular backreaction of the
detector. Also, it is possible that when measurement occurs the detector can
be in multiple states corresponding to a single particle state which cannot be
described by a particle observable since it is oblivious to the detector state. Here
one should consider the composite system, particle and detector together.

In the philosophy of this section, a theory with complete knowledge about the
state of affairs should have positive probabilities only, but quantum mechanics
isn’t such a theory and therefore negative probabilities might find a suitable
place in it.

4 Conclusions.

In this note, we proposed two interpretations for the numbers which show up in
computations and which are expected to have an immediate probability inter-
pretation. One attitude is that they dont have a direct probability interpretation
in the general case and a probability distribution needs to be defined from them.
This interpretation is conceptually clear and refers directly to measurable quan-
tities. The second interpretation however assumes that your theory can only
predict limited information about the system at hand and is by no means com-
plete unless there is a principle of nature forbidding us to do any better. This
approach draws attention to the fact that we have to be careful when dealing
with determining particle properties from responses of macroscopic apparati,
there are always assumptions involved using our knowledge about such systems,
that is how our senses percieve them.

What this work suggests is that it is by no means necessary to have a gauge
symmetry which turns all these numbers into positive numbers again unless
some other sacred principle of nature requires it. This is even not the case in
field theory for massless spin one and spin two particles since positive proba-
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bilities are here assumed from the outset (or else gauge invariance is assumed).
In [2], we have a locally Lorentz covariant theory with negative “probabilities”,
but all particles come from standard (positive probability) Hilbert space repre-
sentations of the (local) Poincaré group, so there is no such need to deal with
them in this case. It is just the number system which causes these negative
“probabilities” to arise and this should not have any serious impact on the
theory.
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